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Abstract

In the present paper we prove two theorems concerning the existence
of mild solutions of quasi-linear differential inclusions of evolution. The exis-
tence problem is reduced to a fixed point problem and then there are used
the multivalued version of Banach fixed point theorem and the Himmelberg-
Bohnenblust-Karlin theorem.

1. Introduction

The goal of this paper is to find conditions guaranteeing the existence of a mild so-
lution of the linear boundary value problem for the following quasi-linear differential
inclusion:

(BP )

{
dx(t)/dt ∈ A

(
t, x(t)

)
x(t) + F

(
t, x(t)

)
, t ∈ I ,

Lx = 0 ,

where I = [0, T ], T > 0, A
(
t, w

)
is a linear operator in a separable Banach space

X, depending on t, and w varies on an open set, say, ∅ �= 0 ⊂ X, [22]. L is a linear
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bounded operator from C
(
I,X

)
(the Banach space of continuous functions defined

on I with values in X, endowed with the topology of uniform convergence) in X.

If operator A does not depend on neither t nor w, then the differential inclusion
in (BP ) is said to be linear ; if operator A depends only on t, then the differential
inclusion in (BP ) is said to be semi-linear , while if it depends both on t and w it is
said to be quasi-linear , [4], [22], [24].

The importance of the above problem consists in the fact that it includes many
boundary value problems for ODE,PDE and linear or semi-linear differential inclu-
sions of evolution. Let’s say that an interesting paper on a boundary value problem
of a semi-linear differential inclusion is [21]. Particularly, by a suitable choice of ope-
rator L, we get information on the existence of periodic solutions. The problem of
existence of periodic mild solutions for linear differential inclusions is studied in [13]
by the fixed points index theory of condensing multivalued maps.

The existence of mild solutions of an initial value problem for a quasi-linear
differential inclusion, was studied in several papers, e.g., [24], [15], [18], [19], [1]. In
the case of linear or semi-linear differential inclusions results on initial value problem
may be found in [27], [10], [9].

Let Z be a linear topological space. We will use the following notations:
P (Z) =

{
S ⊂ Z |S �= ∅

}
, C(Z) =

{
S ∈ P (Z) |S is closed} , Co(Z) =

{
S ∈

P (Z) |S is convex} , CCo(Z) =
{
S ∈ C(Z) |S ∈ Co(Z)

}
.

Let M be a measurable space with σ-algebra A, and X is a separable metrizable
space, a multifunction F : M −→ P (X) is said to be measurable (weakly measurable)
iff F−1(E) =

{
t ∈ M |F (t)∩ E �= ∅

}
is measurable for each closed (open) subset E

of X. If F have closed values, F is measurable iff F is weakly measurable, provided
the measure is complete. This result together with other equivalences may be found
in [12] or [31]. If F : Y −→ P (X) is a multifunction, where Y is a topological
space, then the assertion that F is measurable means that F is measurable when
Y is assigned the σ-algebra B of Borel subsets of Y. If F : M × Y −→ P (X), and
if the measurability of F is defined in terms of the product σ-algebra A × B on
M × Y generated by the sets A×B, where A ∈ A and B ∈ B, then F is said to be
product-measurable. If F : M × Y −→ P (X) and for each single valued measurable
function G : M −→ Y, the multifunction t −→ F

(
t, G(t)

)
is measurable, then it is

said to be superpositionally measurable.
Denote by C(I,X) the Banach space of continuous functions from I to X with

the norm ‖x‖ = supt∈I ‖x(t)‖ and by L1(I,X) the Banach space of Bochner in-
tegrable functions from I to X with the norm ‖x‖1 =

∫
I
‖x(t)‖dt . Set L1(I) :=

L1(I,R+), [8].
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A set-valued G : X −→ P (X) is called L-Lipschitz on K ⊂ X if for all
x ∈ K, G(x) �= ∅ and for every x, y ∈ K, G(x) ⊂ G(y) + L‖x − y‖B, where B

denotes the closed unit ball in X.

A set-valued G : I −→ 2X is called integrably bounded if there exists m ∈ L1(I)
such that G(t) ⊆ m(t)B, a.e. on I.

If F : I×X −→ C(X) is a multifunction, then by S1
F (·,x(·)) we denote the set of

integrable selections of F
(
·, x(·)

)
, x : I −→ X. A sufficient condition for S1

F (·,x(·)) �= ∅
is that F has a measurable selection and F

(
·, x(·)

)
is integrably bounded. The exis-

tence of a measurable selection may be obtained by the Kuratowski-Ryll-Nardzewski
theorem, [12], [31], while conditions implying the superpositionally and product mea-
surability there are in, e.g., [20], [29].

A multifunction F : X −→ P (Y ), X and Y being topological spaces, is said to
be upper semicontinuous (usc) on X iff F−1(E) is closed for every closed E ⊂ Y,

and it is said to be lower semicontinuous (lsc) on X iff F−1(E) is open for every
open E ⊂ Y, [2], [3], [5].

In the sequel we assume the followings:
(X) X is a separable reflexive Banach space, 0 ⊂ X, 0 is nonempty and open.
(L) L is a bounded linear operator from the Banach space C(I,X) onto X.D =

kerL. Hence, D is nonempty, closed and convex in C(I,X).
A two family of bounded linear operators U(t, s), 0 ≤ s ≤ t ≤ T on I is said to

be an evolution system if the following two conditions are satisfied:
(i) U(s, s) = 1 (identity), U(t, r)U(r, s) = U(t, s), 0 ≤ s ≤ r ≤ t ≤ T ;
(ii) (t, s) −→ U(t, s) is strongly continuous for 0 ≤ s ≤ t ≤ T.

(A) For every v ∈ D the family of linear operators
{
A(t, v), t ∈ I

}
generates a

unique strongly continuous evolution system Uv(t, s), 0 ≤ s ≤ t ≤ T .
(U1) If u ∈ D has values in 0, then the evolution system Uu(t, s), 0 ≤ s ≤ t ≤ T,

satisfies:
(i) ‖Uu(t, s)‖ ≤ C1, for 0 ≤ s ≤ t ≤ T , uniformly in u;
(ii) there is a positive constant C2 such that for every u, v ∈ D with values in

0 and every w ∈ 0 we have:

‖Uu(t, s)w − Uv(t, s)w‖ ≤ C2‖w‖
∫ t

s

‖u(τ) − v(τ)‖dτ .

(U2) If u ∈ D has values in 0, and 0 ≤ s < t ≤ T , then Uu(t, s) is a compact operator,
i.e., it maps bounded sets in relatively compact sets. From [22], it follows that
Uu(t, s) is continuous in the uniform operator topology.

(U3) If t, t + δ ∈ I, δ > 0, then lim
δ→0

Uu(t + δ, 1) = 1, uniformly in u and t.
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(F1) F : I×X −→ CCo(X) such that: multifunction t −→ F (t, x) is measurable for
every x ∈ X; x −→ F (t, x) from X to X is lsc and from X in Xw(X endowed
with the weak topology) is usc.

(F2) F satisfies (F1) and, moreover, it is k(t)-Lipschitz, k ∈ L1(I), i.e., d
(
F (t, x),

F (t, y)
)
≤ k(t)‖x − y‖ , t ∈ I, x, y ∈ X, d being the Hausdorff-Pompeiu

pseudo-metric.
(F3) F is integrably bounded by a function α ∈ L1(I).
(L1) For every v ∈ D with values in 0 the linear mapping L1v is considered and it is

the same with L1 in [17], p. 18. We suppose it is onto.
(Sv) For every v ∈ D Sv : X −→ kerL1v is the unique pseudo-inverse of the restric-

tion of L to ker L1v, [17]. Suppose there exist the constants c ≥ ‖Sv‖, v ∈ D

and p with ‖Su − Sv‖ ≤ p‖u− v‖, u, v ∈ D.

(B) Let B be the closed ball in C(I,X) centered in the origin and with radius
b, b =

(
c‖L‖ + 1

)
C1‖α‖1 .

(P ) For every v ∈ D we define the linear bounded projector P1v by P1v(x) =
Uv

(
·, 0

)
x(0). For every v ∈ D let P3v be a linear bounded projector from

kerL1v in kerL1v defined by P3v

(
Uv(·, 0)c

)
= Uv(·, 0)c1 such that Im P3v =

ker
(
L|kerL1v

)
.

Remark 1.1. If the operator A does not depend on w, the differential inclusion in
(BP ) is linear or semi-linear, then (A) has to read as:

{
A(t), t ∈ I

}
generates a

unique strongly continuous evolution system U(t, s), 0 ≤ s ≤ t ≤ T. Also, L1v is L1

and Sv is S. In this case C2 = 0 and p = 0.
We will need the following fixed point theorems for multifunctions:

Theorem 1.1 [26, Theorem 1]

Let D be a nonvoid, convex and closed subset of a locally convex space X. Let

ψ : D −→ CCo(D) be an upper semicontinuous multifunction such that ψ(D) is

compact. Then ψ has a fixed point i.e., there exists an x ∈ D such that x ∈ ψ(x).

Theorem 1.2 [7, Theorem 11.1]

Let D �= ∅ be a closed subset of a Banach space X and F : D −→ C(D) be a

contraction, with closed values. Then Fi x(F ) �= ∅.
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2. Existence result

We will prove two existence theorems, one based on a multivalued version of the
Banach fixed point theorem, Theorem 1.2., the other based on the Himmelberg-
Bohnenblust-Karlin fixed point theorem, Theorem 1.1.

A function x ∈ C(I,X) is said to be a mild solution of the boundary value
problem (BP ) if it satisfies:

x(t) = Ux(t, 0)x(0) +
∫ t

0

Ux(t, s)f(s)ds , t ∈ I, and Lx = 0 ,

where f(·) ∈ S1
F (·,x(·)) .

For v ∈ 0 let us consider the following semi-linear differential inclusion:{
dx(t)/dt ∈ A(t, v)x(t) + F

(
t, x(t)

)
, t ∈ I,

Lx = 0 .

Remark 2.1. The above problem has a mild solution due to the Theorem 1 [21]
or the Theorem 2.1 or 2.2 below. The difference between the two approaches lies in
the fact that we get the weak compactness of the set S1

F using the reflexivity of the
space X (which it is not assumed in [21]) while in [21] it is used the assumption that
the values of F are weakly compact (which it is not assumed here). Our approach
appears in [18], [19] too.

Remark 2.2. As it is shown in [17] or [16] the existence of the solutions of the
problem (BP ) is equivalent to the existence of the fixed points of the operator
ψ : D −→ P (D), ψ(v) = Cv(v) defined by:

Cv(x) =
{
y ∈ D

∣∣ y(t) = P3v

(
P1v(x)

)
− SvL

∫ t

0

Uv(t, s)f(s)ds

+
∫ t

0

Uv(t, s)f(s)ds , f ∈ S1
F (·,x(·))

}
.

From [6] we have that it is possible to consider the first term in the expression of
y(t) as zero, what we will do in the sequel.

The t-section of ψ(D) is:
C(t) :=

{
y(t) | y ∈ Cv(v) , v ∈ D

}
.

(S1) When A depends on t and w we suppose that for every t ∈ I, C(t) is relatively
compact.
If A depends on t only this will be proved in Lemma 2.3.

Theorem 2.1
If the following assumptions hold: (X), (U1), (F1−3), (L), (L1), (Sv), (P ), and

0 < C3 =
(
c‖L‖+ 1

)(
C1‖k‖1 + C2T‖α‖1

)
+ p‖L‖C1‖α‖1 < 1, then boundary value

problem (BP ) has a mild solution in D.
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Theorem 2.2

If there hold the assumptions (X), (A), (U1), (U3), (F1−3), and (U2) or (S1),
then there exists a mild solution of (BP ) in D.

In the next lemmata we suppose that there are fulfilled all the necessary as-
sumptions listed at the end of the first paragraph.

Lemma 2.1

If v ∈ D, then for every ψ(v) ∈ CCo
(
C(I,X)

)
.

Proof. ψ(v) is nonempty. The convexity of ψ(v) follows from the convexity of the
values of F and from the linearity of the operators Sv and L. To prove that Cv(v) ∈
C

(
C(I,X)

)
let us consider (yn)n≥1 ⊂ Cv(v) a sequence converging uniformly to

an element y ∈ D. We have to show that y ∈ Cv(v), i.e., there exists an element
f ∈ S1

F (·,v(·)) such that:

y(t) = −SvL

∫ t

0

Uv(t, s)f(s)ds +
∫ t

0

Uv(t, s)f(s)ds .

If yn ∈ Cv(v), then it results that there exists fn(·) ∈ S1
F (·,v(·)) such that for

every n ∈ N :

yn(t) = −SvL

∫ t

0

Uv(t, s)fn(s)ds +
∫ t

0

Uv(t, s)fn(s)ds .

Since F is integrably bounded, {fn}n≥1 is a bounded set in L1(I,X). By Pettis’s
theorem ([11], Theorem 2.11.2) taking into account the reflexivity of X it results
that ∪n≥1{fn(t)} is sequentially weakly compact, t ∈ I. From [27] Proposition 1.2
we have that {fn}n≥1 is a metrizable relatively weak compact subset in L1(I,X).
It means that (taking a subsequence if necessary and keeping the same notations)
(fn)n≥1 converges weakly in L1(I,X) to some f ∈ L1(I,X). It remains to show that
f(·) ∈ S1

F (·,v(·)). By Mazur lemma ([28], p. 199), ([23], p. 65) there exists a sequence
(gn)n≥1 formed by convex combinations of {fn}n≥1 tending to f in L1(I,X). It is
clear that gn(·) ∈ F (·, v(·)), and, moreover gn(·) ∈ S1

F (·,v(·)), n ∈ N. It follows that
g(t) ∈ F (t, v(t)) a.e. on I and f(·) ∈ S1

F (·,v(·)).

For every t ∈ I the map f̄ −→
∫ t

0
Uv(t, s)f̄(s)ds from L1(I,X) into X is con-

tinuous and linear and, by Theorem IV.7.4 in [25], it remains continuous as a map
from L1(I,X)w in Xw. Hence, for every t ∈ I, the sequence

(
yn(t)

)
−→ y(t) in Xw.

But yn(·) −→ y(·), and this implies that y ∈ Cv(v). �
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Proof of Theorem 2.1. Let us find an upper bound for the Hausdorff-Pompeiu
distance of the sets ψ(u) and ψ(v), u, v ∈ Dd

(
ψ(u), ψ(v)

)
. Our desire is to show

that ψ is a contraction. In order to do this let be y ∈ ψ(u), z ∈ ψ(v). If so, there
are f ∈ S1

F (·,v(·)), g ∈ S1
F (·,u(·)) such that:

y(t) = −SuL

∫ t

0

Uu(t, s)g(s)ds +
∫ t

0

Uu(t, s)g(s)ds .

z(t) = −SvL

∫ t

0

Uv(t, s)f(s)ds +
∫ t

0

Uv(t, s)f(s)ds .

Then:

‖y(t) − z(t)‖ =
∥∥∥SuL

∫ t

0

Uu(t, s)g(s)ds− SvL

∫ t

0

Uv(t, s)f(s)ds
∥∥∥

+
∥∥∥∫ t

0

Uu(t, s)g(s)ds−
∫ t

0

Uv(t, s)f(s)ds
∥∥∥

≤
∥∥∥SuL

∫ t

0

Uu(t, s)g(s)ds− SuL

∫ t

0

Uv(t, s)f(s)ds
∥∥∥

+
∥∥∥SuL

∫ t

0

Uu(t, s)f(s)ds− SvL

∫ t

0

Uv(t, s)f(s)ds
∥∥∥

+
∥∥∥∫ t

0

Uu(t, s)g(s)ds−
∫ t

0

Uv(t, s)g(s)ds
∥∥∥

+
∥∥∥∫ t

0

Uu(t, s)g(s)ds−
∫ t

0

Uv(t, s)f(s)ds
∥∥∥

≤ ‖Su‖‖L‖
∥∥∥∫ t

0

Uu(t, s)g(s)ds−
∫ t

0

Uv(t, s)f(s)ds
∥∥∥

+ ‖Su − Sv‖
∥∥∥L∫ t

0

Uv(t, s)f(s)ds
∥∥∥

+ C2

∫ t

0

‖g(s)‖
∫ t

s

‖u(τ) − v(τ)‖dτds + C1‖k‖1‖u− v‖

≤ ‖Su‖‖L‖
[
C2

∫ t

0

‖g(s)‖
∫ t

s

‖u(τ) − v(τ)‖dτds + C1‖k‖1‖u− v‖
]

+ p‖L‖C1‖α‖1‖u− v‖ +
[
C1‖k‖1 + C2T‖α‖1

]
‖u− v‖

≤ C3‖u− v‖ .

Hence, ‖y − z‖ ≤ C3‖u− v‖ and it follows that:

d
(
ψ(u), ψ(v)

)
≤ C3‖u− v‖ . �



172 Mureşan

Lemma 2.2
There holds the inclusion ψ(D) ⊂ B ∩D.

Proof. For any v ∈ D and y ∈ ψ(v) we have:

‖y(t)‖ ≤ ‖Sv‖‖L‖C1‖α‖1 + C1‖α‖1 ≤
(
c‖L‖ + 1

)
C1‖α‖1 . �

Lemma 2.3
C(t), the t-section of ψ(D), is relatively compact in X.

Proof. If A depends on t and w this is (S1). If not then following [21] we note that:

C(t) ⊆ (1 − SL)
∫ t

0

U(t, s)P (s)ds ,

where P (s) = {x ∈ X | ‖x‖ = sup {|F (s, z)| : ‖z‖ ≤ b}}, and S is the unique pseudo-
inverse of L to kerL1. Since U(t, s) is compact, we have that U(t, s)P (s) is a convex
and compact subset in X. Also s −→ U(t, s)P (s) is measurable. So by the Radstrom
embedding theorem

∫ t

0
U(t, s)P (s)ds, [14], is a compact and convex subset of X. We

get that C(t) is compact in X. �

Lemma 2.4
The mapping x −→ ψ(x) from D into ψ(D) is uniformly upper semicontinuous.

Proof. Choose ε > 0 and u ∈ D arbitrary. We shall determine a positive η such
that if v ∈ D with ‖v − u‖ < η then ‖z − y‖ < ε, where y ∈ ψ(u) and z ∈ ψ(v). If
so, there are f ∈ S1

F (·,v(·)), g ∈ S1
F (·,u(·)) such that:

y(t) = −SuL

∫ t

0

Uu(t, s)g(s)ds +
∫ t

0

Uu(t, s)g(s)ds .

z(t) = −SvL

∫ t

0

Uu(t, s)f(s)ds +
∫ t

0

Uv(t, s)f(s)ds .

It follows:

‖y(t) − z(t)‖ ≤
∥∥∥SuL

∫ t

0

Uu(t, s)g(s)ds− SvL

∫ t

0

Uv(t, s)f(s)ds
∥∥∥

+
∥∥∥∫ t

0

Uu(t, s)g(s)ds−
∫ t

0

Uv(t, s)f(s)ds
∥∥∥ .

Performing the same estimations as in the proof of Theorem 2.1 we get: ‖y − z‖ ≤
C3‖u− v‖ . C3 does not depend on u, being a constant, so the lemma is obvious. �

Lemma 2.5
ψ(D) is a family of equicontinuous maps.



On a boundary value problem for quasi-linear differential inclusions of evolution 173

Proof. To prove that ψ(D) is a family of equicontinuous maps we have to show that
for every ε > 0 there is µ > 0 such that for every, t, t + δ ∈ I, 0 < δ < µ, x ∈ D,

y ∈ ψ(v) there holds ‖y(t + δ) − y(t)‖ < ε . Then we have:

‖y(t + δ) − y(t)‖ ≤
∥∥∥∥∥SvL

[ ∫ t+δ

0

Ux(t + δ, s)v(s)ds−
∫ t

0

Ux(t, s)v(s)ds
]∥∥∥∥∥

+
∥∥∥∫ t+δ

0

Ux(t + δ, s)v(s)ds−
∫ t

0

Ux(t, s)v(s)ds
∥∥∥

≤
(
‖Sv‖‖L‖ + 1

)∥∥∥ ∫ t+δ

0

Ux(t + δ, s)v(s)ds−
∫ t

0

Ux(t, s)v(s)ds
∥∥∥

≤
(
c‖L‖ + 1

)[∥∥∥ ∫ t

0

[
Ux(t + δ, s) − 1

]
Ux(t, s)v(s)ds

∥∥∥
+

∫ t+δ

t

∥∥Ux(t + δ, s)v(s)
∥∥ds

]

≤
(
c‖L‖ + 1

)[
C1

∫ t+δ

t

‖v(s)‖ds

+
∥∥∥(

Ux(t + δ, t) − 1
) ∫ t

0

Ux(t, s)v(s)ds
∥∥∥
]
.

By (U3) and Theorem 9. p. 4 in [8] we conclude that ψ(S) is a family of equicon-
tinuous maps. �

Proof of Theorem 2.2. Consider again ψ : D −→ P (D). From Lemma 2.3 and 2.5,
based on the Ascoli-Arzelá Theorem [30] we have that ψ(D) is relatively compact.
From Lemma 2.1–2.5 we observe that all the assumptions of Theorem 1.1 are satis-
fied, hence (BP ) has a mild solution in D. �

Remark 2.3. If L is considered as Lx = x(0)−x(T ), then under the above conditions
we get periodic mild solution.
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