Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. **45**, 2 (1994), 165–175 © 1994 Universitat de Barcelona

On a boundary value problem for quasi-linear differential inclusions of evolution

Marian Mureşan

Babeş-Bolyai University, Faculty of Mathematics and Informatics, Str. M. Kogălniceanu 1, 3400, Cluj-Napoca, Romania

Received November 1, 1993

Abstract

In the present paper we prove two theorems concerning the existence of mild solutions of quasi-linear differential inclusions of evolution. The existence problem is reduced to a fixed point problem and then there are used the multivalued version of Banach fixed point theorem and the Himmelberg-Bohnenblust-Karlin theorem.

1. Introduction

The goal of this paper is to find conditions guaranteeing the existence of a mild solution of the linear boundary value problem for the following quasi-linear differential inclusion:

(BP)
$$\begin{cases} dx(t)/dt \in A(t, x(t))x(t) + F(t, x(t)), & t \in I, \\ Lx = 0, \end{cases}$$

where I = [0, T], T > 0, A(t, w) is a linear operator in a separable Banach space X, depending on t, and w varies on an open set, say, $\emptyset \neq 0 \subset X$, [22]. L is a linear

165

bounded operator from C(I, X) (the Banach space of continuous functions defined on I with values in X, endowed with the topology of uniform convergence) in X.

If operator A does not depend on neither t nor w, then the differential inclusion in (BP) is said to be *linear*; if operator A depends only on t, then the differential inclusion in (BP) is said to be *semi-linear*, while if it depends both on t and w it is said to be *quasi-linear*, [4], [22], [24].

The importance of the above problem consists in the fact that it includes many boundary value problems for ODE, PDE and linear or semi-linear differential inclusions of evolution. Let's say that an interesting paper on a boundary value problem of a semi-linear differential inclusion is [21]. Particularly, by a suitable choice of operator L, we get information on the existence of periodic solutions. The problem of existence of periodic mild solutions for linear differential inclusions is studied in [13] by the fixed points index theory of condensing multivalued maps.

The existence of mild solutions of an initial value problem for a quasi-linear differential inclusion, was studied in several papers, e.g., [24], [15], [18], [19], [1]. In the case of linear or semi-linear differential inclusions results on initial value problem may be found in [27], [10], [9].

Let Z be a linear topological space. We will use the following notations: $P(Z) = \{S \subset Z \mid S \neq \emptyset\}, \ C(Z) = \{S \in P(Z) \mid S \text{ is closed}\}, \ Co(Z) = \{S \in P(Z) \mid S \text{ is convex}\}, \ CCo(Z) = \{S \in C(Z) \mid S \in Co(Z)\}.$

Let M be a measurable space with σ -algebra \mathcal{A} , and X is a separable metrizable space, a multifunction $F: M \longrightarrow P(X)$ is said to be measurable (weakly measurable) iff $F^{-1}(E) = \{t \in M \mid F(t) \cap E \neq \emptyset\}$ is measurable for each closed (open) subset Eof X. If F have closed values, F is measurable iff F is weakly measurable, provided the measure is complete. This result together with other equivalences may be found in [12] or [31]. If $F: Y \longrightarrow P(X)$ is a multifunction, where Y is a topological space, then the assertion that F is measurable means that F is measurable when Y is assigned the σ -algebra \mathcal{B} of Borel subsets of Y. If $F: M \times Y \longrightarrow P(X)$, and if the measurability of F is defined in terms of the product σ -algebra $\mathcal{A} \times \mathcal{B}$ on $M \times Y$ generated by the sets $A \times B$, where $A \in \mathcal{A}$ and $B \in \mathcal{B}$, then F is said to be product-measurable. If $F: M \times Y \longrightarrow P(X)$ and for each single valued measurable function $G: M \longrightarrow Y$, the multifunction $t \longrightarrow F(t, G(t))$ is measurable, then it is said to be superpositionally measurable.

Denote by C(I, X) the Banach space of continuous functions from I to X with the norm $||x|| = \sup_{t \in I} ||x(t)||$ and by $L_1(I, X)$ the Banach space of Bochner integrable functions from I to X with the norm $||x||_1 = \int_I ||x(t)|| dt$. Set $L_1(I) := L_1(I, \mathbb{R}_+)$, [8]. A set-valued $G : X \longrightarrow P(X)$ is called *L-Lipschitz* on $K \subset X$ if for all $x \in K, G(x) \neq \emptyset$ and for every $x, y \in K, G(x) \subset G(y) + L ||x - y|| B$, where B denotes the closed unit ball in X.

A set-valued $G: I \longrightarrow 2^X$ is called *integrably bounded* if there exists $m \in L_1(I)$ such that $G(t) \subseteq m(t)B$, a.e. on I.

If $F: I \times X \longrightarrow C(X)$ is a multifunction, then by $S^1_{F(\cdot,x(\cdot))}$ we denote the set of integrable selections of $F(\cdot, x(\cdot))$, $x: I \longrightarrow X$. A sufficient condition for $S^1_{F(\cdot,x(\cdot))} \neq \emptyset$ is that F has a measurable selection and $F(\cdot, x(\cdot))$ is integrably bounded. The existence of a measurable selection may be obtained by the Kuratowski-Ryll-Nardzewski theorem, [12], [31], while conditions implying the superpositionally and product measurability there are in, e.g., [20], [29].

A multifunction $F: X \longrightarrow P(Y), X$ and Y being topological spaces, is said to be *upper semicontinuous* (usc) on X iff $F^{-1}(E)$ is closed for every closed $E \subset Y$, and it is said to be *lower semicontinuous* (lsc) on X iff $F^{-1}(E)$ is open for every open $E \subset Y$, [2], [3], [5].

In the sequel we assume the followings:

- (X) X is a separable reflexive Banach space, $0 \subset X$, 0 is nonempty and open.
- (L) L is a bounded linear operator from the Banach space C(I, X) onto $X.D = \ker L$. Hence, D is nonempty, closed and convex in C(I, X).

A two family of bounded linear operators $\mathcal{U}(t,s)$, $0 \le s \le t \le T$ on I is said to be an *evolution system* if the following two conditions are satisfied:

- (i) $\mathcal{U}(s,s) = 1$ (identity), $\mathcal{U}(t,r)\mathcal{U}(r,s) = \mathcal{U}(t,s), \ 0 \le s \le r \le t \le T$;
- (ii) $(t, s) \longrightarrow \mathcal{U}(t, s)$ is strongly continuous for $0 \le s \le t \le T$.
- (A) For every $v \in D$ the family of linear operators $\{A(t,v), t \in I\}$ generates a unique strongly continuous evolution system $\mathcal{U}_v(t,s), 0 \leq s \leq t \leq T$.
- (U_1) If $u \in D$ has values in 0, then the evolution system $\mathcal{U}_u(t,s), 0 \leq s \leq t \leq T$, satisfies:
 - (i) $\|\mathcal{U}_u(t,s)\| \leq C_1$, for $0 \leq s \leq t \leq T$, uniformly in u;
 - (ii) there is a positive constant C_2 such that for every $u, v \in D$ with values in 0 and every $w \in 0$ we have:

$$\|\mathcal{U}_{u}(t,s)w - \mathcal{U}_{v}(t,s)w\| \le C_{2}\|w\| \int_{s}^{t} \|u(\tau) - v(\tau)\|d\tau.$$

- (U₂) If $u \in D$ has values in 0, and $0 \le s < t \le T$, then $\mathcal{U}_u(t, s)$ is a compact operator, i.e., it maps bounded sets in relatively compact sets. From [22], it follows that $\mathcal{U}_u(t, s)$ is continuous in the uniform operator topology.
- (U_3) If $t, t + \delta \in I, \delta > 0$, then $\lim_{\delta \to 0} \mathcal{U}_u(t + \delta, 1) = 1$, uniformly in u and t.

- (F_1) $F: I \times X \longrightarrow CCo(X)$ such that: multifunction $t \longrightarrow F(t, x)$ is measurable for every $x \in X$; $x \longrightarrow F(t, x)$ from X to X is lsc and from X in $X_w(X)$ endowed with the weak topology) is usc.
- (F_2) F satisfies (F_1) and, moreover, it is k(t)-Lipschitz, $k \in L_1(I)$, i.e., $d(F(t,x), F(t,y)) \leq k(t) ||x y||$, $t \in I$, $x, y \in X$, d being the Hausdorff-Pompeiu pseudo-metric.
- (F₃) F is integrably bounded by a function $\alpha \in L_1(I)$.
- (L_1) For every $v \in D$ with values in 0 the linear mapping L_{1v} is considered and it is the same with L_1 in [17], p. 18. We suppose it is onto.
- (S_v) For every $v \in D$ $S_v : X \longrightarrow \ker L_{1v}$ is the unique pseudo-inverse of the restriction of L to $\ker L_{1v}$, [17]. Suppose there exist the constants $c \geq ||S_v||, v \in D$ and p with $||S_u S_v|| \leq p||u v||, u, v \in D$.
- (B) Let B be the closed ball in C(I, X) centered in the origin and with radius $b, b = (c||L|| + 1)C_1||\alpha||_1$.
- (P) For every $v \in D$ we define the linear bounded projector P_{1v} by $P_{1v}(x) = \mathcal{U}_v(\cdot, 0)x(0)$. For every $v \in D$ let P_{3v} be a linear bounded projector from $\ker L_{1v}$ in $\ker L_{1v}$ defined by $P_{3v}(\mathcal{U}_v(\cdot, 0)c) = \mathcal{U}_v(\cdot, 0)c_1$ such that $\operatorname{Im} P_{3v} = \ker(L_{|\ker L_{1v}})$.

Remark 1.1. If the operator A does not depend on w, the differential inclusion in (BP) is linear or semi-linear, then (A) has to read as: $\{A(t), t \in I\}$ generates a unique strongly continuous evolution system $\mathcal{U}(t,s), 0 \leq s \leq t \leq T$. Also, L_{1v} is L_1 and S_v is S. In this case $C_2 = 0$ and p = 0.

We will need the following fixed point theorems for multifunctions:

Theorem 1.1 [26, Theorem 1]

Let D be a nonvoid, convex and closed subset of a locally convex space X. Let $\psi : D \longrightarrow CCo(D)$ be an upper semicontinuous multifunction such that $\overline{\psi(D)}$ is compact. Then ψ has a fixed point i.e., there exists an $x \in D$ such that $x \in \psi(x)$.

Theorem 1.2 [7, Theorem 11.1]

Let $D \neq \emptyset$ be a closed subset of a Banach space X and $F : D \longrightarrow C(D)$ be a contraction, with closed values. Then $Fix(F) \neq \emptyset$.

Existence result

We will prove two existence theorems, one based on a multivalued version of the Banach fixed point theorem, Theorem 1.2., the other based on the Himmelberg-Bohnenblust-Karlin fixed point theorem, Theorem 1.1.

A function $x \in C(I, X)$ is said to be a *mild solution* of the boundary value problem (BP) if it satisfies:

$$x(t) = \mathcal{U}_x(t,0)x(0) + \int_0^t \mathcal{U}_x(t,s)f(s)ds, \ t \in I, \quad \text{and} \quad Lx = 0,$$

where $f(\cdot) \in S^1_{F(\cdot,x(\cdot))}$. For $v \in 0$ let us consider the following semi-linear differential inclusion:

$$\begin{cases} dx(t)/dt \in A(t,v)x(t) + F(t,x(t)), & t \in I, \\ Lx = 0. \end{cases}$$

Remark 2.1. The above problem has a mild solution due to the Theorem 1 [21] or the Theorem 2.1 or 2.2 below. The difference between the two approaches lies in the fact that we get the weak compactness of the set S_F^1 using the reflexivity of the space X (which it is not assumed in [21]) while in [21] it is used the assumption that the values of F are weakly compact (which it is not assumed here). Our approach appears in [18], [19] too.

Remark 2.2. As it is shown in [17] or [16] the existence of the solutions of the problem (BP) is equivalent to the existence of the fixed points of the operator $\psi: D \longrightarrow P(D), \ \psi(v) = C_v(v)$ defined by:

$$C_v(x) = \left\{ y \in D \mid y(t) = P_{3v} \left(P_{1v}(x) \right) - S_v L \int_0^t \mathcal{U}_v(t,s) f(s) ds + \int_0^t \mathcal{U}_v(t,s) f(s) ds, \quad f \in S^1_{F(\cdot,x(\cdot))} \right\}.$$

From [6] we have that it is possible to consider the first term in the expression of y(t) as zero, what we will do in the sequel.

The *t*-section of $\psi(D)$ is:

$$C(t) := \{ y(t) \mid y \in C_v(v), \quad v \in D \}.$$

 (S_1) When A depends on t and w we suppose that for every $t \in I$, C(t) is relatively compact.

If A depends on t only this will be proved in Lemma 2.3.

Theorem 2.1

If the following assumptions hold: $(X), (U_1), (F_{1-3}), (L), (L_1), (S_v), (P)$, and $0 < C_3 = (c \|L\| + 1) (C_1 \|k\|_1 + C_2 T \|\alpha\|_1) + p \|L\| C_1 \|\alpha\|_1 < 1$, then boundary value problem (BP) has a mild solution in D.

Theorem 2.2

If there hold the assumptions (X), (A), (U_1) , (U_3) , (F_{1-3}) , and (U_2) or (S_1) , then there exists a mild solution of (BP) in D.

In the next lemmata we suppose that there are fulfilled all the necessary assumptions listed at the end of the first paragraph.

Lemma 2.1

If $v \in D$, then for every $\psi(v) \in CCo(C(I, X))$.

Proof. $\psi(v)$ is nonempty. The convexity of $\psi(v)$ follows from the convexity of the values of F and from the linearity of the operators S_v and L. To prove that $C_v(v) \in C(C(I, X))$ let us consider $(y_n)_{n\geq 1} \subset C_v(v)$ a sequence converging uniformly to an element $y \in D$. We have to show that $y \in C_v(v)$, i.e., there exists an element $f \in S^1_{F(\cdot,v(\cdot))}$ such that:

$$y(t) = -S_v L \int_0^t \mathcal{U}_v(t,s) f(s) ds + \int_0^t \mathcal{U}_v(t,s) f(s) ds$$

If $y_n \in C_v(v)$, then it results that there exists $f_n(\cdot) \in S^1_{F(\cdot,v(\cdot))}$ such that for every $n \in \mathbb{N}$:

$$y_n(t) = -S_v L \int_0^t \mathcal{U}_v(t,s) f_n(s) ds + \int_0^t \mathcal{U}_v(t,s) f_n(s) ds \,.$$

Since F is integrably bounded, $\{f_n\}_{n\geq 1}$ is a bounded set in $L_1(I, X)$. By Pettis's theorem ([11], Theorem 2.11.2) taking into account the reflexivity of X it results that $\bigcup_{n\geq 1}\{f_n(t)\}$ is sequentially weakly compact, $t \in I$. From [27] Proposition 1.2 we have that $\{f_n\}_{n\geq 1}$ is a metrizable relatively weak compact subset in $L_1(I, X)$. It means that (taking a subsequence if necessary and keeping the same notations) $(f_n)_{n\geq 1}$ converges weakly in $L_1(I, X)$ to some $f \in L_1(I, X)$. It remains to show that $f(\cdot) \in S^1_{F(\cdot,v(\cdot))}$. By Mazur lemma ([28], p. 199), ([23], p. 65) there exists a sequence $(g_n)_{n\geq 1}$ formed by convex combinations of $\{f_n\}_{n\geq 1}$ tending to f in $L_1(I, X)$. It is clear that $g_n(\cdot) \in F(\cdot, v(\cdot))$, and, moreover $g_n(\cdot) \in S^1_{F(\cdot,v(\cdot))}$, $n \in \mathbb{N}$. It follows that $g(t) \in F(t, v(t))$ a.e. on I and $f(\cdot) \in S^1_{F(\cdot,v(\cdot))}$.

For every $t \in I$ the map $\overline{f} \longrightarrow \int_0^t \mathcal{U}_v(t,s)\overline{f}(s)ds$ from $L_1(I,X)$ into X is continuous and linear and, by Theorem IV.7.4 in [25], it remains continuous as a map from $L_1(I,X)_w$ in X_w . Hence, for every $t \in I$, the sequence $(y_n(t)) \longrightarrow y(t)$ in X_w . But $y_n(\cdot) \longrightarrow y(\cdot)$, and this implies that $y \in C_v(v)$. \Box

170

Proof of Theorem 2.1. Let us find an upper bound for the Hausdorff-Pompeiu distance of the sets $\psi(u)$ and $\psi(v)$, $u, v \in Dd(\psi(u), \psi(v))$. Our desire is to show that ψ is a contraction. In order to do this let be $y \in \psi(u)$, $z \in \psi(v)$. If so, there are $f \in S^1_{F(\cdot,v(\cdot))}$, $g \in S^1_{F(\cdot,u(\cdot))}$ such that:

$$y(t) = -S_u L \int_0^t \mathcal{U}_u(t,s)g(s)ds + \int_0^t \mathcal{U}_u(t,s)g(s)ds \,.$$
$$z(t) = -S_v L \int_0^t \mathcal{U}_v(t,s)f(s)ds + \int_0^t \mathcal{U}_v(t,s)f(s)ds \,.$$

Then:

$$\begin{split} \|y(t) - z(t)\| &= \left\| S_u L \int_0^t \mathcal{U}_u(t,s) g(s) ds - S_v L \int_0^t \mathcal{U}_v(t,s) f(s) ds \right\| \\ &+ \left\| \int_0^t \mathcal{U}_u(t,s) g(s) ds - \int_0^t \mathcal{U}_v(t,s) f(s) ds \right\| \\ &\leq \left\| S_u L \int_0^t \mathcal{U}_u(t,s) g(s) ds - S_u L \int_0^t \mathcal{U}_v(t,s) f(s) ds \right\| \\ &+ \left\| S_u L \int_0^t \mathcal{U}_u(t,s) f(s) ds - S_v L \int_0^t \mathcal{U}_v(t,s) f(s) ds \right\| \\ &+ \left\| \int_0^t \mathcal{U}_u(t,s) g(s) ds - \int_0^t \mathcal{U}_v(t,s) g(s) ds \right\| \\ &+ \left\| \int_0^t \mathcal{U}_u(t,s) g(s) ds - \int_0^t \mathcal{U}_v(t,s) f(s) ds \right\| \\ &\leq \|S_u\| \|L\| \left\| \int_0^t \mathcal{U}_u(t,s) g(s) ds - \int_0^t \mathcal{U}_v(t,s) f(s) ds \right\| \\ &+ \|S_u - S_v\| \left\| L \int_0^t \mathcal{U}_v(t,s) f(s) ds \right\| \\ &+ C_2 \int_0^t \|g(s)\| \int_s^t \|u(\tau) - v(\tau)\| d\tau ds + C_1 \|k\|_1 \|u - v\| \\ &\leq \|S_u\| \|L\| \left\| C_2 \int_0^t \|g(s)\| \int_s^t \|u(\tau) - v(\tau)\| d\tau ds + C_1 \|k\|_1 \|u - v\| \\ &+ p\|L\|C_1\|\alpha\|_1 \|u - v\| + [C_1\|k\|_1 + C_2 T\|\alpha\|_1] \|u - v\| \\ &\leq C_3 \|u - v\|. \end{split}$$

Hence, $||y - z|| \le C_3 ||u - v||$ and it follows that:

$$d(\psi(u), \psi(v)) \leq C_3 \|u - v\|$$
. \Box

Lemma 2.2

There holds the inclusion $\psi(D) \subset B \cap D$.

Proof. For any $v \in D$ and $y \in \psi(v)$ we have:

$$||y(t)|| \le ||S_v|| ||L||C_1||\alpha||_1 + C_1||\alpha||_1 \le (c||L||+1)C_1||\alpha||_1.$$

Lemma 2.3

C(t), the t-section of $\psi(D)$, is relatively compact in X.

Proof. If A depends on t and w this is (S_1) . If not then following [21] we note that:

$$C(t) \subseteq (1 - SL) \int_0^t \mathcal{U}(t, s) P(s) ds$$
,

where $P(s) = \{x \in X \mid ||x|| = \sup\{|F(s,z)| : ||z|| \le b\}\}$, and S is the unique pseudoinverse of L to kerL₁. Since $\mathcal{U}(t,s)$ is compact, we have that $\overline{\mathcal{U}(t,s)P(s)}$ is a convex and compact subset in X. Also $s \longrightarrow \mathcal{U}(t,s)P(s)$ is measurable. So by the Radstrom embedding theorem $\int_0^t \mathcal{U}(t,s)P(s)ds$, [14], is a compact and convex subset of X. We get that $\overline{C(t)}$ is compact in X. \Box

Lemma 2.4

The mapping $x \longrightarrow \psi(x)$ from D into $\psi(D)$ is uniformly upper semicontinuous.

Proof. Choose $\varepsilon > 0$ and $u \in D$ arbitrary. We shall determine a positive η such that if $v \in D$ with $||v - u|| < \eta$ then $||z - y|| < \varepsilon$, where $y \in \psi(u)$ and $z \in \psi(v)$. If so, there are $f \in S^1_{F(\cdot,v(\cdot))}, g \in S^1_{F(\cdot,u(\cdot))}$ such that:

$$y(t) = -S_u L \int_0^t \mathcal{U}_u(t,s)g(s)ds + \int_0^t \mathcal{U}_u(t,s)g(s)ds \,.$$
$$z(t) = -S_v L \int_0^t \mathcal{U}_u(t,s)f(s)ds + \int_0^t \mathcal{U}_v(t,s)f(s)ds \,.$$

It follows:

$$\begin{aligned} \|y(t) - z(t)\| &\leq \left\| S_u L \int_0^t \mathcal{U}_u(t,s)g(s)ds - S_v L \int_0^t \mathcal{U}_v(t,s)f(s)ds \right\| \\ &+ \left\| \int_0^t \mathcal{U}_u(t,s)g(s)ds - \int_0^t \mathcal{U}_v(t,s)f(s)ds \right\|. \end{aligned}$$

Performing the same estimations as in the proof of Theorem 2.1 we get: $||y - z|| \le C_3 ||u - v|| \cdot C_3$ does not depend on u, being a constant, so the lemma is obvious. \Box

Lemma 2.5

 $\psi(D)$ is a family of equicontinuous maps.

172

Proof. To prove that $\psi(D)$ is a family of equicontinuous maps we have to show that for every $\varepsilon > 0$ there is $\mu > 0$ such that for every, $t, t + \delta \in I, \ 0 < \delta < \mu, x \in D, y \in \psi(v)$ there holds $||y(t + \delta) - y(t)|| < \varepsilon$. Then we have:

$$\begin{split} \|y(t+\delta) - y(t)\| &\leq \left\| S_v L\Big[\int_0^{t+\delta} \mathcal{U}_x(t+\delta,s)v(s)ds - \int_0^t \mathcal{U}_x(t,s)v(s)ds \Big] \right\| \\ &+ \left\| \int_0^{t+\delta} \mathcal{U}_x(t+\delta,s)v(s)ds - \int_0^t \mathcal{U}_x(t,s)v(s)ds \right\| \\ &\leq \left(\|S_v\| \|L\| + 1 \right) \left\| \int_0^{t+\delta} \mathcal{U}_x(t+\delta,s)v(s)ds - \int_0^t \mathcal{U}_x(t,s)v(s)ds \right\| \\ &\leq \left(c\|L\| + 1 \right) \left[\left\| \int_0^t \left[\mathcal{U}_x(t+\delta,s) - 1 \right] \mathcal{U}_x(t,s)v(s)ds \right\| \\ &+ \int_t^{t+\delta} \left\| \mathcal{U}_x(t+\delta,s)v(s) \right\| ds \right] \\ &\leq \left(c\|L\| + 1 \right) \left[C_1 \int_t^{t+\delta} \|v(s)\| ds \\ &+ \left\| \left(\mathcal{U}_x(t+\delta,t) - 1 \right) \int_0^t \mathcal{U}_x(t,s)v(s)ds \right\| \right]. \end{split}$$

By (U_3) and Theorem 9. p. 4 in [8] we conclude that $\psi(S)$ is a family of equicontinuous maps. \Box

Proof of Theorem 2.2. Consider again $\psi: D \longrightarrow P(D)$. From Lemma 2.3 and 2.5, based on the Ascoli-Arzelá Theorem [30] we have that $\psi(D)$ is relatively compact. From Lemma 2.1–2.5 we observe that all the assumptions of Theorem 1.1 are satisfied, hence (BP) has a mild solution in D. \Box

Remark 2.3. If L is considered as Lx = x(0) - x(T), then under the above conditions we get periodic mild solution.

References

- 1. A. Anguraj and K. Balachandran, Existence of solutions of nonlinear differential inclusions, *Mem. Fac. Sci. Kochi Univ.* **13** (1992), 61–66.
- 2. J.P. Aubin and A. Cellina, Differential Inclusions, Springer, Berlin, 1984.
- 3. J.P. Aubin and H. Frankowska, Set-valued Analysis, Birkhäuser, Basel, 1990.

- 4. V. Barbu, *Nonlinear Semigroups and Differential Equations in Banach Spaces*, Ed. Academiei, Bucureşti, Noordhoff, Leyden, 1976.
- 5. C. Castaing and M. Valadier, *Convex Analysis and Measurable Multifunctions*, Springer, Berlin, 1977.
- 6. R. Conti, Some problems for functional equations as fixed point problems, *Rev. Roumaine Math. Pures et Appl.* **13** (1968), 1273–1277.
- 7. K. Deimling, Multivalued Differential Equations, W. de Gruyter, Berlin, 1992.
- 8. J. Diestel and J. Uhl, Vector Measures, Amer. Math. Soc., Providence, 1977.
- 9. F.A. Fillipov, *Differential Equations with Discontinuous Righthand Sides*, Kluwer, Dordrecht, 1988.
- H. Frankowska, A priori estimates for operational differential inclusions, J. Diff. Eqs. 84 (1990), 100–128.
- 11. E. Hille, Functional Analysis and Semi-groups, Amer. Math. Soc., New-York, 1948.
- 12. C.J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53–72.
- M.I. Kamenskii and V.V. Obukhovshii, On periodic solutions of differential inclusions with unbounded operators in Banach spaces, *Univ. u Novom Sadu, Zb. Rad. Prirod.–Mat. Fak. Ser. Mat.* 21, 1 (1991), 173–191.
- 14. E. Klein and A.C. Thompson, Theory of Correspondences, Wiley, New-York, 1984.
- 15. K. Kobayasi and N. Sanekata, A method of iterations for quasi-linear evolution equations in nonreflexive Banach spaces, *Hiroshima Math. J.* **19** (1989), 521–540.
- 16. J. Mawhin, Equations non lineaires dans les espaces de Banach, *Rap.* **39**, *Semin. Math. Appl. Mec. Univ. Cath. Louvain*, Vander, Louvain.
- 17. J. Mawhin, Nonlinear operator equations in vector spaces. I. Reduction theorems to fixed point problems, *Rap.* 14 Semin. Math. Pure. Inst. Math. Pure Appl., Univ. Cath. Louvain.
- M. Mureşan, On quasi-linear inclusions of evolution, Preprint n.^o 7, 1993, "Babeş-Bolyai" University.
- 19. M. Mureşan and C. Mureşan, On the solutions of quasi-linear inclusions of evolution. (Submitted).
- N.S. Papageorgiou, Measurable multifunctions with applications to random multivalued equations, *Math. Japonica*, 23 (1987), 437–464.
- N.S. Papageorgiou, Boundary value problems for evolution inclusions, *Comm. Math. Univ. Carol.* 29 (1988), 355–363.
- 22. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New-York, 1983.
- 23. W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
- 24. N. Sanekata, Abstract quasi-linear equations of evolution in nonreflexive Banach spaces, *Hiroshima Math. J.* **19** (1989), 109–139.
- 25. H.H. Schaeffer, Topological Vector Spaces, Macmillan, New York, 1966.
- 26. V. Seda, Some fixed point theorems for multivalued mappings, *Czech. Math. J.* **39** (114) (1989), 147–164.
- A.A. Tolstonogov, On solutions of evolution inclusions I, (Russian). Sibiris. Mat. Zh. 33 (1992), 3, 161–174.

- 28. V. Trenoguine, Analyse Fonctionelle, Mir Moscou, 1985.
- 29. V.Z. Tsalyuk, On the superpositionally multifunctions, (Russian). *Mat. Zamet.* **43** (1988), 98–102.
- 30. I.I. Vrabie, Compactness Methods for Nonlinear Evolutions, Longman, Burnt Mill, 1987.
- 31. D.H. Wagner, Survey of measurable selection theorems, *SIAM J. Control and Opt.* **15** (1977), 859–903.