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Abstract

Let {ank}, n, k ∈ N be an array of real constants, and let {Xn} be a sequence
of random variables. The concept of {ank}–uniform integrability of {Xn} is
defined and two characterizations of this concept are established. Limit theorems
for weighted sums

∑
k ank(Xk − EXk) are obtained, when the sequence

{Xn} is {ank}–uniformly integrable.

1. Introduction

Let {Xn} be a sequence of random variables, i.e., a sequence of measurable functions
from a probabilistic space (Ω,A, P ) into R. Let {ank}, k, n ∈ N, be an array of real
numbers.

The problem of convergence in probability of the sequence of sums Sn =∑
k ankXk has been considered by Pruitt ([12]) under the hypothesis of indepen-

dence and identical distribution of the random variables and assuming that {ank}
is a Toeplitz array.

These initial conditions can be generalized in two ways: to relax the assumption
of independence and replace it by pairwise independence, incorrelation, martingale
assumptions, etc., or to relax the assumption of identical distribution.

In the latter case, Rohatgi ([13]), by using the double truncation method of
Erdos ([7]), extends the results of Pruitt to random variables non identically dis-
tributed, but uniformly dominated by a random variable with finite moments of a
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certain order; this condition is implied by the uniform boundedness of moments of
a suitable order (see [14]).

Wang and Bhaskara Rao ([15]) extend the Rohatgi’s weak law for weighted
sums to the case of random variables uniformly integrable. (It is well known ([6])
that if {Xn} is uniformly dominated by a random variable X with E|X| < ∞ , then
{Xn} is uniformly integrable).

Chandra ([1]) obtains several variations and extensions of the classical WLLN
of Khintchine by introducing the condition of uniform integrability in the Cesàro
sense, which is weaker than the uniform integrability and appears naturally related
to the problem and the proof used there.

Gut ([9]) obtains a WLLN for an array {Xnk}, 1 ≤ k ≤ kn, n ∈ N, kn →
∞ as n → ∞, of random variables such that {|Xnk|p}, 0 < p < 2, is uniformly
integrable in the Cesàro sense.

Analysing the above arguments, it seems natural, when we study the weak
convergence of weighted sums Sn =

∑
k ankXk, to require a condition which relates

the random variables Xk to their respective weights ank in Sn. Thus, we introduce
the condition of {ank}-uniform integrability of {Xn}, which is weaker than the
uniform integrability of {Xn} and leads to the Cesàro uniform integrability as a
particular case. Both Theorem 2 and Theorem 3 provide a characterization of this
concept. The function G in Theorem 3 has similar properties to function ψ in
Theorem 2 of Chung ([5]), excepting the decrease of ψ(x)

x2 .
It is an open question the existence of such a function G characterizing the

{ank}-uniform integrability and such that G(t)
t2 is decreasing. In case of affirmative

reply, it would be possible to obtain a SLLN for weighted sums
∑
k ankXk of pairwise

independent and {ank}-uniformly integrable random variables {Xn}, similar to the
SLLN of Chung ([5]) for sums

∑
n
Xn

an
of independent random variables. Theorem 4

provides a result of convergence in L1 and, therefore, a WLLN to this effect.
A possible field of applications of the concepts and results in this paper is the

area of quality control. Lai ([10]) has used weighted sums of i.i.d. random variables
to detect the change in a characteristic which assesses the quality of the output in a
continuous production process. The sequence of weights in these sums

∑n
k=1 cn−kXk

is chosen to be c0 ≥ c1 ≥ ... ≥ ck−1 > 0 = ck = ck+1 = ..., that is, the sums are
considered on a preassigned segment of the past.

If, in our paper, we consider that each random variable Xn is a statistic com-
puted from the nth sample, the sums Sn =

∑
k ankXk could be used in detecting

the variation in the quality of the output, summing over the entire past, since the
sequence of weights does not have to be eventually zero. The condition of {ank}-
uniform integrability relates the statistic Xk to their respective weight in Sn, assign-
ing weights on the remote past which are different from the weights on the immediate
past.
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In this framework, the above open question leads to the possibility of using the
characterization of {ank}-uniform integrability in Theorem 3 in order to obtain rules
of detection of changes in the quality of the output similar to those based in the first
passage times.

2. Uniform integrability concerning an array

Definition. Let {ank}, k, n ∈ N, be an array of real constants satisfying

∑
k

|ank| ≤ C for every n ∈ N ,

where C is some positive constant. A sequence {Xn} of integrable random variables
is said to be {ank}-uniformly integrable (or uniformly integrable concerning the
array {ank}) if

lim
a→∞

sup
n

(∑
k

|ank|
∫

[|Xk|>a]
|Xk| dP

)
= 0 .

Remark. In the particular case of the array

ank =




1
n

if 1 ≤ k ≤ n

0 if k > n

the condition of {ank}-uniform integrability is the uniform integrability in the Cesàro
sense of Chandra ([1]).

The following assertion is easy to check:

Theorem 1

Let {Xn} be a sequence of uniformly integrable random variables. Then, {Xn}
is {ank}-uniformly integrable for all arrays {ank} such that

∑
k |ank| ≤ C for every

n ∈ N, where C is some positive constant.

The following example, due to B.V. Rao (in [1]), shows that the above condi-
tion is weaker than the uniform integrability: there exist non uniformly integrable
sequences of random variables which are {ank}-uniformly integrable for some array
{ank}.
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Example 1: Let Xn = ± 1 with probability 1
2 , if n is not a perfect cube, and

Xn = ±n
1
3 with probability 1

2 , if n is a perfect cube.

The sequence {Xn} is not uniformly integrable, since supn E|Xn| = ∞.

However, {Xn} is uniformly integrable relative to the array

ank =




1
n

if 1 ≤ k ≤ n

0 if k > n.

In fact, if a ≥ 1, we have:

∑
k

|ank|
∫

[|Xk|>a]
|Xk| dP ≤

∑
k

|ank|
∫

[|Xk|>1]

|Xk| dP

≤ 1
n

∑
k=j3
k≤n

k
1
3 ≤

(
n

1
3 + 1

)
n

1
3

2n
→ 0 when n → ∞ .

A sequence {Xn} of integrable random variables is uniformly integrable if, and
only if, {E|Xn|} is uniformly bounded and the maps A → E (|Xn|IA) are uniformly
continuous ([6]). In the same sense, we obtain the following characterization of the
{ank}-uniform integrability:

Theorem 2

A sequence {Xn} of random variables is {ank}-uniformly integrable if, and only

if:

a) supn
( ∑

k |ank|E|Xk|
)

= M < ∞
b) for each ε > 0, there exists δ > 0 such that whenever {Ak} is a sequence of events

satisfying

sup
n

(∑
k

|ank|P (Ak)

)
< δ

then

sup
n

(∑
k

|ank|
∫
Ak

|Xk| dP
)

< ε .
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Proof. Let {Xn} be a sequence of {ank}-uniformly integrable random variables.
Given ε > 0, there exists a > 0 such that

sup
n

(∑
k

|ank|
∫

[|Xk|>a]
|Xk| dP

)
<

ε

2
.

Then

E|Xk| =
∫

[|Xk|≤a]
|Xk| dP +

∫
[|Xk|>a]

|Xk| dP ≤ a +
∫

[|Xk|>a]
|Xk| dP

which implies that

∑
k

|ank|E|Xk| ≤ a
∑
k

|ank| +
∑
k

|ank|
∫

[|Xk>a]

|Xk| dP

≤ aC +
ε

2
< ∞ for every n ∈ N.

Thus a) holds. In order to prove b), let {An} be a sequence of events such that∑
k |ank|P (Ak) < ε

2a = δ. Then:

∑
k

|ank|
∫
Ak

|Xk| dP

=
∑
k

|ank|
(∫

Ak∩[|Xk|≤a]
|Xk| dP +

∫
Ak∩[|Xk|>a]

|Xk| dP
)

≤ a
∑
k

|ank|P (Ak) +
∑
k

|ank|
∫

[|Xk|>a]
|Xk| dP

< a
ε

2a
+

ε

2
= ε .

Conversely, for each a > 0:

∑
k

|ank|P [|Xk| > a] ≤ 1
a

∑
k

|ank|E|Xk| ≤
M

a

for every n ∈ N.
Given ε > 0, we have, for each a ≥ a0 = 2M

δ :

∑
k

|ank|P [|Xk| > a] ≤
∑
k

|ank|P [|Xk| > a0] ≤
M

a0
=

δ

2
.
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Therefore, the events Ak = [|Xk| > a] , k ∈ N, verify condition b) for each
a ≥ a0.

Thus: ∑
k

|ank|
∫

[|Xk|>a]
|Xk| dP < ε

for each a ≥ a0 and for every n ∈ N, i.e., the sequence {Xn}is {ank}-uniformly
integrable. �

The following lemma provides an interesting consequence of Theorem 2:

Lemma 1
If {Xn} is a sequence of {ank}-uniformly integrable random variables, then

Sn =
∑
k ank (Xk − EXk) is uniformly integrable.

Proof. a) For every n ∈ N:

E|Sn| ≤
∑
k

|ank|E|Xk − EXk|

≤ 2
∑
k

|ank|E|Xk| ≤ 2M < ∞

according to a) of Theorem 2.
b) According to b) of Theorem 2, given ε > 0, there exists δ∗ > 0 such that if

supn
∑
k |ank|P (Ak) < δ∗, then:

sup
n

(∑
k

|ank|
∫
Ak

|Xk| dP
)

<
ε

2
.

Let 0 < δ < min { δ∗C , ε
2M } , and let A be an event with P (A) < δ. Then:∫

A

|Sn| dP ≤
∑
k

|ank|
∫
A

|Xk − EXk| dP

≤
∑
k

|ank|
∫
A

|Xk| dP + P (A)
∑
k

|ank|E|Xk|

<
ε

2
+

ε

2M
M = ε for every n ∈ N

as
∑
k |ank|P (A) < δC < δ∗.
Therefore, the sequence {Sn} is uniformly integrable. �
The next theorem is an analytic characterization of the {ank}-uniform integra-

bility analogous to the classical characterization of the uniform integrability due to
La Vallée-Poussin. This result is used in practice with the function G(t) = tp, p > 1.
The proof extends the classical proof in [11] in the same sense of [3] for the charac-
terization of the Cesàro uniform integrability.



Convergence of weighted sums of random variables and uniform 127

Theorem 3

Let {ank}, k, n ∈ N, be an array of real constants satisfying
∑
k |ank| ≤ C for

every n ∈ N, where C is some positive constant. A sequence of integrable random

variables {Xn} is {ank}-uniformly integrable if, and only if, there exists a measurable

function G : (0,∞) −→ (0,∞), G(0) = 0, such that G(t)
t → ∞ when t → ∞ and

supn
∑
k |ank|EG(|Xk|) < ∞. Moreover, G can be selected convex and such that

G(t)
t is increasing.

Proof. a) Assume the existence of such a function G. Let M defined as M =
supn

∑
k |ank|EG(|Xk|). Given ε > 0, there exists a > 0 such that G(t)

t ≥ M+1
ε for

t > a.
Then:

∑
k

|ank|
∫

[|Xk|>a]
|Xk| dP ≤ ε

M + 1

∑
k

|ank|
∫

[|Xk|>a]
G(|Xk|) dP ≤ Mε

M + 1
< ε

for every n ∈ N.
Note that the convexity of G and the increase of G(t)

t are not necessary for this
implication.

b) Suppose {Xn} is {ank}-uniformly integrable.
Let {gn}, n ∈ N a sequence of nonnegative constants with gn ↑ ∞. Define

g : (0,∞) −→ (0,∞) as g(x) = gn if x ∈ [n− 1, n), n ∈ N, and let

G(t) =
∫ t

0

g(x) dx, t > 0 ; G(0) = 0 .

G is convex and G(t)
t ↑ ∞ (see [3]).

Next, we prove the existence of a sequence {gn} satisfying the above conditions
and such that supn

∑
k |ank|EG(|Xk|) < ∞.

We can choose a sequence of positive integers {nj}, j ∈ N, such that

sup
n

∑
k

|ank|
∫

[Xk|≥nj ]

|Xk| dP ≤ 2−j for each j ∈ N

and nj → ∞ when j → ∞.
Let gn =card {j ∈ N : nj < n} for every n ∈ N.
Evidently, gn < ∞ and gn ↑ ∞.
We can write G(t) =

∑n−1
i=0 gi+(t−n+1)gn (g0 = 0) for every t ∈ (n−1, n].

This implies G(t) ≤ ∑n
i=1 gi for every t ∈ (n− 1, n], n ∈ N.



128 Ordóñez

Then, for each k ∈ N:

EG(|Xk|) ≤ E

[ ∞∑
n=1

I(n− 1 < |Xk| ≤ n)
n∑
i=1

gi

]

= E

[ ∞∑
i=1

gi

( ∞∑
n=i

I(n− 1 < |Xk| ≤ n)

)]
=

∞∑
i=1

giP [|Xk| > i− 1]

where I(A) denotes the indicator of A.
Therefore, for every n ∈ N:

∞∑
k=1

|ank|EG(|Xk|) ≤
∞∑
k=1

|ank|


 ∞∑
j=1

∞∑
i=nj

P [|Xk| > i]




≤
∞∑
k=1

|ank|


 ∞∑
j=1

E|Xk|I(|Xk| ≥ nj)




=
∞∑
j=1

( ∞∑
k=1

|ank|
∫

[|Xk|≥nj ]

|Xk| dP
)

≤
∞∑
j=1

2−j < ∞ .

To obtain the last bound, we have used the following well known inequality:
Let X be an integrable random variable; then:

∞∑
k=n

P [|X| ≥ k] ≤ E|X|I(|X| ≥ n) for every n ∈ N. �

3. Convergence of weighted sums of random variables

The following lemma will be used later:

Lemma 2
Let {Xn} be a sequence of uniformly bounded pairwise independent random

variables.
Let {ank}, k, n ∈ N, be an array of real constant satisfying:

a)
∑
k |ank| ≤ C for every n ∈ N, where C is some positive constant.

b) limn supk |ank| = 0.
Then: ∑

k

ank (Xk − EXk) → 0 in L2 .
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Proof. Let H > 0 an uniform bound of {Xn}.
Then:

E

(∑
k

ank (Xk − EXk)

)2

=
∑
k

a2
nkE (Xk − EXk)

2 ≤ 4H2

(
sup
k

|ank|
) ∑

k

|ank|

≤ 4CH2 sup
k

|ank| → 0 when n → ∞ . �

The following theorem provides a result of convergence in L1 of a weighted sum
of random variables when these variables are uniformly integrable relative to the
array of weights.

Theorem 4

Let {ank}, k, n ∈ N, be an array of real constants satisfying:
a)

∑
k |ank| ≤ C for every n ∈ N, where C is some positive constant.

b) limn supk |ank| = 0.
Let {Xn} be a sequence of pairwise independent and {ank}-uniformly integrable

random variables.
Then:

Sn =
∑
k

ank (Xk − EXk) → 0 in L1.

Proof. Given ε > 0, there exists a > 0 such that:

sup
n

(∑
k

|ank|
∫

[|Xk|>a]
|Xk| dP

)
<

ε

4
.

We define, for each k ∈ N:

Wk = XkI(|Xk| ≤ a)

Yk = Xk −Wk.

We write:
Sn =

∑
k

ank
(
(Wk − EWk) + (Yk − EYk)

)
.

{Wn−EWn} is a sequence of pairwise independent random variables such that:

|Wn − EWn| ≤ 2a for every n ∈ N.
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Lemma 2 assures the convergence of
∑
k ank (Wk − EWk) to zero in L1, when

n → ∞. Therefore, there exists n0 ∈ N such that

E
∣∣∣ ∑
k

ank (Wk − EWk)
∣∣∣ < ε

2
for every n ≥ n0.

On the other hand:∑
k

|ank|E|Yk − EYk| ≤ 2
∑
k

|ank|E|Yk|

= 2
∑
k

|ank|
∫

[|Xk|>a]
|Xk| dP <

ε

2
for every n ∈ N.

Then, E|Sn| < ε for every n ≥ n0, i.e., Sn → 0 in L1, and the theorem is
proved. �

We can drop the assumption on pairwise independence at the price of slightly
strengthening the other assumptions:

Theorem 5
Let {ank}, k, n ∈ N, be an array of real constants satisfying:

a)
∑
k |ank|r ≤ C for some r ∈ (0, 1) and for every n ∈ N, where C is some positive

constant
b) limn supk |ank| = 0.

Let {Xn} be a sequence of random variables such that {|Xn|r} is {|ank|r}-
uniformly integrable.

Then:
Sn =

∑
k

ankXk → 0 in Lr .

Proof. Given ε > 0, there exists a > 0 such that:

sup
n

(∑
k

|ank|r
∫

[|Xk|>a]
|Xk|r dP

)
<

ε

2
.

We define Wk and Yk as in Theorem 4; then:

E
∣∣∣ ∑
k

ankWk

∣∣∣ ≤ ∑
k

|ank|E|Wk|

≤ a

(
sup
k

|ank|1−r
) ∑

k

|ank|r

≤ aC

(
sup
k

|ank|1−r
)

→ 0 .
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Therefore E
∣∣ ∑

k ankWk

∣∣r < ε
2 for n sufficiently large.

Moreover:

E
∣∣∣ ∑
k

ankYk

∣∣∣r ≤ ∑
k

|ank|rE|Yk|r

=
∑
k

|ank|r
∫

[|Xk|>a]
|Xk|r dP <

ε

2
for every n ∈ N.

Then Sn → 0 in Lr. �

4. Some complements

The following example shows that Theorem 4 does not hold, as stated, for random
elements in separable Banach spaces:

Example 2: Let l1 =
{
x ∈ R

∞ : ‖x‖ =
∑
n |xn| < ∞

}
.

(l1, ‖.‖) is a real separable Banach space.
Let {en} be the standard basis of l1. Let {Xn} be the sequence of independent

random elements in l1 defined by:

Xn =




en with probability 1
2

−en with probability 1
2

Then ‖Xn‖ = 1 with probability one and EXn = 0, for every n ∈ N.
Therefore, for every a ≥ 1 and for every n ∈ N:∫

[‖Xn‖>a]
‖Xn‖ dP = 0 .

Thus, {Xn} is uniformly integrable, and so {ank}-uniformly integrable for any
array {ank} such that

∑
k |ank| ≤ C for every n ∈ N, where C is a positive constant.

But E‖Sn‖ = E‖∑
k ankXk‖ =

∑
k |ank|, and the sequence {E‖Sn‖} does not

necessarily tend to zero. For instance, if

ank =




1
n

if 1 ≤ k ≤ n

0 if k > n

then E‖∑
k ankXk‖ = 1 for every n ∈ N.

However, the proof of Theorem 5 can be extended to separable Banach spaces,
and so the following result is valid:



132 Ordóñez

Theorem 6

Let {ank}, k, n ∈ N be an array of real constants satisfying:

a)
∑
k |ank|r ≤ C for some r ∈ (0, 1) and for every n ∈ N, where C is some positive

constant

b) limn supk |ank| = 0.

Let {Xn} be a sequence of random elements in a real separable Banach space

(B, ‖.‖), such that {‖Xn‖r} is {|ank|r}-uniformly integrable.

Then:

E
∥∥∥∑

k

ankXk

∥∥∥r → 0 when n → ∞ .
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