Collect. Math. 45, 2 (1994), 133-136
(c) 1994 Universitat de Barcelona

A note on absolutely p-summing operators

C. Piñeiro
Departamento de Análisis Matemático, Facultad de Matemáticas,
Sevilla 41012, Apdo. 1160, Spain
Received July 17, 1993. Revised October 24, 1994

Abstract

Let X, Y be Banach spaces. If X is a $\mathcal{D}_{q}-$ space $(1<q \leq+\infty)$ we prove that $\Pi_{p}^{d}(X, Y) \subset \Pi_{p}(X, Y)$ if and only if Y is isomorphic to a subspace of an L^{p}-space, where p is the conjugate number for q. We also prove that, if Y is a \mathcal{D}_{p}-space, $\Pi_{p}(X, Y) \subset \Pi_{p}^{d}(X, Y)$ if and only if X^{*} is isomorphic to a subspace of an L^{p}-space.

Throughout this note X, Y, will denote Banach spaces. As usual $\Pi_{p}(X, Y)$ will stand for the Banach space of all absolutely p-summing operators T from X into $Y(1 \leq p<+\infty)$. Following [6, p. 67], $\Pi_{p}^{d}(X, Y)$ will denote the vector space of all operators $T: X \rightarrow Y$ such that $T^{*} \in \Pi_{p}\left(Y^{*}, X^{*}\right)$. If in $\Pi_{p}^{d}(X, Y)$ we consider the norm $\pi_{p}^{d}(T)=\pi_{p}\left(T^{*}\right)$, it becomes a Banach space.

We recall that a Banach space X is called a $\mathcal{D}_{q, \lambda}$-space if for each positive integer n there is a subspace X_{n} in X with $d\left(X_{n}, \ell_{q}^{n}\right) \leq \lambda[4]$. A banach space X is called a \mathcal{D}_{q}-space if it is a $\mathcal{D}_{q, \lambda}-$ space for some $\lambda \geq 1$.

In [8, Theorem 13.7] it is proved that Y is isomorphic to a subspace of an L^{p}-space $(1<p<+\infty)$ if and only if $\Pi_{p}^{d}(X, Y) \subset \Pi_{p}(X, Y)$ for every Banach space X. We have obtained the following two results.

Theorem 1

Y is isomorphic to a subspace of an $L^{p}(\mu)$-space $(1 \leq p<+\infty)$ if and only if $\Pi_{p}^{d}(X, Y) \subset \Pi_{p}(X, Y)$ for some \mathcal{D}_{q}-space X, where q is the conjugate number for p.

Proof. \Rightarrow The case $p=1$ follows easily from [7, Theorem III. 3] and the case $p \neq 0$ is just Theorem 13.7 in [8].
\Leftarrow First we show that there exists a constant $c>0$ such that

$$
\begin{equation*}
\pi_{p}(T) \leq c \pi_{p}\left(T^{*}\right) \quad \text { for all } \quad T \in \Pi_{p}^{d}(X, Y) . \tag{1}
\end{equation*}
$$

Let $M_{n}=\left\{T \in \Pi_{p}^{d}(X, Y): \pi_{p}(T) \leq n\right\}$, for all $n \in \mathbb{N}$. Since $\Pi_{p}^{d}(X, Y)=\cup M_{n}$ and each set M_{n} is closed in $\Pi_{p}^{d}(X, Y)$, it follows that there exists $n \in \mathbb{N}$ so that $\stackrel{\circ}{M}_{n}$ is not empty. Now a standard argument yields (1).

To prove that Y is isomorphic to a subspace of an L^{p}-space we use the wellknown characterization of J. Lindenstrauss and A. Pelczynski [3]. Let $\left\{y_{i}\right\}$ and $\left\{z_{j}\right\}$ be finite subsets of Y such that

$$
\begin{equation*}
\sum_{i}\left|\left\langle y_{i}, y^{*}\right\rangle\right|^{p} \leq \sum_{j}\left|\left\langle z_{j}, y^{*}\right\rangle\right|^{p} \quad \text { for all } \quad y^{*} \in Y^{*} \tag{2}
\end{equation*}
$$

We shall show that there is a constant $M>0$ such that

$$
\sum_{i=1}^{n}\left\|y_{i}\right\|^{p} \leq M^{p} \sum_{j=1}^{m}\left\|z_{j}\right\|^{p}
$$

Adding some zeros if necessary, we may assume that both sets have the same length, say n. By hypothesis, there is a subspace X_{n} in X such that $d\left(X_{n}, \ell_{q}^{n}\right) \leq \lambda$. Choose operators $T: X_{n} \rightarrow \ell_{q}^{n}$ and $S: \ell_{q}^{n} \rightarrow X_{n}$ such that

$$
\begin{equation*}
T \circ S=\operatorname{id}_{\ell_{q}^{n}} \text { and }\|T\|\|S\| \leq \lambda . \tag{3}
\end{equation*}
$$

If $\left\{e_{i}\right\}_{i=1}^{n}$ and $\left\{e_{i}^{*}\right\}_{i=1}^{n}$ are the canonical bases of ℓ_{q}^{n} and $\ell_{p}^{n}=\left(\ell_{q}^{n}\right)^{*}$ respectively, set $x_{i}=S e_{i}$ and $x_{i}^{*}=T^{*}\left(e_{i}^{*}\right)$ for $1=1, . ., n$. There are Hahn-Banach extensions of x_{i}^{*} to all X. Let z_{i}^{*} be a such extension. Then

$$
\begin{align*}
&\left\langle x_{i}, z_{j}^{*}\right\rangle=\delta_{i j} \tag{4}\\
&\left\|z_{i}^{*}\right\| \leq\|T\| \text { and }\left\|x_{i}\right\| \leq\|S\| \tag{5}\\
& \sup \left\{\left(\sum_{i=1}^{n}\left|\left\langle x_{i}, x^{*}\right\rangle\right|^{p}\right)^{1 / p}:\left\|x^{*}\right\| \leq 1\right\}=\sup \left\{\left\|\sum_{i=1}^{n} \alpha_{i} x_{i}\right\|:\left\|\left(\alpha_{i}\right)\right\|_{q} \leq 1\right\} \\
& \leq\|S\| \tag{6}
\end{align*}
$$

If $q \neq \infty$, we also have

$$
\begin{align*}
\sup \left\{\left(\sum_{i=1}^{n}\left|\left\langle z_{i}^{*}, x^{* *}\right\rangle\right|^{q}\right)^{1 / q}:\left\|x^{* *}\right\| \leq 1\right\} & =\sup \left\{\left\|\sum_{i=1}^{n} \alpha_{i} z_{i}^{*}\right\|:\left\|\left(\alpha_{i}\right)\right\|_{p} \leq 1\right\} \\
& \leq\|T\| \tag{7}
\end{align*}
$$

Now we define $P: X \rightarrow Y$ by $P x=\sum_{i=1}^{n}\left\langle x, z_{i}^{*}\right\rangle y_{i}$ for all $x \in X$. Since $P x_{i}=y_{i}$ for $i=1, . ., n$, from (6) it follows that

$$
\begin{equation*}
\left(\sum_{i=1}^{n}\left\|y_{i}\right\|^{p}\right)^{1 / p} \leq \pi_{p}(P)\|S\| \tag{8}
\end{equation*}
$$

This and (1) yields

$$
\begin{equation*}
\left(\sum_{i=1}^{n}\left\|y_{i}\right\|^{p}\right)^{1 / p} \leq c\|S\| \pi_{p}\left(P^{*}\right) \tag{9}
\end{equation*}
$$

Finally, observe that the dual operator $P^{*}: Y^{*} \rightarrow X^{*}$ is defined by $P^{*}\left(y^{*}\right)=$ $\sum_{i=1}^{n}\left\langle y_{i}, y^{*}\right\rangle z_{i}^{*}$ for all $y^{*} \in Y^{*}$. Thus, in case $p \neq 1$, from (2) and (7) we obtain

$$
\begin{align*}
\left\|P^{*}\left(y^{*}\right)\right\| & \leq\left(\sum_{i=1}^{n}\left|\left\langle y_{i}, y^{*}\right\rangle\right|^{p}\right)^{1 / p} \quad \sup \left\{\left(\sum_{i=1}^{n}\left|\left\langle z_{i}^{*}, x^{* *}\right\rangle\right|^{q}\right)^{1 / q}:\left\|x^{* *}\right\| \leq 1\right\} \\
& \leq\|T\|\left(\sum_{i=1}^{n}\left|\left\langle y_{i}, y^{*}\right\rangle\right|^{p}\right)^{1 / p} \leq\|T\|\left(\sum_{i=1}^{n}\left|\left\langle z_{i}, y^{*}\right\rangle\right|^{p}\right)^{1 / p} \tag{10}
\end{align*}
$$

for all $y^{*} \in Y^{*}$. If $p=1$, from (5) it follows that

$$
\left\|P^{*}\left(y^{*}\right)\right\| \leq\left(\sup _{i}\left\|z_{i}^{*}\right\|\right) \sum_{i=1}^{n}\left|\left\langle y_{i}, y^{*}\right\rangle\right| \leq\|T\| \sum_{i=1}^{n}\left|\left\langle z_{i}, y^{*}\right\rangle\right| .
$$

In any case, by [2, p. 32] we have the following estimation for $\pi_{p}\left(P^{*}\right)$

$$
\pi_{p}\left(P^{*}\right) \leq\|T\|\left(\sum_{i=1}^{n}\left\|z_{i}\right\|^{p}\right)^{1 / p}
$$

Therefore

$$
\left(\sum_{i=1}^{n}\left\|y_{i}\right\|^{p}\right)^{1 / p} \leq(c \lambda)\left(\sum_{i=1}^{n}\left\|z_{i}\right\|^{p}\right)^{1 / p}
$$

Theorem 2

X^{*} is isomorphic to a subspace of an $L^{p}-$ space $(1 \leq p<+\infty)$ if and only if $\Pi_{p}(X, Y) \subset \Pi_{p}^{d}(X, Y)$ for some \mathcal{D}_{p}-space Y.

Proof. We only prove the "if part" of the theorem because the "only if part" can be proved using the same argument as in Theorem 1.

Let X^{*} be isomorphic to a subspace of an L^{p}-space. By Theorem 1, it follows that $\Pi_{p}^{d}\left(Y^{*}, X^{*}\right) \subset \Pi_{p}\left(Y^{*}, X^{*}\right)$ for every Banach space Y. Now recall that $T^{* *} \in$ $\Pi_{p}\left(X^{* *}, Y^{* *}\right)$ whenever $T \in \Pi_{p}(X, Y)$ [5]. Therefore, for every p-summing operator $T: X \rightarrow Y$ we have $T^{*} \in \Pi_{p}^{d}\left(Y^{*}, X^{*}\right)$ and this concludes the proof.

Corollary

If X is a $\mathcal{D}_{q}-$ space and Y is a $\mathcal{D}_{p}-$ space $\left(1 \leq p<+\infty\right.$, and $\left.p^{-1}+q^{-1}=1\right)$, then

$$
\Pi_{p}(X, Y)=\Pi_{p}^{d}(X, Y)
$$

if and only if X^{*} and Y are isomorphic to subspaces of L^{p}-spaces.

Remark. It is well known that if $\Pi_{2}(X, Y)=\mathcal{L}(X, Y)$ for all \mathcal{L}_{∞}-space X, then Y has Orlicz's Property [3, Proposition 8.1]. Since every infinite dimensional Banach space X is a \mathcal{D}_{2}-space, by using the same argument as in Theorem 1 , it can be proved that

$$
\Pi_{2}(X, Y)=\mathcal{L}(X, Y) \Rightarrow Y \text { has Orlicz's Property. }
$$

References

1. J.S. Cohen, Absolutely p-summing, p-nuclear operators and their conjugates, Math. Ann. 201 (1973), 177-200.
2. G.J. O. Jameson, Summing and Nuclear Norms in Banach Space Theory, London Math. Soc. Students Texts 8, Cambridge University Press, 1987.
3. J. Lindenstrauss and A. Pelczynski, Absolutely summing operators in \mathcal{L}_{p}-spaces and their applications, Studia Math. 29 (1968), 275-326.
4. J.S. Morell and J.R. Retherford, p-trivial Banach spaces, Studia Math. 43 (1972), 1-25.
5. A.Pietsch, Absolut p-summierende Abbildungen in normierten Räumen, Studia Math. 28 (1967), 333-353.
6. A. Pietsch, Operator Ideals, North-Holland 1980.
7. C.P. Stegall and J.R. Retherford, Fully nuclear and completely nuclear operators with applications to \mathcal{L}_{1} and \mathcal{L}_{∞}-spaces, Transactions of the Amer. Math. Soc. 163 (1972), 457-492.
8. N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Pitman Monographs and Surveys in Pure and Appl. Math. 38 (1989).
