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Abstract

Let X , Y be Banach spaces. If X is a Dq−space (1 < q ≤ +∞) we prove
that Πd

p(X,Y ) ⊂ Πp(X,Y ) if and only if Y is isomorphic to a subspace of
an Lp−space, where p is the conjugate number for q. We also prove that, if Y
is a Dp−space, Πp(X,Y ) ⊂ Πd

p(X,Y ) if and only if X∗ is isomorphic to a
subspace of an Lp−space.

Throughout this note X,Y, will denote Banach spaces. As usual Πp(X,Y ) will
stand for the Banach space of all absolutely p−summing operators T from X into
Y (1 ≤ p < +∞). Following [6, p. 67], Πd

p(X,Y ) will denote the vector space of all
operators T : X → Y such that T ∗ ∈ Πp(Y ∗, X∗). If in Πd

p(X,Y ) we consider the
norm πd

p(T ) = πp(T ∗), it becomes a Banach space.
We recall that a Banach space X is called a Dq,λ−space if for each positive

integer n there is a subspace Xn in X with d(Xn, �
n
q ) ≤ λ [4]. A banach space X is

called a Dq−space if it is a Dq,λ−space for some λ ≥ 1.
In [8, Theorem 13.7] it is proved that Y is isomorphic to a subspace of an

Lp−space (1 < p < +∞) if and only if Πd
p(X,Y ) ⊂ Πp(X,Y ) for every Banach

space X. We have obtained the following two results.

Theorem 1

Y is isomorphic to a subspace of an Lp(µ)−space (1 ≤ p < +∞) if and only if

Πd
p(X,Y ) ⊂ Πp(X,Y ) for some Dq−space X, where q is the conjugate number for p.
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Proof. ⇒ The case p = 1 follows easily from [7, Theorem III. 3] and the case p �= 0
is just Theorem 13.7 in [8].

⇐ First we show that there exists a constant c > 0 such that

πp(T ) ≤ c πp(T ∗) for all T ∈ Πd
p(X,Y ). (1)

Let Mn = {T ∈ Πd
p(X,Y ) : πp(T ) ≤ n}, for all n ∈ N. Since Πd

p(X,Y ) = ∪Mn and

each set Mn is closed in Πd
p(X,Y ), it follows that there exists n ∈ N so that

◦
M n is

not empty. Now a standard argument yields (1).
To prove that Y is isomorphic to a subspace of an Lp−space we use the well-

known characterization of J. Lindenstrauss and A. Pelczynski [3]. Let {yi} and {zj}
be finite subsets of Y such that

∑
i

|〈yi, y∗〉|p ≤
∑
j

|〈zj , y∗〉|p for all y∗ ∈ Y ∗ . (2)

We shall show that there is a constant M > 0 such that

n∑
i=1

‖yi‖p ≤ Mp
m∑
j=1

‖zj‖p .

Adding some zeros if necessary, we may assume that both sets have the same length,
say n. By hypothesis, there is a subspace Xn in X such that d(Xn, �

n
q ) ≤ λ. Choose

operators T : Xn → �nq and S : �nq → Xn such that

T ◦ S = id
nq
and ‖T‖ ‖S‖ ≤ λ . (3)

If {ei}ni=1 and {e∗i }ni=1 are the canonical bases of �nq and �np = (�nq )∗ respectively, set
xi = Sei and x∗

i = T ∗(e∗i ) for 1 = 1, .., n. There are Hahn-Banach extensions of x∗
i

to all X. Let z∗i be a such extension.Then

〈xi, z
∗
j 〉 = δij (4)

‖z∗i ‖ ≤ ‖T‖ and ‖xi‖ ≤ ‖S‖ (5)

sup

{( n∑
i=1

|〈xi, x
∗〉|p

)1/p

: ‖x∗‖ ≤ 1

}
= sup

{∥∥∥ n∑
i=1

αixi

∥∥∥ : ‖(αi)‖q ≤ 1

}

≤ ‖S‖ (6)
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If q �= ∞, we also have

sup

{( n∑
i=1

|〈z∗i , x∗∗〉|q
)1/q

: ‖x∗∗‖ ≤ 1

}
= sup

{∥∥∥ n∑
i=1

αiz
∗
i

∥∥∥ : ‖(αi)‖p ≤ 1

}

≤ ‖T‖ . (7)

Now we define P : X → Y by Px =
∑n

i=1 〈x, z∗i 〉yi for all x ∈ X. Since Pxi = yi
for i = 1, .., n, from (6) it follows that

( n∑
i=1

‖yi‖p
)1/p

≤ πp(P ) ‖S‖ . (8)

This and (1) yields ( n∑
i=1

‖yi‖p
)1/p

≤ c ‖S‖πp(P ∗) . (9)

Finally, observe that the dual operator P ∗ : Y ∗ → X∗ is defined by P ∗(y∗) =∑n
i=1〈yi, y∗〉z∗i for all y∗ ∈ Y ∗. Thus, in case p �= 1, from (2) and (7) we obtain

‖P ∗(y∗)‖ ≤
( n∑

i=1

|〈yi, y∗〉|p
)1/p

sup

{( n∑
i=1

|〈z∗i , x∗∗〉|q
)1/q

: ‖x∗∗‖ ≤ 1

}

≤ ‖T‖
( n∑

i=1

|〈yi, y∗〉|p
)1/p

≤ ‖T‖
( n∑

i=1

|〈zi, y∗〉|p
)1/p

(10)

for all y∗ ∈ Y ∗. If p = 1, from (5) it follows that

‖P ∗(y∗)‖ ≤
(
sup
i

‖z∗i ‖
) n∑

i=1

|〈yi, y∗〉| ≤ ‖T‖
n∑

i=1

|〈zi, y∗〉| . (10′)

In any case, by [2, p. 32] we have the following estimation for πp(P ∗)

πp(P ∗) ≤ ‖T‖
( n∑

i=1

‖zi‖p
)1/p

.

Therefore ( n∑
i=1

‖yi‖p
)1/p

≤ (cλ)
( n∑

i=1

‖zi‖p
)1/p

. �



136 Piñeiro

Theorem 2
X∗ is isomorphic to a subspace of an Lp−space (1 ≤ p < +∞) if and only if

Πp(X,Y ) ⊂ Πd
p(X,Y ) for some Dp−space Y .

Proof. We only prove the “if part” of the theorem because the “only if part” can be
proved using the same argument as in Theorem 1.

Let X∗ be isomorphic to a subspace of an Lp−space. By Theorem 1, it follows
that Πd

p(Y
∗, X∗) ⊂ Πp(Y ∗, X∗) for every Banach space Y. Now recall that T ∗∗ ∈

Πp(X∗∗, Y ∗∗) whenever T ∈ Πp(X,Y ) [5]. Therefore, for every p-summing operator
T : X → Y we have T ∗ ∈ Πd

p(Y
∗, X∗) and this concludes the proof. �

Corollary
If X is a Dq−space and Y is a Dp−space (1 ≤ p < +∞, and p−1 + q−1 = 1),

then
Πp(X,Y ) = Πd

p(X,Y )

if and only if X∗ and Y are isomorphic to subspaces of Lp−spaces.

Remark. It is well known that if Π2(X,Y ) = L(X,Y ) for all L∞-space X, then Y
has Orlicz’s Property [3, Proposition 8.1]. Since every infinite dimensional Banach
space X is a D2-space, by using the same argument as in Theorem 1, it can be
proved that

Π2(X,Y ) = L(X,Y ) ⇒ Y has Orlicz’s Property.
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