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Abstract

Non Standard Analysis is used to modelize some phenomenons of orbit con-
centration in continuous flows; the objects we introduce are studied from a
topological point of view, emphasizing the notion of S-monotonicity of an orbit
along its shadow, for which we give some general theorems.

0. Introduction

When looking at pictures representing trajectories of dynamical systems plotted by
computers, one can often notice some phenomenons which are very evident to the
eye, but rather uneasy to define precisely in mathematical terms. For example, let
us have a look at Figure 1, which shows some solutions of the differential system

(1) ẋ = 1, ẏ = 4(x2 + y2 − 1).

That system does not possess any critical point, nor any limit set, and in spite of
appearances, the orbits induce a topologically trivial foliation of the plane. However,
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Figure 1

everyone can see that all the trajectories which pass through a large portion of the
plane bunch together along two very narrow zones, evoking circular arcs.

Taking for example the upper “arc”, the trajectories in its surroundings seem
to gather drastically, disposing themselves very much like the tributaries of a stream
flowing to the left — while the lower “arc” looks like a stream flowing to the right;
we can remark that, while the solutions of (1) always move to the right, we do not
need to know that at all to determine the direction in which those “rivers” seem to
flow.

In Figure 2, whichs orbits of the equation ẏ = −xy + y2 + 1, the same kind of
phenomenon can be seen, but it takes place in unbounded regions of the plane (and
can be related to asymptotic properties of some solutions — see the discussion at
the beginning of section 2). Many other examples can be found in [1] and [2].

The attempts to find a mathematical definition of that behaviour using clas-
sical notions such as divergence, curvature etc. have failed so far; besides, in the
description we made above, one cannot give a precise meaning to such expressions
as “very narrow zones”, “gather drastically” etc. But in the theory of Non Stan-
dard Analysis one can give a rigorous meaning to such terms as “infinitely narrow



Non–Standard dynamical systems. Shadows of trajectories 207

Figure 2

regions”, “trajectories infinitely close together” and so on. One of the useful roles
of N.S.A. is to provide, in precise and manageable terms, qualitative models (in the
same meaning as mathematical models of a physical phenomenon) for some rather
imprecise facts, especially those involving great variations of some orders of size –
most often by “infinitely exagerating” some of their features.

At this stage, the relation between the phenomenon and its non-standard model
is of a metamathematical nature. Yet, let us come back to our example and replace
system (1) by a one-parameter family

(2) ẋ = 1, ẏ = a(x2 + y2 − 1).

Taking several values of the parameter, one can see that the larger a is taken, the
more accentuated the phenomenon becomes (see for example Figure 3, in which
a = 10). It is therefore very natural to choose as non standard model a member of
the family (2) with an infinitely large value of a. The properties of that non-standard
differential system may be interpreted in classical terms as asymptotic properties of
the family (2) when a tends to infinity (which is often related, as in the case of our
example, to singular perturbations).

As far as we know, the class of asymptotic behaviours one obtains by that mean
has not yet been registered by “classical” mathematicians. However we point out
that, independently, the Russian mathematician S. Samborsky ([15]) wrote some
papers about rivers, with different definitions but in a state of mind rather close
to ours. One finds out that the presence of rivers in the non standard model can
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Figure 3

be characterized by the topological behaviour, not of the trajectories themselves (in
the example given, the foliation remains topologically trivial for all values of a) but
of their shadows. One will see that the notion of shadow of a curve plays a central
role in this paper – and we had to study it for its own sake.

In the first part of this paper, we state some general results about the relation
between a (generally non-standard) arc of curve and its shadow. The second part
deals with continuous dynamical systems: we give some definitions of “abstract
rivers” and state some properties of those objects. Note that the results of Section
1 are not used in Section 2 before 2.5.

Preliminaries: about I.S.T.

The Non Standard background of this paper is that of the axiomatic theory
I.S.T. (Internal Set Theory) settled by E. Nelson in [14].

Let we recall some of its main features: rather than adding new elements to
classical structures, by ultraproducts and other model-theoretic techniques (in the
style of A. Robinson), one adds a new predicate st() (for “standard”) to the language
of ZF Set Theory; its usage is ruled by 3 new axiom schemes (added to ZF Theory),
namely Idealization, Standardization and Transfert (whence “I.S.T.”!).

For more details, see [11] and [14]. However we emphasize the following notions,
which will be the most useful here:
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— the standardized set of an external or internal set A is the unique standard
set having exactly the same standard elements as A ; its existence is asserted by the
axiom of Standardization; we denote it by stA.

— in a metric space E, the halo (elsewhere called monad) of a point x (resp.
a subset A) of E is the (generally exernal) set of all points of E infinitely close to x

(resp.A ). We denote it by hal(x) (resp. hal(A)).
— the shadow of a point x or a subset A is the standardized set of its halo. In

the case of a point x it is either empty, or (if x is near standard) composed of the
unique standard point infinitely close to x. That point is denoted by ◦x , and is also
called the standard part of x. The shadow of a set A is also denoted by ◦A ; if A is
an internal set, then ◦A is a closed set.

More generally, we call pre-halo a set of the form

H =
{⋂

An/n ∈ N and st(n)
}
,

and pre-galaxy a set of the form

G =
{⋃

An/n ∈ N and st(n)
}
,

An being an internal sequence of sets. A halo is an external pre-halo, a galaxy is an
external pre-galaxy. The proofs will often use the so called permanence principles,
which are based on the fact that certain sets cannot be internal (such as the halo
of a near standard point, or the set of all standard points of an infinite internal
set), and also that a halo cannot be equal to a galaxy. From a syntactical point of
view, haloes and galaxies are the simplest exernal sets, because their definition can
be written using just one external quantifier (∀st or ∃st), followed by an internal
formula (with only ordinary quantifiers); those external sets can be “mastered”
thanks to the permanence principles, while the others (whose definition requires at
least two external quantifiers of different kind, such as ∀st∃st or ∃st∀st ) are much
harder to deal with (cf. [11, 16, 19] and part III of [17]).

1. Trace of a path along its shadow

Given an arc γ, in R
n for example, its shadow Γ is a standard set such that every

near standard point of γ is infinitely close to some point of Γ, and even generally to
an infinite number of such points. Now if m(t) represents the continuous motion of
a point on γ, one sometimes would like to speak about “the trace of that motion on
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its shadow”, but this is not a well defined notion; the motion of the point induces
a motion of its shadow ◦(m(t)), but the function t →◦(m(t)) is external, and has
no good properties of continuity and “intermediary values”. Moreover reasoning
about those external functions usually involves complicated formulas, full of external
quantifiers, which forbids the use of Permanence principles; on the other hand, the
standardized mapping stm has no reason to be continuous, or to remain infinitely
close to m , while the shadow ◦m of m (relatively to the uniform metric) often has
no reason to exist at all.

So it may be useful, but sometimes not trivial, to get an internal continuous
mapping, remaining infinitely close to the given motion. We now state two theorems
about the existence of such mappings, under some very simple topological hypotheses
about Γ ; this is done in sections 1.1 and 1.2. 1.3 gives an elementary application,
while in 1.4 and 1.5 we show how these theorems may be used to simplify some
definitions, whose external complexity (from the point of view of external quantifiers)
they permit to reduce, so that the only external sets involved are haloes and galaxies.

1.1 Case of a limited arc

We state a preliminary result:

Proposition 1

Let X be a connected limited subset of R
n ; if ◦X is locally connected, then it

is connected and locally arcwise connected.

Proof. It is known (cf. [11]) that the shadow of a connected set whose all points are
near standard is a connected compact set. We conclude by the following result, due
to Mazurkiewicz (cf. [13] for example): Every metric compact set which is connected

and locally connected is locally arcwise connected. �

The main result of this section is:

Theorem 1

Let I be a compact interval in R, γ a continuous path from I into R
n, and

Γ the shadow of γ(I)∗. If Γ is compact and locally connected, then there exists a

continuous path π from I into Γ such that (∀t ∈ I)π(t) � γ(t).
Moreover one can choose π so that, if I = [a, b] , one gets π(a) =

◦
(γ(a)) and

π(b) =
◦
(γ(b)).

∗ loosely speaking, we shall say that Γ is the shadow of γ.
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Remarks.

• The condition “Γ compact” is equivalent to “γ limited”.
• Γ is not always one-dimensional, even when γ is a homeomorphism: for exam-

ple let I = [−1, 1] and γ(t) = (t, sin(ωt)), with ω infinitely large; we obtain
Γ = [−1, 1]2.

• The mapping π is generally not onto Γ.
• It is striking that the conditions of existence of π only involve the topological

properties of the shadow Γ, and not those of γ itself.

Proof. Let us denote I = [a, b] and A =
◦
(γ(a)), B =

◦
(γ(b)). It is sufficient to

show that for any standard positive ε, there exists a continuous mapping π : I−→Γ
such that π(a) = A, π(b) = B and

(∀t ∈ I) d(p(t), g(t)) < ε.

That statement is internal, so by permanence principle there will exist an ε � 0
with the same properties, which is the announced result. So, for the rest of the
proof let us take a fixed standard positive ε. After Proposition 1, Γ is locally arcwise
connected; so to each x ∈ Γ we can associate a neighbourhood V (x), with diameter
less than ε, such that V (x)∩Γ is arcwise connected, and an open neighbourhood U(x)
such that U(x) ⊂ V (x) . By the axiom of Transfert, we can assume that x−→U(x)
and x−→V (x) are standard mappings (so that whenever x is standard, U(x) and
V (x) are standard sets).

Lemma 1

There exists a finite sequence (ti) on I, a = t0 < t1 < · · · < tp−1 < tp = b, such

that for all i ∈ {0, . . . , p−1}, there exists some xi ∈ Γ such that γ([ti, ti+1]) ⊂ U(xi).

Remark. p is finite but not necessarily standard.

Proof of the lemma: First of all we show that the open covering {U(x)/x ∈ Γ} of Γ is
also a covering for γ(I) : for if t ∈ I, γ(t) is near standard; let then x be its standard
part; x is a standard point of Γ , so U(x) is a standard open set containing x, which
implies that it contains hal(x), and particularly γ(t). So

{
γ−1(U(x))/x ∈ Γ

}
is an

open covering of the compact set I.
After Lebesgue’s Lemma there exists an α > 0 (may be infinitesimal) such

that every sub-interval of I whose length is less than α is included in one of those
open sets. To prove the lemma, we just have to choose p > (b − a)/α and take
ti = a + (b− a)i/p. �
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Now we resume the proof of the theorem, and define the path π piecewise.
Remark that for each i = 1, . . . , p,

◦
(γ(ti)) belongs to Γ and to U(xi−1) ∩ U(xi),

which proves that V (xi−1) ∩ V (xi) ∩ Γ �= ∅. To each i = 1, . . . , p we can then
associate (by an internal function) an element ai ∈ V (xi−1)∩V (xi)∩Γ ; we also set
a0 = A, ap = B. In eachV (xi) ∩ Γ, which is arcwise connected, there exists a path
πi from ai to ai+1; moreover for t ∈ [ti, ti+1], d(γ(t), πi(t)) < ε , as δ(V (xi)) < ε.
Linking all those paths together, we obtain the desired mapping π. �

Examples:
• Let γ(t) = (t, f(t)) , where f is a continuous and S-continuous∗ function from

R to R. Then Γ is the graph of the standardized function ◦f , and one can take
π(t) = (t, ◦f(t)).

• If γ(t) = (t, sin(ωt)) (ω an infinitely large real), then Γ = [0, 1]× [−1, 1] and one
can take π = γ (as, more generally, whenever γ(I) ⊂ Γ).

• We leave to the reader the construction of π when

γ(t) = (t, (1 + ε) sin(ωt)).

Counterexample: A case where Γ is arcwise connected, but not locally arcwise
connected, and where there exists no path π with the required properties.

Let γ be the path suggested by Figure 4, where A = (−1,−2), B = (−1, 0),
C = (ε, 0) (with ε = 1/2πω), ω an infinitely large integer), D = (1, sin(1)),
E = (1,−2), F = (0,−2), and:

— the arc CD is the graph of y = sin(1/x) for x ∈ [ε, 1] ;
— the arc BC is a part of Ox ;
— the arcs AB and DE come infinitely close to F .
The shadow of the arc BD is not arcwise connected (it is composed with [−1, 0]×

{0}, the graph of y = sin(1/x) for x ∈ [0, 1], and the segment {0} × [−1, 1] ) and in
Γ, there is no path from hal(B) to hal(D) keeping infinitely close to γ(t) along the
arc BD.

As an exercise, we leave it to the reader to find examples of paths γ such that
π exists, but Γ is not locally connected.

1.2 The non-limited case
If the arc γ is not limited, Γ needs not be compact, and not even connected:

taking for example γ(t) = (t, ω(1−t2)) (ω infinitely large) for t ∈ [−1, 1], the shadow
Γ is composed of the half lines {1} × R

+ and {−1} × R
+, and in Γ there is no path

π such that (∀t ∈ I)π(t) � γ(t) (not even for the t where γ(t) is limited). So the
theorem we shall state here has a slightly weaker conclusion than the former one.

We first state a standard result:
∗ that is, x � y ⇒ f(x) � f(y); a notion due to E. Nelson.
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Figure 4

Proposition 2

Let K be a compact connected metric space, and a a point in K. If every point

of K \ {a} has a basis of connected neighbourhoods, then K is locally connected.

Proof. Obviously we just have to prove that a itself has a basis of connected neigh-
bourhoods. Suppose not; then there exists a closed ball X = B(a, r) such that no
connected neighbourhood of a is contained in X.

First we show that the ball Y = B(a, r/2) intersects infinitely many components
of X: were it not the case, we could denote C0, . . . , Cp those components, supposing
for example a ∈ C0; surely p ≥ 1, for Y , being a neighbourhood of a included in X,
cannot be connected; the Ci would be closed, so d(a,Ci) > 0 for 1 ≤ i ≤ p ; let α

be the smallest of those distances: then C0 would contain B(a, α), which would be
a connected neighbourhood of a included in X.

Now, K being connected, each component of X intersects the boundary of X;
so all those components intersecting Y also intersect the sphere Σ = S(a, r/2). Let
then (yn)n≥0 be a sequence of points of Σ, each one in a different component of X,
and let y be a limit point for that sequence (Σ is compact).

Of course y �= a; nevertheless y has no basis of connected neighbourhoods;
indeed X itself (which is a neighbourhood of y) does not contain any connected
neighbourhood of y, for every neighbourhood V of y contains infinitely many of the
yn, so that V intersects infinitely many components of X. �
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Theorem 2

Let I be a compact interval of R, γ a path from I into R
n, and Γ the shadow

of γ(I). If Γ is locally connected, there exists a mapping π from I into Γ such that

whenever t ∈ I and γ(t) is near standard, π is continuous at t and π(t) � γ(t).

Proof. In view of Theorem 1, we may assume that γ is non-limited. We compactify
the space R

n by a standard homeomorphism

G : R
n−→Sn \ {Ω}

(Ω an arbitrarily chosen point of the n-dimensional sphere Sn), with G(x) → Ω
when x → ∞, and reciprocally (for example G is the centered projection on Sn with
center Ω). Remark that the shadow of G(x) is G( ◦x) if x is near standard in R

n,
while it is Ω if x is non-limited.

The shadow ∆ of G(γ(I)) in Sn is a connected compact set (for G(γ(I)) is
connected), and by the above remark ∆ = G(Γ) ∪ {Ω}. So every point of ∆ \ {Ω}
is the image of a point of Γ by G, and as Γ is locally connected every point of
∆ \ {Ω} has a basis of connected neighbourhoods in ∆, so by Proposition 2 ∆ is
locally connected; now we can apply Theorem 1 to the path G ◦ γ: there exists a
continuous mapping ρ : I−→∆ such that (∀t ∈ I) ρ(t) � G ◦ γ(t).

Then π may be defined as follows: we choose an arbitrary point A of Γ and set
π(t) = A if ρ(t) = Ω, π(t) = G−1 ◦ ρ(t) otherwise.

If γ(t) is near standard, G ◦ γ(t) is not infinitely close to Ω, so neither is ρ(t):
then on a neighbourhood of t we have π = G−1 ◦ ρ , so π is continuous at t; also, as
G−1 is a standard continuous mapping and ρ(t) � G ◦ γ(t), we get π(t) � γ(t). �

1.3 Example of application

Here and in the following subsection, we show how Theorem 1 is useful by
reducing some problems to elementary properties of real-valued functions.

Proposition 3

Let γ : I−→R
n be a path whose shadow Γ is a simple compact arc (that is,

homeomorphic to an interval of R). Then every standard subarc of Γ is the shadow

of a subarc of γ.

Proof. We use the following characterization of the shadow in the case of a limited
set:
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Lemma 2

Let X be a limited subset of E = R
n and δ be the Hausdorff semi-distance on

subsets of E. Then the shadow of X is the unique compact standard set Y such

that δ(X,Y ) � 0.

Proof of the lemma. We have obviously δ(X, ◦X) � 0 ; on the other hand if two
compact standard sets are infinitely close with respect to the Hausdorff metric, they
are identical. �

Now let π : I−→Γ be as in Theorem 1, and AB a standard subarc of Γ. If we
find u and v on I such that π([u, v]) = AB, we shall have δ(π([u, v]), γ([u, v])) � 0,
so by the Lemma 2 AB is the shadow of γ([u, v]).

Let h be an homeomorphism from Γ to an interval J of R, and let a = h(A),
b = h(B). As h ◦ π is continuous there exist t1, t2 ∈ I such that A = π(t1) and
B = π(t2), and we have necessarily h ◦ π([t1, t2]) ⊂ [a, b]. We want to find u and
v such that one has exactly h ◦ π[u, v]) = [a, b]. For that it is enough to prove the
following assertion about real valued functions: Let f be a continuous real valued

function, defined on an interval I of R; for all a, b ∈ f(I), there exist u, v ∈ I such

that f([u, v]) = [a, b].
That is elementary proved: suppose for example a = f(t1), b = f(t2), a < b

and t1 < t2; just take u = sup {x ∈ [t1, t2]/f(x) = a}, then v = inf {x ∈
[u, t2]/f(x) = b}. �

Remark. To convince oneself of the usefullness of the above theorems, one just has
to try to prove that proposition without them.

1.4 S-monotonicity

Here we study the case where M(t) is the motion of a point along a trajectory
γ whose shadow Γ is a simple arc, so that the shadow of M(t) moves always in the
same direction along Γ.

Definition 1. Let γ : I−→R
n be a path whose shadow Γ is a simple arc; γ is S-

monotonic along Γ if and only if there exists a standard homeomorphism ϕ from
I onto Γ with:

(3) (∀t1, t2 ∈ I) t1 ≤ t2 ⇒ ϕ−1( ◦γ(t1)) ≤ ϕ−1( ◦γ(t2)).

The following result, whose easy proof is left to the reader, is related with Proposi-
tion 3:
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Proposition 4

If γ is a compact limited arc which is S-monotonic along its shadow Γ (a simple

arc) and a, b are points of γ, then the shadow of the subarc [a, b] of γ is the subarc

[ ◦a, ◦b] of Γ.

Theorem I allows us to get a useful equivalent of definition 1:

Theorem 3

Let γ : I−→[a, b] ⊂ R
n be a path whose shadow Γ is a simple arc. Then γ

is S-monotonic along Γ if and only if there exists a one-to-one continuous mapping

π : I−→Γ such that (∀t ∈ I) γ(t) � π(t).

Proof. If there exists such a mapping, let us show that t1 ≤ t2) ⇒ π−1( ◦γ(t1)) ≤
π−1( ◦γ(t2)) — so that γ is S-monotonic along Γ.

Denoting A = π(a), B = π(b) the end points of Γ, π induces a continuous order
relation on Γ, for which A is the first element and B the last one. Such a relation
is unique, so it is standard; therefore we know that, if m and s are standard points
of Γ with π−1(m) > π−1(s), and if m′ and s′ are points of Γ such that m′ � m and
s′ � s, then π−1(m′) > π−1(s′). Taking m = ◦γ(t1), s = ◦γ(t2), m′ = π(t1) and
s′ = π(t2), we obtain the announced relation.

Conversely, suppose γ is S-monotonic, and let ϕ verifying formula (3). Ac-
cording to Theorem 1 there exists a continuous mapping ρ : I−→Γ such that
(∀t ∈ I) γ(t) � ρ(t), with ρ(a) = A and ρ(b) = B. Setting δ = ϕ−1 ◦ ρ, we
can conclude by proving the following:

Let δ : [0, 1]−→[0, 1] be a continuous mapping, such that δ(0) = 0, δ(1) = 1 and

t1 < t2 ⇒ (δ(t1) < δ(t2) or δ(t1) � δ(t2)). Then there exists a monotonic bijective

mapping λ : [0, 1]−→[0, 1] such that

(∀t ∈ [0, 1])λ(t) � δ(t).

The proof of that assertion is easy: we define λ1(t) = sup{ρ(s)/s ∈ [0, t]}; λ1 is
continuous and monotonic, but may not be one-to-one; then we take an infinitesimal
ε > 0, and set λ(t) = (λ1(t) + εt)/(1 + ε). Finally, we just take π = ϕ ◦ λ. �

1.5 Domain of S-monotonicity

Now we show another way in which the alernate definition given by Theorem 3 is
easier to handle than the first one: it allows us to reduce the syntactical complexity of
the definition of certain external sets, so that we can use Permanence principles with
them. To compare the “external complexity” of both definitions of S-monotonicity,
let us examine how they look like in the language of I.S.T. :
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Initial definition (Two external quantifiers of different kinds):
(∃stϕ : I−→Γ one-to-one continuous)(∀s1, s2, t1, t2 ∈ I)
[(∃sta, b ∈ Γ)a �= b and ϕ(s1) = a and ϕ(s2) = b and
(∀stε > 0)[d(γ(t1), a) < ε and d(γ(t2), b) < ε)] and (t1 ≤ t2)] ⇒ s1 < s2 .

Alternate definition (Only one external quantifier):
(∃π : I−→Γ one-to-one continuous)(∀t ∈ I)(∀stε > 0) d(γ(t), π(t)) < ε.

If γ : I−→R
n is a one-to-one path, and x, y ∈ γ(I), we note γxy the subarc

composed of the points of γ(I) between x and y. The following lemma will be used
in the proof of Theorem 8.

Lemma 3

Let γ : I−→R
p be a one-to-one path whose shadow Γ is a simple arc; for each

x ∈ γ(I) we set

Hx = {y ∈ γ(I)/γxy is S-monotonic} .
Then Hx is a pre-halo, and ◦Hx is a closed subarc of Γ.

Proof. Take a such that x = γ(a) and define the following internal sequence of sets:

An = {γ(b)/(∃π : R−→Γ contin. biject.)(∀t ∈ [a, b])d(π(t), γ(t)) < 1/n} .

Then in view of Theorem 3, we have Hx =
⋂{An)/ st(n)}, which shows that Hx is

a pre-halo.
Now we show that ◦Hx is a closed subarc of Γ. Setting γ+

x = {γ(t)/t ∈
I and t ≥ a} (resp. γ−

x = {γ(t)/t ∈ I and t ≤ a}) and H+
x = Hx ∩ γ+

x (resp.
H−

x = Hx ∩ γ−
x ) we just have to show that H+

x and H−
x are closed; let us show it

for H+
x .

Γ being a simple arc, there exists on it a total ordering for which ◦H+
x is a

sub-interval; that interval takes one of the forms [x, z0) or [x, z0], with z0 a standard
point of Γ; we have to exclude the former possibility, and for that we show that if
◦H+

x contains [x, z0) , then z0 ∈ ◦H+
x .

Setting Γ+
x = {y ∈ γ+

x /γxy ∩ hal(z0) = ∅}, we have Γ+
x =

⋃{Bn/ st(n)} where

Bn =
{
y ∈ γ+

x /d(z0, γxy) >
1
n

}
.

It is easy to show that G+
x is external, so it is a galaxy; as G+

x ⊂ H+
x , that inclusion

is strict by Permanence principle, whence there exists y ∈ H+
x such that γxy ∩

hal(z0) = ∅, which shows that z0 ∈ ◦H+
x . �
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2. Abstract rivers

Let us come back to Figure 1 (in the introduction of this paper) and try to be more
accurate about the following question: why does the upper “arc of circle” look like
a river running to the left? Getting a slightly nearer view of the orbit diagram,
take A and B two disjoint portions of the narrow zone on which the trajectories
gather together, as in Figure 5 below; the reason why we feel that A is upstream
from B is that, not only the trajectories passing across A come through B but also
“drains” those passing across a large zone around A. We shall offer a definition of a
Non Standard relation (also called “upstream”) between the points of the space to
modelize that behaviour, and define rivers as standard arcs linearly ordered by that
relation.

Figure 5

A usual notion in Non Standard dynamics is that of slow-fast vector field;
when such fields are defined on the plane, the external set of the points in which
the field is not of infinitely large modulus is usually contained in the halo of a so
called slow curve; one can notice in the litterature that slow curves are most often
unions of rivers. However the notion of rivers that we define is only concerned with
the organization of the orbits, no matter the speed at which they are run along by
the solutions (that is why we chose to place our study in the context of continuous
flows).
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Besides, the term of river is already used by M. & F. Diener, F. Blais and
I.P. Van Den Berg ([4, 7, 9, 8, 10, 17, 18]), in the context of a class of standard
vector fields in the plane (including the standard polynomial vector fields).

We must specify the connections between those rivers and ours — the former
ones can be called natural rivers and ours abstract rivers when one wants to
distinguish: the notion of natural rivers describes the asymptotic behaviour of some
trajectories at the infinity by the fact that, under an appropriate Non Standard
linear change of variables (called macroscope) one obtains a slow-fast vector field
in which those trajectories follow the halo of a certain slow curve; those slow curves
are abstract rivers, and the change of variables is in fact a (very rich) particular case
of the method we evoked in the introduction as “adding a parameter to accentuate
the phenomenon”.

As the above authors point it out, note that natural rivers do not deal with the
case of bounded rivers (like in the example of system we gave in the introduction)
nor with spaces of higher dimensions.

To summarize, natural rivers concern Standard equations and can be given a
Standard definition, in terms of polynomial growth; while abstract rivers concern
Non Standard equations, their definition is essentially topological, and to give them
a Standard definition, one is obliged to consider parametrized families of equations
(such a Standard definition is given in the Appendix; compare its complexity with
the Non Standard definition!).

In [2] we gave various examples of Non Standard changes of variables in Stan-
dard vector fields giving rise to abstract rivers (with slightly different definitions for
limited shadows and rivers, but the present ones also work for those examples).

2.1 Settling the landscape

From now on, E is a standard open subset of R
n (n standard), and ϕ a continuous

flow on E, that is a continuous mapping from E×R into R verifying, for all x in E,
ϕ(x, 0) = x and for all t, s in R, ϕ(x, t+ s) = ϕ(ϕ(x, t), s). We shall write also ϕx(t)
for ϕ(x, t).

Often, the flow will be associated to a C1 vector field V : E−→R
n. Then ϕ will

be differentiable, and we shall have

∂

∂t
(x, t) = V (f(x, t)).

The flows and fields we shall consider will be internal, but most of the time non
standard.
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Through every x ∈ E passes a unique trajectory γx = {f(x, t)/t ∈ R}; three
different cases may arise:

1. ϕx is constant: γx = {x} (x is a singularity),
2. ϕx is one-to-one; in case E = R

2, γx is a simple arc (homeomorphic to a line),
3. ϕx is periodic and non constant: γx is homeomorphic to the circle S1.

(cf for example [3] Theorems 1.9, 1.13 and 2.14).

2.1.1 Arc γxy

Suppose ϕx is non constant, and let y ∈ γx, y �= x. In case 2 (ϕx one-to-one),
we denote by γxy the unique subarc of γx with ends x and y. In case 3 (ϕx periodic),
there are exactly two such subarcs, that we shall denote γ1

xy and γ2
xy.

If ϕx is constant, of course we cannot have y �= x , but we shall take γx = {x}.

2.1.2 Limited shadow
Let G be the principal galaxy of E (that is the external set of all near standard

points of E ). If x ∈ G the following external set will be called the limited shadow
of x :

LS(x) = { ◦x} if ϕx is constant;

LS(x) =
⋃

{ ◦γxy/y ∈ γx and γxy ⊂ G} if ϕx is one-to-one;

LS(x) =
⋃

{ ◦γi
xy/y ∈ γx and γi

xy ⊂ G, i = 1, 2} if ϕx is periodic.

For completeness we shall take LS(x) = ∅ when x is not in G. In other words,
◦y ∈ LS(x) means that ◦x and ◦y are in the same connected component of ◦γx, and
the solution is not “lost from sight” between x and y.

Examples: Figures 6 and 7 suggest various situations (the region below the dotted
line represents the principal galaxy).

Remarks.

• LS(x) is always contained in G.
• ◦x ∈ LS(x) but generally x /∈ LS(x).
• If y ∈ LS(x), ◦y ∈ LS(x) but generally LS(y) �= LS(x).
• If y ∈ γx and gxy ⊂ G, ◦y ∈ LS(x) and LS(y) = LS(x).

2.1.3 Draining
Let X ⊂ G and y ∈ G. We shall say that y drains X iff (∀x ∈ X)y ∈ LS(x).
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◦y∈LS(x) ◦y/∈LS(x)

Figure 6 Figure 7

Remarks.

• Every standard point drains its own halo.
• If ϕ is standard and x0 is a standard isolated sink or source, then it drains

a standard open set (the set of all points whose orbit has x0 as α- or ω-limit
point).

• If ϕ is standard, y ∈ γx and γxy ⊂ G, then ◦y drains hal(x).
• If y drains X and z drains the halo of y , then z drains X.

In the case of a C1 standard flow, it is easy to show that only points infinitely
close to a singularity may drain an open non-void standard set. This is not the case
for non standard flows, in which we shall be mostly interested in the following.

2.1.4 Upstream, downstream
We denote by A the standard relation∗ which, for standard x and y, satisfies:

xA y⇐⇒ y drains a standard neighbourhood of x.

In such a case we shall say that x is upstream from y, or that y is downstream
from x.

We shall note A= for “A or = ”.
Being a standard relation, A is uniquely determined by its values on pairs of

standard points; we point out that it is defined by standardization of an external

∗ A from the french word “Amont”, i.e. upstream.
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relation, so that a priori its precise meaning is known only for standard points; we
may have to work it out for non standard ones.

A is a transitive relation: it is sufficient to check it for standard pairs of
points, and that results from the third remark in 2.1.3. However in most cases it
is neither reflexive, nor symmetric, nor anti-symmetric, except when restricted to
special subsets, as in the following.

2.1.5 Rivers
A river (or abstract river) F is a standard arc in E, which possesses a

continuous parametrization ψ : I−→F (I an interval of R), such that

(∀t1, t2 ∈ I) t1 < t2 ⇐⇒ y(t1)A y(t2).

We shall say that such a parametrization goes down the river; it is necessarily one-
to-one, and by Transfert principle we can always choose it standard. If x, y ∈ F and
xA y we shall say that F flows from x to y.

A maximal river is a river which is not contained in any longer one. Of course
any river is a part of a maximal one.

The definition implies that the restriction of A to F is a strict total ordering;
that last property is not sufficient for what we want to describe, for that ordering
must also coincide with a natural (continuous) one on the arc F ; in [2] we exhibited
an example where that was not the case.

Examples:

1. Let E = R
2, ϕ the flow associated with dy/dx = −y/ε (ε � 0, positive). The

axis Ox is a river; each point (x, 0) drains any open set of the form ]a, b[×]c, d[,
a < b � x∗. So x1 < x2 ⇒ (x1, 0)A (x2, 0), and the river flows to the right.

2. A well known case: Liouville equation dy/dx = 1/ε(y2 − x). On Figure 8, we
have aA bA s, bA c, dA e.
We find two rivers:
F1 = {(t2, t)/t ≥ 0}, which flows to the left;
F2 = {(t2, t)/t < 0}, which flows to the right.

Remarks.

• Points such as c are downstream from every point of F1 \ hal(s), but do not
belong to any river.

• Note that the opposite field (dx/dt = −1, dy/dt = t−y2) not only has the same
rivers, but those rivers flow in the same direction (F1 to the left, F2 to the right),

∗ We note a � b (resp a � b) for a > b and not a � b (resp. a < b and not a � b).
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Figure 8

as the direction of flowing depends only on the arrangement of trajectories as
set of points, not on the way they are described by the flow.

3. Confluence: it may happen that two distinct maximal rivers have a common
part; in all the explicit cases we know, that common part is a downstream
section of both rivers — and in the case of monotonic rivers (a notion to be
defined in section 2.5) Theorem 8 easily implies that it always holds. Figure 9
represents such a situation, for the equation (!) :

dy

dx
= −

[
π + arctan(ω(y2 − x2)) + arctan(ωx)

]
. arctan(ωy) (ω � +∞).

2.1.6 Invariance
We indicate under what sort of transformations the above notions are invariant.

Definition 2. A mapping H : E−→F is an S-homeomorphism iff:
• H is bijective;
• (∀x, y limited)x � y⇔H(x) � H(y);
• (∀x ∈ E)x limited ⇔H(x) limited.

Typically, a standard homeomorphism is an S-homeomorphism. A notion invariant
under every S-homeomorphism is an S-topologic notion. We show that the notions
we introduced so far are S-topologic.

We recall that if ϕ is a flow on E, and H a bijection from E onto E, one denotes
by y = H∗ϕ the flow defined by ψ(x, t) = H ◦ ϕ(H−1(x), t).
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Figure 9

Proposition 5

If H : E−→E is an S-homeomorphism and ϕ a flow on E then:

• if x, y are standard points of E, such that xA y for ϕ, then for H∗ϕ one has
◦H(x)A ◦H(y);

• if F is a river for ϕ, then ◦H(F ) is a river for H∗ϕ .

The proof is straightforward.

2.2 Conditions of existence

2.2.1 An existence theorem
Often, at the place where they come infinitely close to a river, the trajectories

undergo a sudden change of direction ; the following theorem states condition for
the existence of such rivers in the case of a differential equation in the real plane.

Theorem 4

Consider the differential equation y′ = f(x, y), where f is a C1 mapping from

R
2 into R. Suppose there exists a differentiable standard function g : I−→R (I an

open interval of R), U a standard open set containing the graph of g, a and b real

valued functions on I such that for all x in I:

1. a(x) � g′(x) � b(x);
2. if (x, y) U , y � g(x) ⇒ f(x, y) < a(x) and y � g(x) ⇒ f(x, y) > b(x).
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Then the graph of g is a river flowing to the right—i.e

x1 < x2 ⇒ (x1, g(x1))A (x2, g(x2)).

Remark. If we change condition 2) in an obvious way we obtain a river flowing to
the left.

Proof. After the change of variable Y = y − g(x) we are reduced to the case g = 0.
The conditions become, for all x ∈ I:

a(x) � 0 � b(x)

and, if (x, y) ∈ U , y � 0 ⇒ f(x, y) < a(x) and y � 0 ⇒ f(x, y) > b(x) .

Figure 10

Let α = sup{a(x)/x ∈ I} and β = inf{b(x)/x ∈ I}; we have α � 0 � β

(even if a and b are not continuous ! This is merely an application of a Permanence
principle).

We show that I × 0 is a river flowing to the right: it is enough to prove that
if x1 and x2 are distinct standard points of I, with x1 < x2, then (x2, 0) drains
a standard neighbourhood of (x1, 0): by compacity of [x1, x2], U contains an open
standard rectangle R = (c, d) × (−h, h) with h > 0 and [x1, x2] ⊂ (c, d) ⊂ I. Let W

be the open set bounded by the lines:

y = ±h, x = c, y = a(x− x2), y = b(x− x2)
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(cf. Figure 10).
W contains a standard neighbourhood of (x1, 0), and on its boundary, except

in hal(x2, 0) , the field points towards the interior of W . So, a trajectory passing
through a point M ∈ W is obliged to get out through hal(x2, 0) — which shows that
(x2, 0) ∈ LS(M). So finally (x2, 0) drains W . �

2.2.2 Example of application: a bounded river
Consider the equation:

dy

dx
= arctan

(
1
ε
(x2 − y)

)
.

If y � x2, dy/dx � −π/2 ; if y � x2, dy/dx � π/2 . We set g(x) = x2, and, choosing
a positive standard number s, we set a(x) = −π/2+ s, b(x) = π/2− s. Condition 2)
of the Theorem 4 holds for all x ; on the other hand, condition 1) holds only when
2x ∈] − π/2 + s, π/2) − s[.

As s may be chosen arbitrarily small, the theorem states the existence of a river
along the open parabolic arc AB = {(x, x2)/x ∈] − π/4, π/4[}.

Furthermore in the present case, one can easily show that the river may be
extended to the closed arc AB, but not beyond it: here we get a compact maximal
river. There are essentially four different types of trajectories, as represented on
Figure 11. Similarly, Figure 12 shows orbits of the equation ẏ = arctan(20(x4 − y)).

Figure 11 Figure 12
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2.2.3 Tangentially approached rivers
As we pointed out, the rivers whose existence is stated by Theorem 4 have a

particular aspect; other cases may arise, for example rivers upon which the shad-
ows of trajectories arrive smoothly, being tangent to the river, and without sudden
change of slope.

For example we can obtain such a river by regular infinitesimal perturbation of
an equation which does not possess the unicity property:

Let g be the inverse function of f(x) = x(x2+ε) ; the equation (4) dy/dx = g(y)
is obtained by a perturbation of (5) dy/dx = y1/3 ; g is 1/ε -lipschitzian, so (4) has
the unicity property.

Using the Short Shadow Lemma ([11]) outside the halo of Ox (where (4) and
(5) are locally lipschitzian), and the fact that g(y) has the sign of y, one easily shows
that every trajectory of (4) passing through a limited point has a standard trajectory
of (5) as its shadow. Some of them remain in the halo of Ox ; for the others, there
exists a standard real number x0 such that x ≥ x0 ⇒� ±2/3(x − x0)3/2, and
x ≤ x0 ⇒� 0. So, Ox is a river with tangential approach. Figure 13 shows the
aspect of the orbits.

Figure 13

More accurately, one can show that if x � x0, y = ±(1 + ø)ε exp((x − x0)/ε)
(ø stands for any infinitesimal number); so that, going to the left inside the halo of
the river, the trajectories get closer to each other with exponential speed.
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2.3 In midstream

We give here some precisions about the meaning of the relation A for standard and
non standard points of a river.

Proposition 6

Let F be a river and x, y standard points of F ; then xA= y if and only if y

drains hal(x).

Proof. If y drains a standard neighbourhood of x, it drains its halo. Reciprocally,
suppose x �= y ; if xA y is false, then yAx, so x drains a standard neighbourhood
U of y ; if y would drain hal(x), y would also drain U (cf. 2.1.3) so we should have
yA y, which is impossible. �

Remark. If the points x, y are not both standard, it may happen that xA y but y

does not drain hal(x). For example, in the field defined by dx/dt = x, dy/dt = y/ε

(ε � 0), which possesses a saddle point at (0, 0), the half line {(x, 0)/x > 0} is
a river flowing to the right, but the point (1, 0) does not drain the halo of (ε, 0).
Besides, even when y is near standard, it may happen that the river cannot be
extended down to ◦y ; take for example a river F flowing to the left, on the graph
of y = sin(1/x) (x > 0) : a point (ε, sin(1/ε)) is in F , but its shadow is not. Such a
point is downstream from any standard point of F .

The following proposition shows that those complications cannot happen in
midstream of a river.

Proposition 7

Let F be a river, x and y points of F , such that there exist two standard points

x1 and y1 on F with x1 AxA yA y1. Then:

• ◦x ∈ F , ◦y ∈ F and ◦xA=
◦y;

• if ◦x �= ◦y, then ◦y drains a standard neighbourhood of x.

Proof. Let ψ : I−→F be a standard continuous parametrization going down F ;
there exist s1, s, t1, t such that s1 < s < t < t1 and x1 = ψ(s1), x = ψ(s), etc.
Necessarily, s1 and t1 are standard, so ◦s and ◦t are in I, and as ψ is standard
continuous, ψ( ◦s) = ◦x and ψ( ◦t) = ◦y. So ◦x and ◦y are in F , and while ◦s ≤ ◦t,
we have ◦xA=

◦y.
Furthermore, if ◦x �= ◦y then ◦xA ◦y, so ◦y drains a standard neighbourhood

of ◦x — which is also a neighbourhood of x. �
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2.4 Source and mouth
Now we study the upstream and downstream ends of a river. Let F be a river and
x ∈ F . We note F x = {y ∈ F/xA= y} the part of F downstream from x.

If x and y are on F , with xA= y, we note F x
y = {z ∈ F/xA= zA= y} the part

of F between x and y.

Proposition 8
Let F be a river, x0 a standard point of F and x � x0. Then F x0 ⊂ stLS(x) ⊂

◦γx.

Proof. F x0 being standard, it is sufficient for the first inclusion to check that if y0 is
a standard point of F x0 , then y0 ∈ LS(x); but that is obvious, for y0 drains the halo
of x0; the second inclusion is evident. Note that sometimes those inclusions may be
strict ones. �

Remark. If x and y are distinct points of F , then F x
y is homeomorphic to a compact

interval of R ; that is due to the fact that any parametrization going down F is
an homeomorphism, when restricted to F x

y (by Proposition 7 when x and y are
standard, then by transfer in the other cases).

The following result shows that such a parametrization remains an homeomor-
phism on the whole of any part of F downstream a given point (compare with
Theorem 1.25 of [3]) .

Theorem 5 (going downstream)
On a river, the part downstream from any given point is homeomorphic, either

to a compact interval or to a closed half line.

Proof. Let x0 be a point of F . By Transfer Principle, we can assume that x0 is
standard. If there exists a point z0 which is most downstream on F , then F x0 = F x0

z0 ,
so by the above remark F x0 is homeomorphic to a compact interval.

Otherwise, we can always assume that F x0 = ψ([a,+∞)) (ψ a parametrization
going down F ). Let us show that ψ is bicontinuous on that interval: it is so on
any interval [a, b], b > a ; if it was not so on [a,+∞), there would exist x1 ∈
F x0 , limit point of ψ(t) when t → +∞ ; in the present case there exists y strictly
downstream from x1; we can choose x1 and y standard, so that y drains a standard
open neighbourhood V of x1.

But by the choice of x1 there exists a point z ∈ V strictly downstream from y ;
then V would be a standard neighbourhood of z, drained by y, and one would have
yA zA y, which is impossible on a river (see Figure 14). �
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On the other hand, a whole river is not always homeomorphic to an interval of
R ; for example consider the flow associated to the system defined (in polar coordi-
nates) by:

dρ

dt
=

1
ε
(1 − ρ),

dθ

dt
= (1 − ρ cos θ)2.

It possesses a river on the unit circle, flowing counterclockwise from (0, 1) (excluded)
down to (0, 1) (included).

Besides, the downstream part of a river may not be closed, as in the second
example of following Proposition 6.

Figure 14

2.4.1 Definitions
A river F is said to be closed downstream (resp. compact downstream)

if for a point x of F , F x is closed (resp. compact).
As F x

y is compact for all x, y ∈ F , those properties do not depend on the choice
of x in F ; particularly it may be chosen standard. F is compact downstream if
and only if it has a most downstream point; by transfer such a point is necessarily
standard.

One says that F tends to infinity downstream if for all compact K , (∃x ∈
F )F x ∩K = ∅ .

The following proposition is a consequence of Theorem 5.
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Proposition 9

A river tends to infinity downstream if and only if it is closed downstream but

not compact downstream.

Proof. In view of Theorem 5, it is enough to show that in a metric space E,
any mapping ψ : R

+−→E which is bicontinuous and tends to infinity has a closed
image, and that any subset homeomorphic to a half line that is not closed cannot
be contained within a compact set — which are easy standard results. �

Theorem 6 (going upstream)

Let F be a river. There exists a point x0 of F such that:

• x0 is upstream from any standard point of F ;

• F ⊂ ◦γx0 .

Remark. This result shows that a river may always be described as a part of the
shadow of a single trajectory, issued from a point of the river.

Proof. We use a Permanence principle. Setting Γ =
⋃ {F x/st(x)} , Γ is a pre-

galaxy. If F has a point x0 most upstream, it is standard and F = F x0 ; in that case
F ⊂ ◦γx0 by Proposition II.4.1.

Otherwise, (∀stx ∈ F )(∃sty ∈ F ) yAx ; in that case Γ cannot be an internal
set, so it is a galaxy. Then let us set

H = {x ∈ F/(∀stz ∈ F )xA z ⇒ z ∈ ◦γx} .

We can also define H as the set of all x such that

(∀stz ∈ F )(∀stε > 0)xA z ⇒ d(z, γx) < ε ,

which shows that H is a pre-halo.
Moreover Γ ⊂ H, for if x ∈ Γ there exists a standard point y ∈ F upstream

from x ; then for any standard z downstream from x on F , we have x ∈ F y
z , and by

Proposition II.4.1 this implies ◦x ∈ F y
z and z drains hal(x) , whence x ∈ H.

Now by Permanence Principle Γ cannot be equal to H, so there exists x ∈ H\Γ ;
it is easy to check that such a point has the announced properties. �

2.5 Stability and monotonicity

The property of being a river is not always kept by restriction of the domain E:
in the example presented in Figure 15, the axis Ox is a river flowing to the right,



232 Gautheron and Isambert

but if we restrict the domain to E′ = R
+ × R, then Ox ∩ E′ = R

+ × 0 is not
a river in E′. The points M1, M2, M3 represented on the figure are of the form
(x1, 1/ω)), (x2, 2/ω), (x3, 0), with x1 � 0 � x2 � x3. Remark that in E′ the
relation (x2, 0)A (x3, 0) is false, while it is true in E.

One can see here that the lack of “stability” of the notion of river is due to the
fact that the trajectories change of direction within the halo of the river; a related
fact is that, for example, no arc of trajectory issued from M2 has for shadow the
part of the river between ( ◦x2, 0) and ( ◦x3, 0).

x′=arctan(ωy−1), y′=ωy|y|.

Figure 15

The purpose of this chapter is to study the special properties of the rivers whose
restrictions to “reasonable” domains remain rivers, in relation to the other properties
evoked in the above remarks.

2.5.1 Definitions
The restriction of a flow to a subset E′ of E may not be a flow, which raises

a problem : what is the meaning of the assertion “E′ ∩ F is (or is not) a river,

relatively to E′ ”? Rather than dealing with delicate problems or reparametrization,
we think the simplest way is to define notions such as “relative limited shadow”,
and so on, as follows:

We denote by GE′ = {x ∈ E′/x is near standard and ◦x ∈ E′} the principal
galaxy of E′ ; then if E′ is a part of E and x ∈ E′, the limited shadow of x
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relatively to E′ is

LSE′(x) =
⋃

{ ◦γxy/y ∈ γx ∩ E′ and γxy ⊂ GE′}
in the case where ϕx is one-to-one, and similarly in the other cases (cf. 2.1.2).

In an obvious way, that relative notion induces a relation of draining relatively
to E′ (that we can denote AE′), and the notion of being a river relatively to E′,
just replacing LS by LSE′ and A by AE′ in the definitions of 2.1.

If F is a river, we call interval of F a subset F ′ such that whenever x and z
belong to F ′, we have (y ∈ F and xA yA z) ⇒ y ∈ F ′.

We shall say that a river F is stable if, for any standard open set U ⊂ E, and
any interval F ′ of F included in U , F ′ is a river relatively to U .

The examples given in the preceding sections are all stable rivers; so are those
obtained by application of Theorem 4. The river in Figure 16 is stable, while those
in Figures 15 and 17 are not.

Stable river

x′=εy, y′=ε2−y2.

Figure 16

Also, we shall say that a river F is monotonic if it has the following property:
if x0 and y0 are standard points of F , with x0 A y0, then

(6) (∀x � x0)(∃y � y0)y ∈ γx and
◦
(γxy) = F x0

y0
.

(that terminology may not be evident for the moment, but it will be made clear by
Theorem 8).
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Unstable river

x′=4 arctan[y/ε(y2/ε−1)], y′=9ε−y4/ε.

Figure 17

Remark. By Proposition 6, for any river, (6) implies x0 A y0.

Theorem 7

A stable river is monotonic.

Proof. Let x0 and y0 be standard points of a stable river F , such that x0 A y0, and
suppose (6) does not hold. Then there exists x � x0 such that

(∀y ∈ γx ∩ hal(y0))
◦
(γxy) �= F x0

y0

(that is, no arc of trajectory issued from x has F x0
y0

as its shadow).

F x0
y0

is homeomorphic to a real interval, and
◦
(γxy) is connected (for it is the

shadow of a connected set all points of which are near standard — see the proof
of proposition 1) and it contains the points x0 and y0, that is the end points of
F x0
y0

; so
◦
(γxy) cannot be strictly included in F x0

y0
. The only possibility that they

can be different is that there exists a point t ∈ γxy such that ◦t /∈ F x0
y0

— that is
(∃stε > 0)d(t, F x0

y0
) > ε.

But that is true for every y ∈ γxy ∩ hal(y0), so by Permanence there exists a
standard positive ε0 such that

(∀y ∈ γxy ∩ hal(y0))(∃t ∈ γxy) d(t, F x0
y0

) > ε0.
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Then the set U =
{
t ∈ E/d(t, F x0

y0
) < ε0/2

}
is an open standard set containing

F x0
y0

, but y does not drain hal(x0) relatively to U — which contradicts the stability
of F . �

2.5.2 S-monotonicity of trajectories along a river

Definition. Let I be an internal or external interval in R , let x ∈ E and F be a
river; an arc of trajectory γ = ϕx(I) is S-monotonic along F iff:
• every point of γ is in the halo of a standard point of F ;
• one of the following properties holds:

a) (∀u, s ∈ I)
[
u ≤ s ⇒

◦
(ϕx(u))A=

◦(ϕx(s)
]

(S-descending arc);

b) (∀u, s ∈ I)
[
u ≤ s ⇒

◦
(ϕx(u))A=

◦(ϕx(s))
]

(S-ascending arc).

(this is a particular case of the notion studied in 1.4).
For any x ∈ E we shall note γ+

x = ϕx(R+) and γ−
x = ϕx(R−) the half trajecto-

ries issued from x.
The following theorem relates that notion to that of monotonic river.

Theorem 8 (about monotonicity)
A river F is monotonic if and only if it has the following property:

for all standard x0 ∈ F , and all x � x0 , there exists an arc of trajectory γ

issued from x, S-descending along F and such that

(7) ◦γ = F x0 .

Furthermore if F is compact downstream, γ can be chosen internal and compact;

otherwise γ is necessarily external.

Remarks.

• In some cases there are two such arc issued from the same point x, one contained
in the half trajectory γ+

x , the other in γ−
x , as in Figure 16.

• When F is compact downstream, there exists on F a standard point a0 which
is most downstream on the river. Then the above theorem asserts the existence
of arcs of trajectories, issued from every point in the halo of a standard point
of F , “S-descending” down to the mouth of F , that is which are S-monotonic
along F down to the halo of a0.
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Proof. We shall only develop the proof that a monotonic river satisfies (7), the
converse being straightforward by Proposition 6.

So let F be a monotonic river. If x0 is the most downstream point of F , then
F x0 = {x0}, so the conclusion is trivial; from now on we suppose it is not the case,
and we choose a point x � x0.

Then we can take y0 and z0 two different points on F such that x0 A y0 A z0;
by the definition of a monotonic river there exists an y � y0 such that y ∈ γx and
◦
(γxy) = F x0

y0
.

Let us now state a first lemma:

Lemma 4

If y0 is a standard point of F downstream from x0, but not most downstream

on F , take y ∈ γx such that
◦
(γxy) = F x0

y0
; then γxy is S-monotonic along F .

Proof. Suppose for example y ∈ γ+
x . Let z0 be a standard point of F , strictly

downstream from y0; let also t be a positive real number such that y = ϕx(t) and
s1, s2 such that 0 < s1 < s2 < t ; we set m1 = ϕx(s1) and m2 = ϕx(s2) and show
that ◦m1 A=

◦m2 (cf. Figure 18): otherwise we should have ◦m2 A ◦m1; but in that
case, by the choice of y, the shadow of γ−

m1
could not go strictly downstream y0

before passing by x0; on the other hand for the same reason, the shadow of γ+
m1

would go at least up to ◦m2, before eventually passing by z0; but that contradicts
property (6) for the pair of points ( ◦m1, z0). �

Figure 18


