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§ 0. Introduction

Fuchsian groups, that is lattices in PSL2(R), are simultaneously amongst the sim-
plest and most complicated objects within the general theory of semisimple lattices.
One the one hand, their isomorphism types are completely classified, and they are all
commensurable with either Surface groups or finitely generated free groups. Other
aspects however, particularly those related to the failure of “rigidity”, present more
complicated features. As an example, the outer automorphism group Out(Γ) is ge-
nerally infinite when Γ is a Fuchsian group, whereas for irreducible lattices in other
noncompact semisimple Lie groups it is finite [5]. This has nontrivial consequences
for the extension theory of Fuchsian groups. Groups obtained by iterated extension
of PSL2(R)-lattices, the poly-Fuchsian groups of the title, are usually not lattices
in any semisimple group, and may display other interesting features [1], [15]. By
contrast, forming iterated extensions from other semisimple lattices does not give
anything essentially new; all such extensions are commensurable with lattices in
connected semisimple Lie groups [7].

Except in the trivial case where a poly-Fuchsian group is commensurable with
a direct product of Fuchsian groups, it is not known which poly-Fuchsian groups
admit faithful linear representations. Nevertheless we are still able to show that the
poly-Fuchsian groups have a number of properties in common with finitely generated
linear groups, and in particular, with semisimple lattices. We will show that:

(I) a poly-Fuchsian group contains a torsion free subgroup of finite index;

(II) poly-Fuchsian groups are residually finite;

(III) poly-Fuchsian groups satisfy the “Tits alternative” [18]; that is, a solvable sub-
group of a poly-Fuchsian groups is polycyclic, whilst a non-solvable subgroup
contains a non-abelian free subgroup.
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These properties are shared by all finitely generated linear groups; however, poly-
Fuchsian groups possess some specifically lattice like properties:

(IV) a torsion free poly-Fuchsian group is a duality group in the sense of [3].

Moreover, poly-Fuchsian groups admit a product decomposition similar to the de-
composition of lattices in semisimple Lie groups, up to commensurability, into prod-
ucts of irreducible lattices ([17] p. 86); that is;

(V) each poly-Fuchsian group contains a characteristic subgroup of finite index
which is isomorphic to a direct product G1 × . . . × Gn where G1, . . . , Gn are
irreducible poly-Fuchsian groups. Moreover, this decomposition is uniquely de-
termined up to commensurability.

Finally we relate the automorphism group of a poly-Fuchsian group to the automor-
phism groups of its various composition factors:

(VI) If G is a poly-Fuchsian group with filtration G = (Gr)0≤r≤n, then the group
Aut(G) of filtration-preserving automorphisms is a subgroup of finite index
in Aut(G) and imbeds as a subgroup in Aut(Q1) × . . . × Aut(Qn), where
Qr = Gr/Gr−1. In particular, Aut(G) is commensurable with a subgroup
of Aut(Q1)× . . .×Aut(Qn).

The paper is organised as follows: §1 is a summary of known properties of
Fuchsian groups; §2 is a study of groups obtained by extending a finite group by a
Fuchsian group; properties (I)-(IV) above are established in §3; §§4–5 are more tech-
nical in nature, preparatory to establishing (V); §4 establishes a convenient criterion
for a subnormal filtration on a group G to be invariant under all automorphisms
of G: in §5 we investigate the direct factors of a reducible poly-Fuchsian group;
properties (V) and (VI) are established in §6 and §7 respectively.

In a subsequent paper [13] we shall deal with the more geometrical aspects of
poly-Fuchsian groups.

§ 1. Fuchsian groups and their subgroups

By a Fuchsian group we mean a discrete subgroup of finite covolume in PSL2(R).
Such groups may be described geometrically as follows; let H+ = {z ∈ C : Im(z) >
0} denote the upper halfplane endowed with its natural metric of curvature ≡ −1.
Fuchsian groups are precisely the discrete groups which act effectively, properly dis-
continuously, by orientation preserving isometries on H+, and which possess a fun-
damental domain with finitely many sides. (Our usage of the term “Fuchsian group”
is slightly less general than some; for example, [14], where the possibility of infinite
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covolume is allowed, at least initially). For nonnegative integers g, s,m1, . . . ,mk

define

µ(g, s; m1,m2, . . . ,mk) =




2g − 2 + s +
k∑

r=1

(
1− 1

mi

)
k > 0

2g − 2 + s k = 0

.

When µ(g, s; m1,m2, . . . ,mk) > 0, we denote by F(g;m1,m2, . . . ,mk) the group
with presentation

F(g, s;m1,m2, . . . ,mk) = 〈C1, . . . , Ck, Y1, . . . , Ys, X1, . . . , X2g : Cm1
1 =

. . . = Cm2
k = W = 1〉

where W is the word C1 . . . CkY1 . . . Ys

∏g
i=1 X2i−1X2iX

−1
2i−1X

−1
2i .

F(g, s;m1, . . . ,mk) is called the abstract Fuchsian group of signature
(g, s;m1, . . . ,mk). Every Fuchsian group has a presentation of this form; moreover,
µ
(
F(g, s;m1,m2, . . . ,mk)

)
represents the (suitably normalised) area of a fundamen-

tal domain for F(g, s;m1,m2, . . . ,mk) in H+.
Although the groups F(g, s;m1,m2, . . . ,mk) have finite covolume in PSL2(R),

they need not be cocompact. In fact, the cocompact groups are precisely those for
which s = 0; that is

Proposition 1.1

The groups

F(g, 0;m1,m2, . . . ,mk) = 〈C1, . . . , Ck, X1, . . . , X2g : Cm1
1 = . . . = Cm2

k = W = 1〉

are precisely the cocompact subgroups of PSL2(R), where W is the commutator
word

W =
g∏

i=1

X2i−1X2iX
−1
2i−1X

−1
2i .

A subgroup of finite index in a Fuchsian group is also Fuchsian, and the two
are related numerically by the Riemann-Hurwitz Theorem:

Theorem 1.2 (Riemann-Hurwitz Theorem)

If G is a Fuchsian group and H is a subgroup of finite index d in G, then H is
also a Fuchsian group and µ(H) = dµ(G). Moreover, G is cocompact if and only if
H is cocompact.
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We summarise the algebraic properties of Fuchsian groups thus:

(1.3) A Fuchsian group has no nontrivial finite normal subgroup;

(1.4) The centre of a Fuchsian group is trivial;

(1.5) An abelian subgroup of a Fuchsian group is cyclic.

(1.6) An element of finite order in F(g, s;m1,m2, . . . ,mk) is conjugate to a power
of some Ci.

These properties are all “well-known” and can be recovered reasonably easily
from the combination of references [2] and [6]. Since Fuchsian groups are finitely
generated linear groups, it follows from Selberg’s Theorem [4] that

(1.7) F(g, s;m1,m2, . . . ,mk) has a subgroup of finite index which is torsion free.

Let F denote the class of Fuchsian groups, and let F0 denote the subclass
of torsion free Fuchsian groups. The groups in F0 are of two types, according to
whether or not the fundamental domain is compact. The torsion free groups with
compact fundamental domain are fundamental groups of surfaces of genus ≥ 2 and
correspond to the case s = 0; they have presentations of the form

F(g, 0; ∅) =
〈
X1, . . . , X2g :

g∏
i=1

[
X2i−1, X2i

]〉
.

Those with noncompact fundamental domain correspond to the cases s > 0, and
have presentations of the form

F(g, s; ∅) =
〈
Y1, . . . , Ys, X1, . . . , X2g : Y1 . . . Ys

g∏
i=1

[
X2i−1, X2i

]〉
.

In this case, F(g, s; ∅) is free of rank r = s+2g−1; r may assume any value ≥ 2. From
a purely group theoretic point of view, we may write F0 = FREE ∪ SURFACE
where FREE denotes the class of groups of the form F(g, s; ∅) with s > 0, and
SURFACE denotes the class of groups of the form F(g, 0; ∅) with g ≥ 2. Within F0,
membership of the subclasses FREE, SURFACE, is determined by the criterion of
cohomological dimension; FREE groups have dimension 1 and SURFACE groups
have dimension 2. The subgroup structure of F0-groups is easily described:

(1.8) Let N be a nontrivial normal subgroup of an F0-group Σ; the following
conditions are equivalent:

(i) N is a F0-group with dim(N) = dim(Σ);
(ii) N is finitely generated;
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(iii) N has finite index in Σ.

(1.9) A nontrivial subgroup of infinite index in an F0-group is a free group.

(1.10) A nontrivial normal subgroup of infinite index in an F0-group is a free group
of infinite rank.

Nonabelian free groups have finitely generated free subgroups of any index, finite or
infinite. However,

(1.11) Let H be a subgroup of a Surface group G; then H is itself a Surface group
if and only it has finite index in G;

§ 2. Extensions with finite kernel

The following is standard; see, for example, p. 112 of [16];

Proposition 2.1
Let G be a finitely generated group, and let G0 be a subgroup of finite index

in G; then G contains a characteristic subgroup G1, also of finite index, such that
G1 ⊂ G0 ⊂ G.

Proposition 2.2

Let 1 → Φ −→ G
p−→ Q → 1 be an extension with Φ finite and Q ∈ F0; then

G contains an F0-subgroup G′ of finite index.

Proof. Since Q is assumed to be a torsion free Fuchsian group, then either Q is
a finitely generated free group or a Surface group. If Q is a free group, then the
extension

1 → Φ −→ G
p−→ Q → 1

splits, and we may take G′ = s(Q) where s : Q −→ G is any right inverse homo-
morphism for p. Thus suppose that Q is a Surface group. For each positive integer
n, Q contains a subgroup Q′ of index n. Q′ is necessarily a Surface group; in fact, if
Q is the fundamental group of a surface Σ, Q′ can be taken to be the fundamental
group of a cyclic covering Σ′ of degree n over Σ.

First consider the case where Φ is finite and central in G. In this case, the
extension

E = (1 → Φ −→ G
p−→ Q → 1)

is completely determined by a cohomology class c(E ′) ∈ H2(Q; Φ) ∼= Φ. Let Q′ be a
subgroup of Q with index n = exponent (Φ), and let E ′ be the extension

E ′ = (1 → Φ −→ G′ p−→ Q′ → 1)
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where G′ = p−1(Q′). It is easy to see that c(E ′) = 0 so that G′ splits as a direct
product

G′ ∼= Φ×Q′.

The result follows since G′ has finite index in G.
In the general case, let c : G −→ Aut(Φ) be the homomorphism induced by

conjugation, and put Ĝ = Ker(c), Φ̂ = Φ ∩ Ĝ and Q̂ = p(Ĝ). Then the extension

Ê = (1 → Φ̂ −→ Ĝ
p−→ Q̂ → 1)

is in the case considered above. The result follows since Ĝ has finite index in G. �
As in immediate consequence we obtain:

Corollary 2.3

Let 1 → Φ −→ G
p−→ Q → 1 be an extension with Φ finite and Q ∈ F ; then G

contains an F0-subgroup of finite index.

§ 3. Linear properties of poly-F+ groups

Let C be a class of abstract groups; a group G is a called a poly-C group when
it possesses a subnormal filtration G = (Gr)0≤r≤n (that is, Gr � Gr+1, G0 = {1}
and Gn = G) in which Gr+1/Gr ∈ C for each r. Poly-C groups have trivial centre
precisely when all C-groups have trivial centre. This is the case when C = F is
the class of Fuchsian groups, and enables us to describe, in principle at least, the
construction of all poly-F groups; if G = (Gr)0≤r≤n is a poly-F filtration of length
n, the extension

1 → Gn−1
i−→ Gn

π−→ Gn/Gn−1 → 1

is determined, up to congruence, by an operator homomorphism hn−1 : Gn/Gn−1

−→ Out(Gn−1); we regard Gn as a fibre product

Gn = Aut(Gn−1) ×
λ,hn−1

Gn/Gn−1,

where λ : Aut(Gn−1) −→ Out(Gn−1) is the canonical mapping. Inductively, the
study of poly-F groups of length n may be reduced to that of the outer automorphism
groups of pol-F groups of length (n− 1), starting from outer automorphism groups
of groups in F .

It is only slightly more difficult to work with the class of poly-F+ groups, where
F+ denotes the augmented class F+ = F ∪ {finite groups}. This class includes the
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“non-orientable Fuchsian groups”, that is, discrete subgroups of finite covolume in
PGL2(R), and in particular, the fundamental groups of non-orientable surfaces of
genus ≥ 2.

Selberg showed that a finitely generated linear group contains a torsion free
subgroup of finite index [4]. Here we establish a similar property for poly-F+ groups.

Proposition 3.1

A poly-F+ group contains a poly-F0 subgroup of finite index; this subgroup
may be assumed to be characteristic.

Proof. Let (Gr)0≤r≤n be a poly-F filtration on G. We prove it by induction on n.
For n = 1, this is (2.1) above; therefore, suppose proved for n − 1. By induction,
choose a characteristic poly-F0 subgroup H of finite index in Gn−1. H is then
normal in G, and we have an exact sequence

1 → Gn−1/H −→ G/H −→ G/Gn−1 → 1

in which Gn−1/H is finite, and G/Gn−1 ∈ F . By (2.3) above, choose an F0-subgroup
Q1 of finite index in G/H. Put Ĝ = p−1(Q1) where p : G −→ G/H is the canonical
map. Then Ĝ/H ∼= Q1 ∈ F0. Hence Ĝ is a poly-F0 group of length n. �

The next two propositions are easy to verify.

Proposition 3.2

Let G be a poly-F0 group of length n, and let H be a subgroup of finite index
in G; then H is also a poly-F0 group of length n.

Proposition 3.3

All poly-F0 groups are torsion free.

Corollary 3.4

A poly-F+ group contains a torsion free subgroup of finite index.

We have shown elsewhere that a torsion free poly-F+ group need not be poly-
F0 [12].

Both Surface groups and finitely generated free groups are duality groups in the
sense of [3]. Since the class of duality groups is closed under extension, it follows
that a poly-F0 group is a duality group; however, since duality groups are also closed
under torsion free extension by finite groups, we see that
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Corollary 3.5

A torsion free poly-F+ group satisfies homological/cohomological duality in the
sense of [3].

A group G is residually finite when, for each nontrivial element g ∈ G, there
exists an epimorphism onto a finite group ϕ : G −→ Φ such that ϕ(g) �= 1. It is
straightforward to see that if H is a subgroup of finite index in a finitely generated
group G then H is residually finite ⇐⇒ G is residually finite.

Let 1 → K −→ G −→ Q → 1 be an exact sequence of groups in which K is a
finitely generated residually finite group, and Q ∈ F0. Let g be a nontrivial element
of G; there exists a subgroup K1 of finite index in K such that g �∈ K1. If K is also
finitely generated, K1 may be assumed to be characteristic in K, by (2.1), so that
G/K1 occurs in an extension

1 → K/K1 −→ G/K1 −→ Q → 1 .

Observe that π(g) �= 1 where π : G −→ G/K1 is the canonical epimorphism; since
Q ∈ F0, we may, by (2.2), choose an F0 subgroup H of finite index in G/K1. H
is residually finite, as it admits a faithful finite dimensional real linear representa-
tion [19], so we can ensure that π(g) �∈ H;G′ = π−1(H) is a subgroup of finite
index in G such that g �∈ G′. Since G is finitely generated, we may choose a normal
subgroup G′′ of finite index in G such that G′′ ⊂ G′ ⊂ G. Then ψ(g) �= 1 where ψ
is the canonical epimorphism of G onto G/G′′. We have established:

Theorem 3.6

Let 1 → K −→ G −→ Q → 1 be an exact sequence in which K is a finitely
generated residually finite group and Q ∈ F0 : then G is residually finite.

Following (3.6), an induction on the length of a filtration shows that:

Theorem 3.7

A poly-F0 group is residually finite.

From (2.5) and (3.1), we obtain, as an immediate Corollary;

Corollary 3.8

A poly-F+ group is residually finite.
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A class C of groups is said satisfy the “Tits’ alternative” when, given a group Γ
in C and a subgroup ∆ of Γ, then either ∆ is polycyclic or ∆ contains a non-abelian
free group. In [18] Tits showed that the class of finitely generated linear groups
satisfies de Tits’ alternative. We will show that the class of poly-F+ groups satisfy
the Tits’ alternative.

Proposition 3.9

Let 1 → K → G
p−→ Q → 1 be an extension where Q is a nonabelian subgroup

of an F0-group. Then G contains nonabelian free group.

Proof. Let Q′ ⊂ Q be a nonabelian free group and put G′ = p−1(Q′). Then the
extension 1 → K → G′ p−→ Q′ → 1 splits, so that G′, and hence also G, contains a
subgroup isomorphic to Q′. �

Proposition 3.10

Let Γ be a poly-F0 group and let ∆ be a nontrivial subgroup of Γ. If ∆ is
solvable, then ∆ is poly-{infinite cyclic}.

Proof. If Γ ∈ F0 and ∆ is a nontrivial solvable subgroup of Γ, then ∆ is infinite
cyclic. The result follows by induction on the length of a poly–F0 filtration on Γ. �

Corollary 3.11

The class of poly-F+ groups satisfies the Tits’ alternative.

Proof. Since each poly-F+ group contains a poly-F0 subgroup of finite index, it
clearly suffices to establish that the class of poly-F0 groups satisfies the Tits’ al-
ternative. However, this follows easily by induction from (3.9) and (3.10), starting
from the observation that F0 itself satisfies the Tits’ alternative. �

§ 4. Strong and characteristic filtrations

Let G = (Gr)0≤r≤n be a poly-C filtration on a group G; we say that G is a strong
poly-C filtration when, in addition, Gr � G for each r, and that G is characteristic
when Gr−1 is a characteristic subgroup of Gr for each r. The following are easy to
verify:

(4.1) A characteristic poly-C filtration is strong.

(4.2) Let H be a subgroup of finite index in a strongly poly-F0 group G; then H
is also a strongly poly-F0 group.
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We observed, (1.10), that a nontrivial normal subgroup of infinite index in an F0-
group is a free group of infinite rank. By induction on the length of a filtration, we
obtain a sort of Noetherian property:

(4.3) Let H ∈ F0 and let H0 ⊂ H1 ⊂ . . . ⊂ Hn = H be a sequence of finitely
generated subgroups such that Hr �Hr+1 for each r; then there exists m, 1 ≤
m ≤ n, such that Hr has finite index in H for m ≤ r, and Hr = {1} for
r < m.

Let (1 → K −→ G
p−→ Q → 1) be an exact sequence of groups in which Q ∈ F0

and K admits a subnormal filtration (Kr)0≤r≤n in which each Kr/Kr−1 is finitely
generated with rank(Kr/Kr−1) < rank(Q). Let α ∈ Aut(G); put Qr = pα(Kr)
for 0 ≤ r ≤ n, and Qn+1 = Q; then the hypotheses of (4.3) are satisfied; that is,
Q ∈ F0; (Qr)1≤r≤n+1 is a sequence of finitely generated subgroups of Q = Qn+1

with Q0 ⊂ Q1 ⊂ . . . ⊂ Qn ⊂ Qn+1 and Qr−1 � Qr for each r. From (4.3), it follows
that either
(i) Qn is trivial or
(ii) there exists m(1 ≤ m ≤ n+1) such that Qr = {1} for r < m, and Qr has finite

index in Q for m ≤ r.
If (ii) holds, then Qm has finite index (j, say) in Q, and the Riemann-Hurwitz
formula gives

(j − 1)(rank(Q)− 2) = rank(Q) = rank(Qm) ;

in particular:
rank(Q) ≤ rank(Qm) .

Since pα(Km−1) = {1}, pα induces an epimorphism (pα)∗ : Km/Km−1 −→ Qm,
whence

rank(Qm) ≤ rank(Km/Km−1) .

However, by hypothesis, rank(Km/Km−1) < rank(Q); that is, we have

rank(Q) ≤ rank(Qm) ≤ rank(Km/Km−1) < rank(Q)

which is a contradiction. Thus our supposition (ii) is false, and we must have
pα(K) = Qn = {1}. Thus α(K) ⊂ K. Repeating the argument with α−1 instead of
α gives α−1(K) ⊂ K or K ⊂ α(K). Hence α(K) = K, and K is a characteristic
subgroup of G.

By a stable poly-F0 filtration G = (Gr)0≤r≤n on a group G = Gn we shall
mean one for which rank(Gr/Gr−1) < rank(Gr+1/Gr) for all r ∈ {1, . . . , n − 1}; a
poly-F0 group is called stable when it admits a stable poly-F0 filtration. The above
argument establishes:

(4.4) A stable poly-F0 filtration G = (Gr)0≤r≤n is characteristic.
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Proposition 4.5

A poly-F0 group contains a subgroup of finite index which is stably (and hence
characteristically) poly-F0.

Proof. By (4.4), it clearly suffices to prove the stability statement. The proof goes
by induction on the length n of a poly-F0 filtration. The case n = 1 is trivial, so
suppose proved for n − 1 and let (Gr)0≤r≤n be a poly-F0 filtration of length n.
Inductively, we may choose a subgroup Hn−1 of finite index in Gn−1 admitting a
poly-F0 filtration (Hr)0≤r≤n−1 satisfying the condition

rank(Hr/Hr−1) < rank(Hr+1/Hr) for all r ∈ {1, . . . , n− 2} .

A finitely generated group has only a finite number of subgroups of a given finite
index; thus the set {α(Hn−1) : α ∈ Aut(Gn−1)} is finite. Put S(Hn−1) = {α ∈
Aut(Gn−1) : α(Hn−1) = Hn−1} . Then S(Hn−1) is a subgroup of finite index in
Aut(Gn−1). Let c : Gn −→ Aut(Gn−1) denote the conjugation map, and put H̃n =
c−1(S(Hn−1)). Observe that Hn−1 is normal H̃n, and we have an extension

1 −→
(
Gn−1 ∩ H̃n

)
/Hn−1 −→ H̃n/Hn−1 −→ H̃n/

(
Gn−1 ∩ H̃n

)
−→ 1

in which
(
Gn−1 ∩ H̃n)/Hn−1 is finite, and H̃n/(Gn−1 ∩ H̃n) ∈ F0. In particular,

H̃n/(Gn−1 ∩ H̃n) contains subgroups of arbitrary finite index. It follows easily from
the Riemann Hurwitz Theorem that we may choose a subgroup Q of finite index in
H̃n/(Gn−1 ∩ H̃n) such that

rank(Hn−1/Hn−2) < rank(Q) .

Let ϕ : H̃n −→ H̃n/Hn−1 denote the identification mapping; then Hn = ϕ−1(Q) is
a subgroup of finite index in Gn, and the poly-F0 filtration (Hr)0≤r≤n−1 satisfies
the condition

rank(Hr/Hr−1) < rank(Hr+1/Hr)

for all r ∈ {1, . . . , n− 1}. This completes the proof. �

§ 5. Products of strongly poly-F0 groups

First we recall some facts about subdirect products. Let G1, . . . , Gk be groups, and
let π1 :

∏k
j=1 Gj −→ Gi be the projection onto the ith factor; a (normal) subgroup

H of
∏k

i=1 Gi is called a (normal) subdirect product when πi(H) = Gi for each i; a
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subgroup H is a normal subdirect product when, in addition, H is a normal subgroup
of

∏k
i=1 Gi . The following is easily proved; see, for example Proposition (1.2) of [9].

Proposition 5.1
If H is a normal subdirect product in G = G1 × . . .×Gk, then

[
G1, G1

]
× . . .×

[
Gk, Gk

]
⊂ H .

We write G = G1 ◦ G2 when the group G is the internal direct product of its
normal subgroups G1, G2, A group G is said to have property � when every nontrivial
normal subgroup of G is nonabelian. The proofs of the next two propositions are
straightforward:

Proposition 5.2
Let 1 −→ H1 −→ G −→ H2 −→ 1 be an exact sequence; if both H1 and H2

have property � then so also does G.

Proposition 5.3
Let H1, H2 be groups; then

H1 ×H2 has property � ⇐⇒ both H1 and H2 have property � .

Let G be a Fuchsian group, and let N be a nontrivial normal subgroup. If
[G;N ] is finite then N is also a Fuchsian group; if [G;N ] is infinite then N contains
a subgroup of finite index which is a free group of infinite rank; either way, N is
nonabelian. It follows by induction that

Proposition 5.4
Each poly-F group has property � .

Let G = G1 ◦ G2 be the (internal) direct product of normal subgroups G1, G2

which both have property �, and let H be a torsion free normal subgroup of G,
with the property that every abelian subgroup of H is cyclic. Then H is a normal
subdirect product of H1 ◦ H2, where Hi is the image of H under the projection
πi : G1 ◦G2 −→ Gi.

From (2.2) of [9] we infer

(∗)
[
H1, H1

]
◦

[
H2, H2

]
⊂ H .

For i = 1, 2, Hi is a normal subgroup of Gi; if Hi is nontrivial, then since Gi has
property �, [Hi, Hi] �= {1}, and since H is torsion free, [Hi, Hi] contains an infinite
cyclic group. Suppose that both projections H1, H2 are nontrivial; then, from (*), H
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contains a free abelian subgroup of rank 2, which contradicts our assumption that
every abelian subgroup of H is cyclic. At least one projection Hi = πi(H) must
therefore be trivial, from which we see that:

Proposition 5.5

Let H be a torsion free normal subgroup of G1 ◦ G2, where G1, G2 both have
the property � . If H has the property that every abelian subgroup is cyclic, then
either

H ⊂ G1 or H ⊂ G2 .

Proposition 5.6

Let G = K1◦K2 be the (internal) direct product of nontrivial normal subgroups
K1,K2; if G is a strongly poly-F0 group, then K1,K2 are also strongly poly-F0

groups.

Proof. The proof goes by induction on the length n of a strong poly-F0 filtration on
G. The case n = 1 is empty, since a Fuchsian group is not isomorphic to a nontrivial
direct product. Suppose that n ≥ 2, and that the statement is proved for strong
filtrations of length ≤ n−1; let (Gr)0≤r≤n be a strong poly-F0 filtration on a group
G = Gn = K1 ◦K2. By (5.4), G has property �, so that, by (5.2), K1,K2 also have
property �. Since G1 � G, it follows from (5.5) that either G1 ⊂ K1 or G1 ⊂ K2.
Without loss of generality, we may suppose that G1 ⊂ K1. Then

G/G1
∼= (K1/G1)×K2

and G/G1 admits a strong poly-F0 filtration of length n − 1. If G1 = K1, then
K2

∼= G/G1 is strongly poly-F0 whilst K1 ∈ F0. If G1 �= K1, then K1/G1 and K2

are both nontrivial, so that, by induction, both K1/G1 and K2 are strongly poly-F0.
However, K1 is an extension

1 −→ G1 −→ K1 −→ K1/G1 −→ 1

in which G1 ∈ F0 and K1/G1 is strongly poly-F0; it follows that K1 is also strongly
poly-F0. In either case, both K1,K2 are strongly poly-F0 groups. This completes
the induction, and also the proof. �
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§ 6. Commensurability and decomposition into irreducibles

Recall that two abstract groups G1, G2 are commensurable, written G1 ∼ G2, when
there exists a group H, and injections %r : H −→ Gr(r = 1, 2), such that %r(H)
has finite index in Gr; without loss of generality, we may suppose a pair H,K of
commensurable groups have intersection H ∩K of finite index in each of H,K. An
infinite group G is reducible when it is commensurable to a direct product G ∼ H1×
H2 where H1, H2 are infinite groups; otherwise, G is irreducible. It is straightforward
to see that:

Proposition 6.1
A finitely generated infinite group G is irreducible if and only if it contains no

subgroup of finite index which is isomorphic to a direct product of infinite groups.

It is a consequence of the Borel Density Theorem that a lattice in a connected
linear semisimple Lie group admits a decomposition, up to commensurability, into a
product of irreducible semisimple lattices ([17], p. 86). Moreover, this decomposition
is essentially unique. The irreducible factors correspond either to arithmetic lattices
in Q-simple algebraic groups, or to nonarithmetic lattices in R-simple Lie groups.
In this section, we will show analogously that, up to commensurability, a poly-F
group admits a decomposition as a product of irreducible poly-F groups.

It is technically convenient to work within a wider context. Let L denote the
class of finitely generated infinite groups of finite cohomological dimension which
have the property that every subgroup of finite index has trivial centre. The class
of poly-F0 groups is a subclass of L. Let L0 denote the subclass of L consisting of
irreducible groups; we show that an L0-product structure on a group is unique up
to commensurability.

First recall that if C is a class of groups, then by a C-product structure on a
group G we mean a finite sequence P = (Gλ)λ∈Λ where each Gλ ∈ C is a nontrivial
normal subgroup of G such that G is the internal direct product

G =
∏
λ∈Λ

Gλ = Gλ1 ◦ . . . ◦Gλn , where Λ = {λ1, . . . , λn} .

Proposition 6.2
An L0-product structure on a group is unique up to commensurability; that is, if

H and K are commensurable groups having L0-product structures H = H1◦. . .◦Hm

and K = K1 ◦ . . . ◦Kn respectively, then
(i) m = n and
(ii) for some unique bijection τ : {1, . . . , n} −→ {1, . . . , n}, Hi ∩ Kj is trivial if

j �= τ(i) and has finite index in both Hi and Kτ(i) if j = τ(i).
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Proof. Without loss we may suppose that m ≤ n. Put G = H ∩K, which has finite
index in both H and K, and define Li = G∩Ki

(
= H ∩Ki), and L = L1 ◦ . . . ◦Ln.

Each Li has finite index in Ki, so that L has finite index in K. Since L ⊂ G,L also
has finite index in H.

Fix µ ∈ {1, . . . ,m} and let πµ : H −→ Hµ denote the projection map. Since Hµ

is irreducible and πµ(Li) centralises πµ(Lj) for i �= j, it follows that there exists a
unique element τ(µ) ∈ {1, . . . , n} such that πµ(Li) = {1} for i �= τ(µ) and πµ(Lτ(µ))
has finite index in Hµ. τ defines a function τ : {1, . . . ,m} −→ {1, . . . ,m}; since
each Li is nontrivial, for each i ∈ {1, . . . , n} there exists µ ∈ {1, . . . ,m} such that
πµ(Li) �= {1}; that is, τ is surjective. Thus m = n and hence τ is also bijective. It
is easy to check that, for all µ,Lτ(µ) is contained in Hµ, with finite index.

If Hi ∩Kj �= {1}, then, since Kj is torsion free, Hi ∩Kj must be infinite; thus
j = τ(i), otherwise our previous claim that Lτ(i) is contained in Hi with finite index
is contradicted. Thus Hi ∩Kj is trivial for j �= τ(i). This completes the proof. �

Two C-product structures P = (Gλ)λ∈Λ, Q = (Hω)ω∈Ω on a group G are said to
be equivalent when there exists a bijection σ : Λ −→ Ω such that for all λ ∈ Λ, Gλ

∼=
Hσ(λ), and strongly equivalent when, in addition, we have equality Gλ = Hσ(λ) for
all λ ∈ Λ. If (Hω)ω∈Ω is a product structure, we denote the complementary factor
to Hµ by

Ĥµ =
∏
λ�=µ

Hλ .

Let G = H1 ◦ . . . ◦Hm = K1 ◦ . . . ◦Kn be L0-product structures with Hi,Kj ∈ L0.
It follows from (6.2) that m = n. After re-indexing the Ki factors, if necessary, we
can suppose that Hi∩Kj is trivial if j �= i, and that Hi∩Ki has finite index in both
Hi and Ki. Let p̂i denote the projection of G onto the complementary factor Ĥi of
Hi; p̂i imbeds the finite group Ki/

(
Hi ∩ Ki) into the torsion free group Ĥi. Thus

Ki = Hi ∩Ki, and, by symmetry, we also see that Hi = Hi ∩Ki. Hence Hi = Ki,
and we have proved:

Theorem 6.3
Any two L0-product structures on a group are strongly equivalent.

A somewhat longer proof yields the conclusion of (6.3) when the class L0 is
replaced by the larger class of infinite groups which have trivial centre, and which
are indecomposable as nontrivial direct products.

Theorem 6.4
An L group G contains a characteristic subgroup G0 of finite index such that

G0
∼= H1 × . . .×Hm ,

where H1, . . . , Hm are L0-groups.
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Proof. We first establish the existence of some subgroup H, not necessarily charac-
teristic, of finite index in G of the form H ∼= H1 × . . .×Hm .

Let δ = δ(G) denote the cohomological dimension of G. If δ = 1, G is free
of rank ≥ 2, and so is itself an irreducible L-group. Suppose that δ ≥ 2; if G is
irreducible there is nothing to prove. Otherwise, by (6.1), G has a subgroup G1 of
finite index which is isomorphic to a product

G1
∼= K1 ×K2

where K1,K2 are L-groups of dimensions δ1, δ2, with 1 ≤ δi ≤ n − 1, δ1 + δ2 = n.
By induction, Ki has a subgroup Li of finite index which is a product of irreducible
L-groups,

L1
∼= H1 × . . .×Hk

L2
∼= Hk+1 × . . .×Hm ;

H = L1 × L2 has the required properties.
For each automorphism α of G,H ∼ α(H) = α(H1) ◦ . . . ◦ α(Hm). By (6.2), α

gives rise to a unique permutation α∗ : {1, . . . ,m} −→ {1, . . . ,m} with the property
that Hi ∩ α(Hj) is trivial if j �= α∗(i), and Hi ∩ α

(
Hα∗(i)

)
has finite index in both

Hi and α
(
Hα∗(i)

)
. For each i, let

Gi =
⋂

α∈Aut(G)

α
(
Hα∗(i)

)
.

Put G0 = G1 ◦ . . . ◦ Gm; G0 is a characteristic subgroup of G. It remains to show
that G0 has finite index in G.

In any finitely generated group there are only finitely many subgroups of a
given finite index; thus the set {α(H) : α ∈ Aut} is finite; from (6.2), the set
{α(Hi) : α ∈ Aut(G), 1 ≤ i ≤ n} is also finite, showing that Gi has finite index in
Hi. Furthermore, since H = H1 ◦ . . . ◦Hm has finite index in G, and Gi has finite
index in Hi, then G0 has finite index in G. �

Now suppose that G is a poly-F+ group. From (3.1), (4.1), (4.2) and (4.5) we
see that G contains a characteristic strongly poly-F0-subgroup G′ of finite index.
However, F0 is a subclass of L, so that we may apply (6.4) to conclude that G′

contains a characteristic subgroup G0 of finite index such that

G0
∼= H1 × . . .×Hm

where H1, . . . , Hm are irreducible L-groups. Observe that G0 is itself characteristic
in G. However, by (5.6), each Hi is itself a strongly poly-F0 group. Combined with
the uniqueness result (6.2), we see we have proved:
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Theorem 6.5

An F+-group G contains a characteristic subgroup G0 of finite index such that

G0
∼= H1 × . . .×Hm

where H1, . . . , Hm are irreducible strongly poly-F0-groups; up to commensurability,
this product structure is uniquely determined by the commensurability class of G.

For n ≥ 2, the free group Fn imbeds as a subgroup of index (n−1) in F2, whilst if
Σg denotes the fundamental group of an orientable surface of genus g ≥ 2, Σg imbeds
as a subgroup of index (g− 1) in Σ2. Since every group in F is commensurable with
a torsion free Fuchsian group, F contains precisely two commensurability classes of
abstract groups. For poly-F groups, the situation is quite different. In a subsequent
paper [13], we shall show the following, using a variation on the arguments of [10]:

Theorem 6.6

For each n ≥ 1, the irreducible poly-F groups of dimension 4n represent in-
finitely many distinct commensurability classes of abstract groups.

This result is consistent with the situation of irreducible semisimple lattices; for
each n ≥ 2, there are infinitely many commensurability classes of irreducible lattices
in the n-fold product PSL2(R)(n). In fact, it can be shown using results of [8],
[11] that if G is any connected linear semisimple Lie group which is C-isotypic and
non-simple, then G contains infinitely many commensurability classes of irreducible
lattices.

§ 7. Automorphisms

Let K,Q be groups and let G be given as a group extension of the form

E = (1 −→ K −→ G
p−→ Q −→ 1) .

In general, there is no easy relationship between the automorphism groups of G,K
and Q. However, in the case which interests us, when K and Q are poly-Fuchsian
groups, there is a nontrivial relation as we shall see. We start by considering the
group Aut(E) of automorphisms which preserve E ; to be precise, Aut(E) consists
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of those automorphisms α : G −→ G for which there exist automorphisms αK , αQ

making the following commute:

1 −→ K −→ G −→ Q −→ 1�αK

�α
�αQ

1 −→ K −→ G −→ Q −→ 1 .

Aut(E) has a distinguished normal subgroup C(E), the group of self-congruences of
E ; that is, the automorphisms γ of E which make the following commute;

1 −→ K −→ G1 −→ Q −→ 1�1K
�α

�1Q

1 −→ K −→ G2 −→ Q −→ 1 .

There is a homomorphism ρ : Aut(E) −→ Aut(K)×Aut(Q), ρ(α) = (αk, αQ), giving
rise to an exact sequence

(7.1) 1 −→ C(E) −→ Aut(E)
ρ−→ Aut(K)×Aut(Q) .

The homomorphism c : G −→ Aut(K) obtained from conjugation, c(g)(k) =
g k g−1, induces the so-called “operator homomorphism” ϕ : Q −→ Out(K) =
Aut(K)/Inn(K); the centre Z(K) of K is naturally a module over Out(K), and
becomes a module over Q via the operator homomorphism. It is easy to check that
for α ∈ C(E), the assignment z̄α(x) = α(x)x−1 is a function on G taking values in
Z(K). Let zα : Q −→ Z(K) be the function defined by zα(p(y)) = z̄α(y). Then zα
is an element of Z1(Q,Z(K)), the (abelian) group of 1-cocycles of Q with values in
Z(K). Moreover, the mapping C(E) −→ Z1(Q,Z(K)), α "−→ zα, is an isomorphism
of groups. When K has trivial centre, matters simplify to give:

(7.2) when K has trivial centre, the group of congruences C(E) is trivial, so that
the exact sequence 1 −→ C(E) −→ Aut(E)

ρ−→ Aut(K)×Aut(Q) reduces to

an injection Aut(E)
ρ

>−→ Aut(K)×Aut(Q).

Theorem 7.3

Let E = (1 → K −→ G
p−→ Q → 1) be an exact sequence of groups where K is

finitely generated and Q ∈ F0; then Aut(E) is a subgroup of finite index in Aut(G).
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Proof. Since Q ∈ F0, each nontrivial normal finitely generated subgroup of Q has
finite index. If α ∈ Aut(G) then either pα(K) is a finitely generated nontrivial
normal subgroup of Q, and so has finite index in Q, or α(K) = K, so that α ∈ E .
Let K denote the following set of normal subgroups of Q:

K = {N � Q : ∃α ∈ Aut(G) such that pα(K) = N} .

Let ρ(H) denote the rank, that is, the minimal number of generators, of a group
H: for each nontrivial element N of K one has;

ρ(N) ≤ ρ(K) .

Since Q ∈ F0, the rank ρ(H) of a subgroup H of finite index is related to its index
j(H) by means of the Riemann-Hurwitz formula

j(H) =
(ρ(H)− δ

ρ(Q)− δ

)

where δ denotes the cohomological dimension (either 1 or 2) of Q. In particular, for
any nontrivial element H of K we have

j(H) ≤
(ρ(H)− δ

ρ(Q)− δ

)
.

A finitely generated group has only finitely many subgroups of a given finite index,
so that Q has only finitely many subgroups of index ≤

(
ρ(H)−δ
ρ(Q)−δ

)
: hence K has only

finitely many nontrivial elements and so is finite.
Aut(G) acts transitively on the left of K as follows; let N ∈ K be repre-

sented thus : N = p(β(K)), and define α ◦ N = p(αβ(K)). We obtain an action
◦ : Aut(G) × K −→ K in which Aut(E) is the isotropy subgroup of the trivial ele-
ment of K. Since K is finite, it follows that Aut(E) has finite index in Aut(G). This
completes the proof. �

If G = (Gr)0≤r≤n is a poly-C filtration of length n on Gn, we define

Aut(G) = {α ∈ Aut(Gn) : α(Gr) for all r, 1 ≤ r ≤ n} .

Theorem 7.4

If G is a poly-F0 filtration on G, then Aut(G) is a subgroup of finite index in
Aut(G).
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Proof. The proof goes by induction on the length n of a poly-F0 filtration; for n = 1,
there is nothing to prove; for n = 2, the result follows from (7.3). Suppose proved
for n− 1, and let G = (Gr)0≤r≤n be a poly-C filtration of length n on Gn. For each
r, let Er denote the extension

Er = (1 → Gr−1 −→ Gr −→ Gr/Gr−1 → 1) ,

and let Gr denote the filtration Gr = (Gs)0≤s≤r. Under the imbedding

Aut(En) ↪→ Aut(Gn−1)×Aut(Gn/Gn−1) ,

Aut(Gn) corresponds to Aut(En) ∩ (Aut(Gn−1) × Aut(Gn/Gn−1)); by induction,
Aut(Gn−1) has finite index in Aut(Gn−1), so that Aut(Gn−1)× Aut(Gn/Gn−1) has
finite index in Aut(Gn−1)×Aut(Gn/Gn−1), and Aut(Gn) = Aut(En)∩(Aut(Gn−1)×
Aut(Gn/Gn−1)) is a subgroup of finite index in Aut(En) = Aut(En)∩ (Aut(Gn−1)×
Aut(Gn/Gn−1)). However, by (7.3), Aut(En) has finite index in Aut(Gn), so that
Aut(Gn) has finite index in Aut(Gn). �

Since groups in F0 all have trivial centre, we see inductively that:

Theorem 7.5
Let G be a poly-F0 filtration on G = Gn; then Aut(G) imbeds as a subgroup

of Aut(Q1) × . . . × Aut(Qm) where Q1, . . . , Qm are the successive quotients, Qr =
Gr/Gr−1.

If G and H are commensurable finitely generated groups, it is easy to see that
Aut(G) and Aut(H) are also commensurable. From (3.1), (7.4), (7.5) and the above
observation, we conclude that:

Corollary 7.6
If G is a group with poly-Fuchsian filtration G = (Gr)0≤r≤n, then Aut(G) is

commensurable with a subgroup of Aut(Q1)× . . .×Aut(Qm) where Q1, . . . , Qm are
the successive quotients, Qr = Gr/Gr−1 .

This result relates the linearity problem for poly-Fuchsian groups to the cor-
responding problem for the automorphism groups Aut(Qi). If each Aut(Qi) has a
faithful finite dimensional linear representation then so also does Aut(Q1) × . . . ×
Aut(Qm); (7.6) would allow us, by taking a suitable induced representation, to con-
struct a faithful finite dimensional linear representation for Aut(G). Since G has
trivial centre, it imbeds in Aut(G), and the restriction would be a faithful finite
dimensional linear representation for G. However, it is not known under what con-
ditions the automorphism group Aut(Q) of a F0-group Q admits a faithful finite
dimensional linear representation.
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