P-convexity property in Musielak-Orlicz sequence spaces

Ye Yining and Huang Yafeng

P.O. Box 610, Math. Dept., Harbin Univ. Sci. Tech., Harbin, Heilongjiang, 150080, P.R. China

Abstract

We prove that in the Musielak-Orlicz sequence spaces equipped with the Luxemburg norm, P-convexity coincides with reflexivity.

In 1970, Kottman [1] introduced an important geometric property- P-convexity in order to describe a reflexive Banach space. We say that a Banach space $(X,\|\cdot\|)$ is P-convex if X is $P(n \varepsilon)$-convex for some positive integer n and a real number $\varepsilon>0$, i.e. for any $x_{1}, x_{2}, \ldots, x_{n}$ in the unit sphere of $X, \min _{i \neq j}\left\|x_{i}-x_{j}\right\|<2-\varepsilon$ for some n and $\varepsilon>0$. Moreover Kottman proved that any P-convex Banach space is reflexive. After P-convexity property was introduced, many people tried to give a distinct relation between P-convexity and reflexivity. But there are a lot of differences between them in a Banach space.

In 1978 Sastry and Naidu [2] introduced a new geometric property, O-convexity intermediate between P-convexity and reflexivity, and proved that P-convexity implies O-convexity and O-convexity implies reflexivity.

In 1984, D. Amir and C. Franhetti [3] gave two geometric properties, O convexity and H-convexity by the preceding results and proved O-convexity implies Q-convexity, Q-convexity implies reflexivity and H-convexity implies B-convexity and these convexities do not coincide with each other.

In 1988, Yeyining, Hemiaohong and Ryszard Pluciennik [4] proved that in Orlicz spaces P-convexity coincides with reflexivity, and reflexivity coincides with $P(3, \varepsilon)$ convexity for some $\varepsilon>0$.

In this paper we prove that in Musielak-Orlicz sequence spaces equipped with the Luxemburg norm P-convexity coincides with reflexivity.

0. Introduction

Let X be a Banach space equipped with the norm $\|\cdot\|$ and $S(X)$ be the unit sphere of the space X, i.e. $S(X)=\{x \in X:\|x\|=1\}$. Denote by \mathbb{N} the set of positive integers and by \mathbb{R} the set of real numbers. Let $\varphi=\left(\varphi_{n}\right)$ be a sequence of Young functions, i.e. for every $n \in \mathbb{N}, \varphi_{n}(\cdot): \mathbb{R} \rightarrow[0, \infty]$ is a convex, $\varphi_{n}(0)=0, \lim _{u \rightarrow \infty} \varphi_{n}(u)=\infty, \varphi_{n}(\cdot)$ is continuous at 0 and not identically equal to the zero function, and there exists a real number u_{0}, s.t. $\varphi_{n}\left(u_{0}\right)<\infty$. We define a modular on the family of all sequences $x=\left(x_{n}\right)$ of real numbers by the following formula

$$
I_{\varphi}(x)=\sum_{n=1}^{\infty} \varphi_{n}\left(x_{n}\right) .
$$

The linear set

$$
l_{\varphi}=\left\{x=\left(x_{n}\right): \exists a>0, I_{\varphi}(a x)<\infty\right\}
$$

equipped with so - called Luxemburg norm

$$
\|x\|=\inf \left\{k>0: I_{\varphi}\left(k^{-1} x\right) \leq 1\right\}
$$

is said to be a Musielak-Orlicz sequence space.
We say that $\varphi=\left(\varphi_{n}\right)$ satisfies the δ_{2}-condition if there are constants a, k, and a sequence $\left(c_{n}\right)$ of non-negative real numbers such that

$$
\sum_{n=1}^{\infty} c_{n}<\infty \quad \text { and } \quad \varphi_{a}(2 u) \leq k \varphi_{n}(u)+c_{n}
$$

for all $n \in \mathbb{N}$ and $u \in \mathbb{R}$ with $\varphi_{a}(u) \leq a$.
The complementary function of Young function $\varphi=\left(\varphi_{n}\right)$ is defined by

$$
\varphi_{n}^{*}(v)=\sup _{u \geq 0}\left\{u|v|-\varphi_{n}(u)\right\}, \quad \text { for all } n \in \mathbb{N} .
$$

A Musielak-Orlicz sequence space l_{φ} is reflexive if and only if $\varphi=\left(\varphi_{n}\right)$ and $\varphi^{*}=$ $\left(\varphi_{n}^{*}\right)$ satisfy the δ_{2}-condition. Let $a_{n}=\sup \left\{u>0: \varphi_{n}(u) \leq 1\right\}$ for all $n \in \mathbb{N}$.

1. Auxiliary lemmas

Lemma 1

Let $\varphi=\left(\varphi_{n}\right)$ satisfy the δ_{2}-condition, then
(i) if $A=\inf _{n} \varphi_{n}\left(a_{n}\right)$, then $A>0$,
(ii) for any $l_{1}>1, a_{1}>0$, there are $k_{1}>1$ and a sequence $\left(c_{n}^{(1)}\right)$ of non-negative real numbers such that

$$
\sum_{n=1}^{\infty} c_{n}^{(1)}<\infty \quad \text { and } \quad \varphi_{n}(l u) \leq k \varphi_{n}(u)+c_{n}^{(1)}
$$

for all $n \in \mathbb{N}$ and $u \in \mathbb{R}$ with $\varphi_{n}\left(l_{1} u\right) \leq a_{1}$,
(iii) for any $k_{1}>1, l_{2}>1, a_{2}>0$, there are $\sigma \in\left(0, l_{2}-1\right)$ and a sequence $\left(c_{n}^{(2)}\right)$ of non-negative real numbers such that

$$
\sum_{n=1}^{\infty} c_{n}^{(2)}<\infty \quad \text { and } \quad \varphi_{n}((1+\delta) u) \leq k_{2} \varphi_{n}(u)+c_{n}^{(2)}
$$

for all $n \in \mathbb{N}$ and $u \in \mathbb{R}$ with $\varphi_{n}\left(l_{2} u\right) \leq a_{2}$.
Proof. (i) Obviously $A \geq 0$, so it is enough to prove $A \neq 0$. Assume that $A=0$. Then for any $a>0$ there is $n_{0} \in \mathbb{N}$, such that $\varphi_{n_{0}}\left(a_{n_{0}}\right)<a$. It is easy to see that $a_{n_{0}} \neq 0$ by the definition of $\varphi_{n}(u)$. We may assume without loss of generality that $a<1$. Then $\varphi_{n_{0}}\left(a_{n_{0}}\right)<1$ implies $\varphi_{n_{0}}\left(2 a_{n_{0}}\right)=\infty$ because $\varphi_{n}(u)$ is a convex function and so it has the only discontinuous point u_{0}, such that $\varphi_{n_{0}}\left(u_{0}-0\right)<\infty$ and $\varphi_{n_{0}}\left(u_{0}+0\right)=\infty$. By the definition of $a_{n_{0}}$ and $\varphi_{n_{0}}\left(a_{n_{0}}\right)<1$ we may deduce that $a_{n_{0}}$ is the discontinuous point of $\varphi_{n_{0}}(u)$, so $\varphi_{n_{0}}\left(2 a_{n_{0}}\right)=\infty$. But this contradicts the δ_{2}-condition and so $A>0$.
(ii) Let a positive integer α satisfy $2^{\alpha-1}<l_{1}<2^{\alpha}$.

Since $\varphi=\left(\varphi_{n}\right)$ satisfies the δ_{2}-condition, there are constants $k>0, a>0$ and a sequence $\left(c_{n}\right)$ of non-negative real numbers such that

$$
\sum_{n=1}^{\infty} c_{n}<\infty \quad \text { and } \quad \varphi_{n}(2 u) \leq k \varphi_{n}(u)+c_{n}
$$

for all $n \in \mathbb{N}$ and $u \in \mathbb{R}$ with $\varphi_{n}(u) \leq a$. When $\varphi_{n}\left(l_{1} u\right) \leq a, \varphi_{n}\left(2^{\alpha-1} u\right) \leq \varphi_{n}\left(l_{1} u\right) \leq$ a, then

$$
\begin{aligned}
\varphi_{n}\left(l_{1} u\right) & \leq \varphi_{n}\left(2^{\alpha} u\right) \\
& \leq k \varphi_{n}\left(2^{\alpha-1} u\right)+c_{n} \leq \ldots \leq k^{\alpha} \varphi_{n}(u)+\left(k^{\alpha-1}+\ldots+k+1\right) c_{n}
\end{aligned}
$$

Let $c_{n}^{(1)}=\left(k^{\alpha-1}+\cdots+k+1\right) c_{n}$. Obviously $\sum_{n=1}^{\infty} c_{n}^{(1)}<\infty$. Then $\varphi_{n}\left(l_{1} u\right) \leq$ $k^{\alpha} \varphi_{n}(u)+c_{n}^{(1)}$ with $\varphi_{n}\left(l_{1} u\right) \leq a$.

If $a_{1} \leq a$, it is enough to put $k_{1}=k^{\alpha}$. Let $a<\varphi_{n}\left(l_{1} u\right) \leq a_{1}$ and $\varphi_{n}\left(l_{1}^{\prime} u\right)=a$. Then $l_{1}^{\prime}<l$. Hence

$$
\begin{aligned}
\varphi_{n}\left(l_{1}, u\right) & \leq a_{1}=a_{1} a^{-1} a=a_{1} a^{-1} \varphi_{n}\left(l_{1}^{\prime} u\right) \\
& =a_{1} a^{-1} \varphi_{n}\left(l_{1} l_{2}^{-1} l_{1}^{\prime} u\right) \leq a_{1} a^{-1}\left[k^{\alpha} \varphi_{n}\left(l_{1}^{-1} l_{1}^{\prime} u\right)+c_{n}^{(1)}\right] \\
& \leq a_{1} a^{-1} k^{\alpha} \varphi_{n}(u)+a_{1} a^{-1} c_{n}^{(1)}
\end{aligned}
$$

Replace $a_{1} a^{-1} k^{\alpha}$ by $k_{1}, a_{1} a^{-1} c_{n}^{(1)}$ by $c_{n}^{(1)}$, then $\sum_{n=1}^{\infty} c_{n}^{(1)}<\infty$. So $\varphi_{n}\left(l_{1} u\right) \leq$ $k_{1} \varphi_{n}(u)+c_{n}^{(1)}$ when $\varphi_{n}\left(l_{1} u\right) \leq a_{1}$.
(iii) For $l_{2}>1, a_{2}>0$, by (ii) there are $k_{1}>1$ and a sequence $\left(c_{n}^{(1)}\right)$ of non-negative real numbers such that

$$
\sum_{n=1}^{\infty} c_{n}^{(1)}<\infty \quad \text { and } \quad \varphi_{n}\left(l_{2} u\right) \leq k_{1} \varphi_{n}(u)+c_{n}^{(1)}
$$

for all $n \in \mathbb{N}$ and $u \in \mathbb{R}$ with $\varphi_{n}\left(l_{2} u\right) \leq a_{2}$. Take σ satisfying

$$
\sigma<\min \left\{l_{2}-1,\left[\left(k_{2}-1\right) /\left(k_{1}-1\right)\right]\left(l_{2}-1\right)\right\}
$$

Because $\varphi_{n}(u)$ is convex, when $\varphi_{n}\left(l_{2} u\right) \leq a_{2}$ it follows that

$$
\begin{aligned}
\varphi_{n}((1+\sigma) u)= & \varphi_{n}\left(\frac{\left(l_{2}-1\right)(l+\sigma)}{l_{2}-1} u\right) \\
= & \varphi_{n}\left(\frac{\sigma}{l_{2}-1} l_{2} u+\frac{l_{2}-1-\sigma}{l_{2}-1} u\right) \\
\leq & \frac{\sigma}{l_{2}-1} \varphi_{n}\left(l_{2} u\right)+\frac{l_{2}-1-\sigma}{l_{2}-1} \varphi_{n}(u) \\
\leq & \frac{k_{1} \sigma}{l_{2}-1} \varphi_{n}(u)+\frac{l_{2}-1-\sigma}{l_{2}-1} \varphi_{n}(u)+\frac{\sigma}{l_{2}-1} c_{n}^{(1)} \\
= & {\left[\frac{\left(k_{1}-1\right) \sigma}{l_{2}-1}+1\right] \varphi_{n}(u)+\frac{\sigma}{l_{2}-1} c_{n}^{(1)} } \\
\leq & {\left[\frac{\left(k_{1}-1\right)\left(k_{2}-1\right)}{\left(l_{2}-1\right)\left(k_{1}-1\right)}\left(l_{2}-1\right)+1\right] \varphi_{n}(u) } \\
& +\frac{c_{n}^{(1)}\left(k_{2}-1\right)}{\left(l_{2}-1\right)\left(k_{1}-1\right)}\left(l_{2}-1\right) \\
= & k_{2} \varphi_{n}(u)+\frac{k_{2}-1}{k_{1}-1} c_{n}^{(1)}
\end{aligned}
$$

Let $c_{n}^{(2)}=\left[\left(k_{2}-1\right) /\left(k_{1}-1\right)\right] c_{n}^{(1)}$, which completes the proof of (iii).

Lemma 2

If $\varphi=\left(\varphi_{n}\right)$ and $\varphi^{*}=\left(\varphi_{n}^{*}\right)$ satisfy the δ_{2}-condition, then for any $l_{3}>1, b>1$ there are $k_{3}>1$ and a sequence $\left(c_{n}^{(3)}\right)$ of non-negative real numbers such that

$$
\sum_{n=1}^{\infty} c_{n}^{(3)}<\infty \quad \text { and } \quad \varphi_{n}^{*}(v)<\frac{1}{l_{3} k_{3}} \varphi_{n}^{*}\left(l_{3} v\right)+c_{n}^{(3)}
$$

for all $n \in \mathbb{N}$ and $v \in \mathbb{R}$ with $\varphi_{n}^{*}(v) \leq b$.
Proof. First we prove when $\varphi_{n}^{*}(v) \leq b$, there is $a>0$ such that $\varphi_{n}(u) \leq a$ for all $n \in \mathbb{N}$ where $v=p_{n}(u)$.

Otherwise, there is a sequence $\left\{u_{k}\right\}_{k=1}^{\infty}$ of real numbers such that $\varphi_{n_{k}}\left(u_{k}\right) \rightarrow \infty$ as $k \rightarrow \infty$, while $\varphi_{n_{k}}^{*}(v) \leq b$.

Notice that for some $l_{3}>1$, there is $b^{\prime}>0$, such that $\varphi_{n}^{*}\left(l_{3} v\right) \leq b^{\prime}$ for all $n \in \mathbb{N}$. It is enough to put $b^{\prime}=2 l_{3} b$. If $\varphi_{n}^{*}\left(l_{3} v\right)>2 l_{3} b$, Lemma 2 obviously holds.

By Lemma 1 , there is $\sigma \in\left(0, l_{3}-1\right)$ such that $\varphi_{n_{k}}^{*}\left((1+\sigma) v_{k}\right) \leq k_{2} \varphi_{n_{k}}^{*}\left(v_{k}\right)+c_{k}$ for all $n \in \mathbb{N}$ with

$$
\varphi_{n_{k}}^{*}\left(l_{3} v\right) \leq b^{\prime}, \quad \text { where } \quad k_{2}>1, \sum_{n=1}^{\infty} c_{k}<\infty
$$

Let $b_{1}=k_{2} b+\max _{k} c_{k}$. Then $\varphi_{n_{k}}^{*}\left((1+\sigma) v_{k}\right) \leq b_{1}$ for all $k \in \mathbb{N}$.
On the other hand, when $v_{k}=p_{n_{k}}\left(u_{k}\right), \varphi_{n_{k}}^{*}\left(v_{k}\right)=\left|u_{k} v_{k}\right|-\varphi_{n_{k}}\left(u_{k}\right)>0$, and $\varphi_{n_{k}}\left(u_{k}\right) \rightarrow \infty$ as $k \rightarrow \infty$, i.e. there is $k_{0} \in \mathbb{N}$ such that $\varphi_{n_{k}}\left(u_{k}\right)>b_{1} \sigma^{-1}$ with $k>k_{0}$. So, when $k>k_{0}$, we have

$$
\begin{aligned}
\varphi_{n_{k}}^{*}\left((1+\sigma) v_{k}\right) & =\sup _{u \geq 0}\left\{(1+\sigma)\left|v_{k}\right| u-\varphi_{n_{k}}(u)\right\} \\
& \geq(1+\sigma)\left|v_{k} u_{k}\right|-\varphi_{n_{k}}\left(u_{k}\right) \\
& \geq(1+\sigma) \varphi_{n_{k}}\left(u_{k}\right)-\varphi_{n_{k}}\left(u_{k}\right)=\sigma \varphi_{n_{k}}\left(u_{k}\right)>b_{1}
\end{aligned}
$$

This contradicts the inequality $\varphi_{n_{k}}^{*}\left((1+\sigma) v_{k}\right) \leq b_{1}$.
Therefore, there is $a>0$ such that $\varphi_{n}(u) \leq a$ for all $n \in \mathbb{N}$ with $\varphi_{n}^{*}(v) \leq b$. Hence by $\varphi_{n}^{*}\left(l_{3} v\right) \leq b^{\prime}$ there is $a^{\prime}>0$ such that $\varphi_{n}\left(l_{3} u\right) \leq a^{\prime}$ for all $n \in \mathbb{N}$.

By Lemma 1 (iii) for $k_{2}=l_{3}, l_{2}=l_{3}, a_{2}=a^{\prime}$, there are $\varepsilon \in\left(0, l_{3}-1\right)$ and a sequence $\left(c_{n}^{(2)}\right)$ of non-negative real numbers such that

$$
\sum_{n=1}^{\infty} c_{n}^{(2)}<\infty \quad \text { and } \quad \varphi_{n}((1+\varepsilon) u) \leq l_{3} \varphi_{n}(u)+c_{n}^{(2)}
$$

for all $n \in \mathbb{N}$ and $u \in \mathbb{R}$ with $\varphi_{n}\left(l_{3} u\right) \leq a^{\prime}$. Then

$$
\begin{aligned}
\varphi_{n}^{*}(v) & =\sup \left\{u|v|-\varphi_{n}(u): u \geq 0, \varphi_{n}^{*}\left(l_{3} v\right) \leq b^{\prime}\right\} \\
& \leq \sup \left\{u|v|-\varphi_{n}(u): \varphi_{n}\left(l_{3} u\right) \leq a^{\prime}\right\} \\
& \leq \sup _{u \geq 0}\left\{u|v|-\frac{\left.\varphi_{n}(u+\varepsilon) u\right)-c_{n}^{(2)}}{l_{3}}\right\} \\
& =\frac{1}{l_{3}} \sup _{u \geq 0}\left\{\frac{l_{3}|v|}{1+\varepsilon}(1+\varepsilon) u-\varphi_{n}((1+\varepsilon) u)\right\}+\frac{c_{n}^{(2)}}{l_{3}} \\
& =\frac{1}{l_{3}} \varphi_{n}^{*}\left(\frac{l_{3} v}{1+\varepsilon}\right)+\frac{c_{n}^{(2)}}{l_{3}} \\
& <\frac{1}{l_{3}(1+\varepsilon)} \varphi_{n}^{*}\left(l_{3} v\right)+\frac{c_{n}^{(2)}}{l_{3}} .
\end{aligned}
$$

Let $k_{3}=1+\varepsilon, c_{n}^{(3)}=c_{n}^{(2)} / l_{3}$, which completes the proof of Lemma 2.

Lemma 3

If $\varphi=\left(\varphi_{n}\right)$ and $\varphi^{*}=\left(\varphi_{n}^{*}\right)$ satisfy the δ_{2}-condition, then there is a sequence $\left(c_{n}\right)$ of non-negative real numbers such that $\sum_{n=1}^{\infty} \varphi_{n}\left(c_{n}\right)<\infty$, and if

$$
\begin{aligned}
& d_{n}=\sup \left\{\alpha(u, n): \varphi_{n}\left(\frac{u}{\alpha(u, n)}\right) \geq \frac{1}{2} \varphi_{n}(u), c_{n} \leq|u| \leq a_{n}\right\}, n=1,2, \ldots \\
& d_{1}=\lim _{m \rightarrow \infty} \sup _{n>m} d_{n}
\end{aligned}
$$

then $d_{1}<2$.
Proof. Let $l_{3}=2, b=1$ in Lemma 2. Then there are $k_{3}>1$ and a sequence $\left(c_{n}^{(3)}\right)$ of non-negative real numbers such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n}^{(3)}<\infty \quad \text { and } \quad \varphi_{n}(u) \leq \frac{1}{2 k_{3}} \varphi_{n}(2 u)+c_{n}^{(3)} \tag{1}
\end{equation*}
$$

for all n and u with $\varphi_{n}(u) \leq 1$.
In Lemma 1 (iii) let $k_{2}=\left(k_{3}+1\right) / 2, l_{2}=2, a_{2}=1$. There are $\varepsilon \in(0,1)$ and a sequence $\left(\beta_{n}\right)$ of positive numbers such that $\sum_{n=1}^{\infty} \beta_{n}<\infty$, and when $\varphi_{n}(2 u) \leq 1$,

$$
\begin{equation*}
\varphi_{n}((1+\varepsilon) u)<\frac{1}{2}\left(k_{3}+1\right) \varphi_{n}(u)+\beta_{n} \tag{2}
\end{equation*}
$$

Let

$$
c_{n}^{\prime}=\frac{2 k_{3}\left(k_{3}+1\right)}{k_{3}-1} c_{n}^{(3)}+\frac{4 k_{3}}{k_{3}-1} \beta_{n} .
$$

Obviously $\sum_{n=1}^{\infty} c_{n}^{\prime}<\infty$.
Since $A=\inf _{n} \varphi_{n}\left(a_{n}\right)>0$ is true by Lemma 1 (i), so there is $n_{0} \in \mathbb{N}$ such that $c_{n}^{\prime}<A$ for $n>n_{0}$. We define a sequence $\left(c_{n}\right)$ by

$$
c_{n}= \begin{cases}0 & \text { when } n \leq n_{0} \\ \varphi_{n}^{-1}\left(c_{n}^{\prime}\right) & \text { when } n>n_{0}\end{cases}
$$

Then $\sum_{n=1}^{\infty} \varphi_{n}\left(c_{n}\right) \leq \sum_{n=1}^{\infty} c_{n}^{\prime}<\infty$.
We will show the sequence $\left(c_{n}\right)$ satisfies Lemma 3 .
Obviously $d_{1} \leq 2$. If $d_{1}=2$, for $n>n_{0}$ there are subsequence $\left\{u_{n}\right\}_{n>n_{0}}$ and $\left\{\alpha\left(u_{n}, n\right)\right\}_{n>n_{0}}$ (let the subsequence be $\left\{u_{n}\right\}$ and $\left\{\alpha\left(u_{n}, n\right)\right\}$) such that

$$
\begin{equation*}
\varphi_{n}\left(\frac{u_{0}}{\alpha\left(u_{n}, n\right)}\right) \geq \frac{1}{2} \varphi_{n}\left(u_{n}\right), \quad c_{n} \leq\left|u_{n}\right|<a_{n} \tag{3}
\end{equation*}
$$

and $\alpha\left(u_{n}, n\right) \rightarrow 2$ as $n \rightarrow \infty$.
So there is $n_{1} \in \mathbb{N}$, such that $2 / \alpha\left(u_{n}, n\right)<1+\varepsilon$ for $n>n_{1}$.
Let $\alpha_{n}=\alpha\left(u_{n}, n\right)$. By formula (2) it follows that

$$
\varphi_{n}\left(\frac{u_{n}}{\alpha_{n}}\right) \leq \varphi_{n}\left((1+\varepsilon) \frac{u_{n}}{2}\right)<\frac{k_{3}+1}{2} \varphi_{n}\left(\frac{u_{n}}{2}\right)+\beta_{n} .
$$

By (1), we get

$$
\varphi_{n}\left(\frac{u_{n}}{\alpha_{n}}\right)<\frac{k_{3}+1}{2}\left[\frac{1}{2 k_{3}} \varphi_{n}\left(u_{n}\right)+c_{n}^{(3)}\right]+\beta_{n}=\frac{k_{3}+1}{4 k_{3}} \varphi_{n}\left(u_{n}\right)+\frac{k_{3}+1}{2} c_{n}^{(3)}+\beta_{n} .
$$

By (3), we have

$$
\frac{1}{2} \varphi_{n}\left(u_{n}\right)<\frac{k_{3}+1}{4 k_{3}} \varphi_{n}\left(u_{n}\right)+\frac{k_{3}+1}{2} c_{n}^{(3)}+\beta_{n}
$$

i.e.

$$
\begin{equation*}
\varphi_{n}\left(u_{n}\right)<\frac{2 k_{3}\left(k_{3}+1\right)}{k_{3}-1} c_{n}^{(3)}+\frac{3 k_{3}}{k_{3}-1} \beta_{n} . \tag{4}
\end{equation*}
$$

But when $n>\max \left(n_{0}, n_{1}\right)$, we have

$$
\varphi_{n}\left(u_{n}\right) \geq \varphi_{n}\left(c_{n}\right)=c_{n}^{\prime}=\frac{2 k_{3}\left(k_{3}+1\right)}{k_{3}-1} c_{n}^{(3)}+\frac{4 k_{3}}{k_{3}-1} \beta_{n}
$$

This contradicts (4), so Lemma 3 is true.

2. Result

Theorem

A Musielak-Orlicz sequence space l_{φ} is P-convex if and only if l_{φ} is reflexive.

Proof. We may obtain necessity according to paper [1], so it is enough to prove sufficiency.

Assume sufficiency is false. Let l_{φ} be reflexive i.e. $\varphi=\left(\varphi_{n}\right)$ and $\varphi^{*}=\left(\varphi_{n}^{*}\right)$ satisfy the δ_{2}-condition but l_{φ} is not P-convex. Then for any $\varepsilon>0$ and positive integer N_{1}, there is a set $X=\left\{x^{i}\right\}$ having N_{1} elements in $S\left(l_{\varphi}\right)$ such that

$$
\left\|x^{i}-x^{j}\right\| \geq 2(1-\varepsilon) ; \quad i \neq j, i, j=1,2, \ldots, N_{1} .
$$

We will complete the proof of theorem in two steps.
Step 1. There is $\varepsilon_{0}>0$ such that $\left\|x_{n}\right\|<\left(1-\varepsilon_{0}\right) a_{n}$ for any $x=\left(x_{n}\right) \in X$ and all $n \in \mathbb{N}$.
(1a) We define some constants.
By Lemma 3, there are a sequence (c_{n}) of non-negative real numbers, $N^{\prime} \in N, d>0$ such that $\sum_{n=1}^{\infty} c_{n}<\infty, d_{1}<d<2$ and $d_{n}<d$ with $n>N^{\prime}$. Let $\beta=\varepsilon_{0} / 4$, then $\beta<1$.

By Lemma 1 (ii), for $l_{1}=1 / \beta$ and $a_{1}=1$, there are $k_{1}>1$ and a sequence $\left(c_{n}^{(2)}\right)$ of non-negative real numbers such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n}^{(2)}<\infty \quad \text { and } \quad \varphi_{n}(u / \beta) \leq k_{1} \varphi_{n}(u)+c_{n}^{(2)} \tag{1}
\end{equation*}
$$

for all $n \in \mathbb{N}$ and $u \in \mathbb{R}$ with $\varphi_{n}(u / \beta) \leq 1$. Let $\lambda_{1}=(2-d) /\left(24 k_{1}\right), \lambda_{2}=(2-d) / 2 d$. By Lemma 1 (iii), for $k_{2}=1+\min \left(\lambda_{1}, \lambda_{2}\right), l_{2}>1$ and $a=1$, there are $a \in(0, l-1)$ and a sequence $\left(c_{n}^{(3)}\right)$ of non-negative real numbers such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n}^{(3)}<\infty \quad \text { and } \quad \varphi_{n}((1+\delta) u) \leq k_{2} \varphi_{n}(u)+c_{n}^{(3)} \tag{2}
\end{equation*}
$$

for all $n \in \mathbb{N}$ and $u \in \mathbb{R}$ with $\varphi_{n}\left(l_{2} u\right) \leq 1$.

By Lemma 1 (ii), for $l_{1}=2$, and $a_{1}=1$, there are $k>1$ and a sequence $\left(c_{n}^{(1)}\right)$ of non-negative real numbers such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n}^{(1)}<\infty \quad \text { and } \quad \varphi_{n}(2 u) \leq k \varphi_{n}(u)+c_{n}^{(1)} \tag{3}
\end{equation*}
$$

for all $n \in \mathbb{N}$ and $u \in \mathbb{R}$ with $\varphi_{n}(2 u) \leq 1$. Let h_{1} be, such that $0<h_{1}<1$. Let

$$
\begin{aligned}
& h_{2}=\min \left\{\frac{2-d}{8 k}, \frac{2-d}{4}\right\} \\
& r_{1}=\min \left\{\frac{1-h_{1}}{4\left(1+k_{1}\right)}, \frac{h_{2}\left(1-h_{1}\right)}{12 k k_{1}}\right\} \\
& r_{2}=\frac{h_{2}\left(1-h_{1}\right)}{12(3 k+1)} .
\end{aligned}
$$

By $\sum_{n=1}^{\infty} \varphi_{n}\left(c_{n}\right)<\infty$ and (1), (2), (3), there is $N_{0}>N^{\prime}$, such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \varphi_{n}\left(c_{n}\right)<r_{1}, \quad \sum_{n=N_{0}}^{\infty} c_{n}^{(i)}<r, \quad i=1,2,3 \tag{4}
\end{equation*}
$$

(1b) Now we will prove that for any $h_{1}, 0<h_{1}<1$, there do not exist three elements x^{1}, x^{2} and x^{3} in X, such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \varphi_{n}\left(x_{n}^{i}\right) \geq I_{\varphi}\left(x^{i}\right)-h_{1}=1-h_{1}, \quad i=1,2,3 . \tag{5}
\end{equation*}
$$

Assume (1b) is false: (i) If $0<\varepsilon<\varepsilon_{0} / 4$, then $\varphi_{n}\left(\left(x_{n}^{i}-x_{n}^{j}\right) / 2(1-\varepsilon)\right)<\infty$ for all $n \in N, i \neq j, i, j=1,2,3$.

Let $u_{n}=\max \left\{\left|x_{n}^{1}\right|,\left|x_{n}^{2}\right|,\left|x_{n}^{3}\right|\right\}, w_{n}=\min \left\{\left|x_{n}^{1}\right|,\left|x_{n}^{2}\right|,\left|x_{n}^{3}\right|\right\}, v_{n}$ be the arithmetic mean of u_{n} and w_{n}. Since $u_{n} v_{n} \geq 0$, or $u_{n} w_{n} \geq 0$, or $v_{n} w_{n} \geq 0$ is true, we first consider $v_{n}, w_{n} \geq 0$.

Divide positive integers $n \geq N_{0}$ into the following sets:

$$
\begin{aligned}
& I_{1}=\left\{n:\left|\frac{v_{n}}{u_{n}}\right| \geq \beta \text { and } \quad\left|v_{n}\right| \geq c_{n}\right\} \\
& I_{2}=\left\{n:\left|\frac{v_{n}}{u_{n}}\right| \geq \beta \text { and }\left|v_{n}\right|<c_{n}\right\} \\
& I_{3}=\left\{n:\left|\frac{v_{n}}{u_{n}}\right|<\beta \text { and }\left|u_{n}\right| \geq c_{n}\right\} \\
& I_{4}=\left\{n:\left|\frac{v_{n}}{u_{n}}\right|<\beta \text { and } \quad\left|u_{n}\right|<c_{n}\right\} .
\end{aligned}
$$

When $n \in I_{1}$, by formula (2) for $l_{2}=\left(1-\varepsilon_{0} / 2\right) /\left[\left(1-\varepsilon_{0}\right)(1-\varepsilon)\right]$, if $\sigma=$ $1 /(1-\varepsilon)-1$, then $\sigma<l_{2}-1$. Since

$$
\begin{aligned}
\varphi_{n}\left(l_{2} \frac{u_{n}-v_{n}}{2}\right) & =\varphi_{n}\left(\frac{1-\varepsilon_{0} / 2}{1-\varepsilon_{0}} \cdot \frac{u_{n}-v_{n}}{2(1-\varepsilon)}\right) \\
& \leq \varphi_{n}\left(\frac{1-\varepsilon_{0} / 2}{1-\varepsilon_{0} / 4} \cdot \frac{2 u_{n}}{2\left(1-\varepsilon_{0}\right)}\right) \leq \varphi_{n}\left(a_{n}\right) \leq 1
\end{aligned}
$$

by (2) and $k_{2}=1+\min \left(\lambda_{1}, \lambda_{2}\right)$, it follows that

$$
\begin{align*}
\varphi_{n}\left(\frac{u_{n}-v_{n}}{2(1-\varepsilon)}\right) & =\varphi_{n}\left((1+\sigma) \frac{u_{n}-v_{n}}{2}\right) \leq k_{2} \varphi_{n}\left(\frac{u_{n}-v_{n}}{2}\right)+c_{n}^{(3)} \\
& \leq\left(1+\lambda_{1}\right) \varphi_{n}\left(\frac{u_{n}-v_{n}}{2}\right)+c_{n}^{(3)} \\
& \leq\left(1+\lambda_{1}\right) \frac{\varphi_{n}\left(u_{n}\right)+\varphi_{n}\left(v_{n}\right)}{2}+c_{n}^{(3)} \tag{6}\\
& <\frac{1}{2} \varphi_{n}\left(u_{n}\right)+\frac{1}{2} \varphi_{n}\left(v_{n}\right)+\lambda_{1} \varphi_{n}\left(u_{n}\right)+c_{n}^{(3)} .
\end{align*}
$$

By the same argumentation, we get

$$
\begin{equation*}
\varphi_{n}\left(\frac{u_{n}-w_{n}}{2(1-\varepsilon)}\right) \leq \frac{1}{2} \varphi_{n}\left(u_{n}\right)+\frac{1}{2} \varphi_{n}\left(w_{n}\right)+\lambda_{1} \varphi_{n}\left(u_{n}\right)+c_{n}^{(3)} . \tag{7}
\end{equation*}
$$

By $v_{n}, w_{n} \geq 0$ and $\left|v_{n}\right| \geq\left|w_{n}\right|$, it follows that

$$
\varphi\left(\frac{v_{n}-w_{n}}{2(1-\varepsilon)}\right) \leq \varphi_{n}\left(\frac{v_{n}}{2(1-\varepsilon)}\right) \leq\left(1+\lambda_{1}\right) \varphi_{n}\left(\frac{v_{n}}{2}\right)+c_{n}^{(3)} .
$$

By $\left|v_{n}\right| \geq c_{n}$ and the definition of d, we get

$$
\varphi_{n}\left(\frac{v_{n}}{2}\right)=\varphi_{n}\left(\frac{d}{2} \cdot \frac{v_{n}}{d}\right) \leq \frac{d}{2} \varphi_{n}\left(\frac{v_{n}}{d}\right) \leq \frac{d}{4} \varphi_{4}\left(v_{n}\right),
$$

so

$$
\begin{equation*}
\varphi_{n}\left(\frac{v_{n}-w_{n}}{2(1-\varepsilon)}\right) \leq \frac{d}{4}\left(1+\lambda_{1}\right) \varphi_{n}\left(v_{n}\right)+c_{n}^{(3)} . \tag{8}
\end{equation*}
$$

Let

$$
\begin{aligned}
f(n)=\varphi_{n} & \left(\frac{u_{n}-v_{n}}{2(1-\varepsilon)}\right)+\varphi_{n}\left(\frac{v_{n}-w_{n}}{2(1-\varepsilon)}\right)+\varphi\left(\frac{u_{n}-w_{n}}{2(1-\varepsilon)}\right) \\
& -\varphi_{n}\left(u_{n}\right)-\varphi_{n}\left(v_{n}\right)-\varphi_{n}\left(w_{n}\right) .
\end{aligned}
$$

By (1) we get $\varphi_{n}\left(u_{n}\right) \leq k_{1} \varphi_{n}\left(\beta u_{n}\right)+c_{n}^{(2)}$. By (6), (7) and (8) it follows

$$
\begin{align*}
\sum_{n \in I_{1}} f(n) \leq & \sum_{n \in I_{1}}\left[2 \lambda_{1} \varphi_{n}\left(u_{n}\right)+\frac{d}{4}\left(1+\lambda_{1}\right) \varphi_{n}\left(v_{n}\right)+3 c_{n}^{(3)}-\frac{1}{2} \varphi_{n}\left(v_{n}\right)\right] \\
\leq & \sum_{n \in I_{1}}\left[3 \lambda_{1} \varphi_{n}\left(u_{n}\right)-\frac{2-d}{4} \varphi_{n}\left(v_{n}\right)\right]+3 \sum_{n \in I_{1}} c_{n}^{(3)} \\
\leq & \sum_{n \in I_{1}}\left[3 \lambda_{1} \varphi_{n}\left(u_{n}\right)-\frac{2-d}{4} \varphi\left(\beta u_{n}\right)\right]+3 \sum_{n \in I_{1}} c_{n}^{(3)} \tag{9}\\
\leq & \sum_{n \in I_{1}}\left[3 \lambda_{1} \varphi_{n}\left(u_{n}\right)-\frac{2-d}{4 k_{1}} \varphi_{n}\left(u_{n}\right)\right]+\frac{2-d}{4 k_{1}} \sum_{n \in I_{1}} c_{n}^{(3)} \\
& +3 \sum_{n \in I_{1}} c_{n}^{(3)} \\
= & \frac{2-d}{8 k_{1}} \sum_{n \in I_{1}} \varphi_{n}\left(u_{n}\right)+\frac{2-d}{4 k_{1}} \sum_{n \in I_{1}} c_{n}^{(3)}+3 \sum_{n \in I_{1}} c_{n}^{(3)}
\end{align*}
$$

When $n \in I_{2},\left|\frac{v_{n}}{u_{n}}\right| \geq \beta,\left|v_{n}\right|<c_{n}$. Since

$$
\varphi_{n}\left(\frac{2 u_{n}}{2(1-\varepsilon)}\right) \leq \varphi_{n}\left(\frac{u_{n}}{1-\varepsilon_{0}}\right) \leq \varphi_{n}\left(a_{n}\right) \leq 1
$$

by (3) we get

$$
\varphi_{n}\left(\frac{2 u_{n}}{2(1+\varepsilon)}\right) \leq k \varphi_{n}\left(\frac{u_{n}}{2(1-\varepsilon)}\right)+c_{n}^{(1)} \leq k \varphi_{n}\left(u_{n}\right)+c_{n}^{(1)}
$$

so

$$
\begin{aligned}
\varphi_{n}\left(\frac{u_{n}-v_{n}}{2(1-\varepsilon)}\right) & \leq \varphi_{n}\left(\frac{2 u_{n}}{2(1-\varepsilon)}\right) \leq k \varphi_{n}\left(u_{n}\right)+c_{n}^{(1)} \\
& \leq k k_{1} \varphi_{n}\left(\beta u_{n}\right)+k c_{n}^{(2)}+c_{n}^{(1)} \leq k k_{1} \varphi_{n}\left(c_{n}\right)+k c_{n}^{(2)}+c_{n}^{(1)}
\end{aligned}
$$

We have also

$$
\begin{aligned}
\varphi_{n}\left(\frac{u_{n}-w_{n}}{2(1-\varepsilon)}\right) & \leq k k_{1} \varphi_{n}\left(c_{n}\right)+c_{n}^{(1)}+k c_{n}^{(2)} \\
\varphi_{n}\left(\frac{v_{n}-w_{n}}{2(1-\varepsilon)}\right) & \leq k k_{1} \varphi_{n}\left(c_{n}\right)+c_{n}^{(1)}+k c_{n}^{(2)}
\end{aligned}
$$

so we get

$$
\begin{align*}
\sum_{n \in I_{2}} f(n) & \leq \sum_{n \in I_{2}}\left[\varphi_{n}\left(\frac{\left.u_{n}-v_{n}\right)}{2(1-\varepsilon)}\right)+\varphi_{n}\left(\frac{v_{n}-w_{n}}{2(1-\varepsilon)}\right)+\varphi_{n}\left(\frac{u_{n}-w_{n}}{2(1-\varepsilon)}\right)\right] \tag{10}\\
& \leq 3 k k_{1} \sum_{n \in I_{2}} \varphi_{n}\left(c_{n}\right)+3 \sum_{n \in I_{2}} c_{n}^{(1)}+3 k \sum_{n \in I_{3}} c_{n}^{(3)}
\end{align*}
$$

When $n \in I_{3},\left|\frac{v_{n}}{u_{n}}\right|<\beta,\left|u_{n}\right| \geq c_{n}$, by

$$
\varphi_{n}\left(\frac{u_{n}-v_{n}}{2(1-\varepsilon)}\right) \leq \varphi_{n}\left(\frac{\left(1+\varepsilon_{0} / 4\right) u_{0}}{2(1-\varepsilon)}\right)
$$

denoting $\left(1+\varepsilon_{0} / 4\right) /(1-\varepsilon)=1 /\left(1-\varepsilon^{\prime}\right), \sigma^{\prime}=1 /\left(1-\varepsilon^{\prime}\right)-1$, we get as in (6),

$$
\begin{aligned}
\varphi_{n}\left(\frac{u_{n}-v_{n}}{2(1-\varepsilon)}\right) & \leq \varphi_{n}\left(\left(1+\sigma^{\prime}\right) \frac{u_{n}}{2}\right) \leq\left(1+\lambda_{2}\right) \varphi_{n}\left(\frac{u_{n}}{2}\right)+c_{n}^{(3)} \\
& \leq \frac{d}{4}\left(1+\lambda_{2}\right) \varphi_{n}\left(u_{n}\right)+c_{n}^{(3)}
\end{aligned}
$$

and

$$
\varphi_{n}\left(\frac{u_{n}-w_{n}}{2(1-\varepsilon)}\right) \leq \frac{d}{4}\left(1+\lambda_{2}\right) \varphi_{n}\left(u_{n}\right)+c_{n}^{(3)}
$$

$\operatorname{By} \varphi_{n}\left(\frac{u_{n}-w_{n}}{2(1-\varepsilon)}\right) \leq \varphi_{n}\left(\frac{v_{n}}{2(1-\varepsilon)}\right) \leq \varphi_{n}\left(v_{n}\right)$ we get

$$
\begin{align*}
\sum_{n \in I_{1}} f(n) & \leq \sum_{n \in I_{3}}\left[\frac{d}{2} \varphi_{n}\left(u_{n}\right)+\frac{d}{2} \lambda_{2} \varphi_{n}\left(u_{n}\right)+2 c_{n}^{(3)}-\varphi_{n}\left(u_{4}\right)\right] \\
& \leq \sum_{n \in I_{2}}\left[-\frac{2-d}{2} \varphi_{n}\left(u_{n}\right)+\frac{2-d}{4} \varphi_{n}\left(u_{n}\right)\right]+2 \sum_{n \in I_{3}} c_{n}^{(3)} \tag{11}\\
& =-\frac{2-d}{4} \sum_{n \in I_{3}} \varphi_{n}\left(u_{n}\right)+2 \sum_{n \in I_{3}} c_{n}^{(3)}
\end{align*}
$$

When $n \in I_{4},\left|u_{n}\right|<c_{n}$, as in the case of $n \in I_{2}$, we get

$$
\begin{aligned}
\varphi_{n}\left(\frac{u_{n}-v_{n}}{2(1-\varepsilon)}\right) & \leq k \varphi_{n}\left(u_{n}\right)+c_{n}^{(1)} \leq k \varphi_{n}\left(c_{n}\right)+c_{n}^{(1)} \\
\varphi_{n}\left(\frac{u_{n}-v_{n}}{2(1-\varepsilon)}\right) & \leq k \varphi_{n}\left(c_{n}\right)+c_{n}^{(1)} \\
\varphi_{n}\left(\frac{u_{n}-w_{n}}{2(1-\varepsilon)}\right) & \leq k \varphi_{n}\left(c_{n}\right)+c_{m}^{(1)}
\end{aligned}
$$

Then

$$
\begin{equation*}
\sum_{n \in I_{4}} f(n) \leq 3 k \sum_{n \in I_{4}} \varphi_{n}\left(c_{n}\right)+3 \sum_{n \in I_{4}} c_{n}^{(1)} . \tag{12}
\end{equation*}
$$

By (9), (10), (11) and (12), we get

$$
\begin{align*}
\sum_{n=N_{0}}^{\infty} f(n) \leq-h_{2} & \sum_{n=N_{0}}^{\infty} \varphi_{n}\left(u_{n}\right)+h_{2} \sum_{n \in I_{2} \cup I_{4}} \varphi_{n}\left(u_{n}\right) \\
& +3 \sum_{n=N_{0}}^{\infty}\left(c_{n}^{(1)}+c_{n}^{(3)}\right) \tag{13}\\
& +3 k k_{1} \sum_{n=N_{0}} \varphi_{n}\left(c_{n}\right)+\left(3 k+\frac{2-d}{4 k_{1}}\right) \sum_{n=N_{0}}^{\infty} c_{n}^{(2)}
\end{align*}
$$

When $n \in I_{2}$, since (1) implies $\varphi_{n}\left(u_{n}\right) \leq k_{1} \varphi_{n}\left(c_{n}\right)+c_{n}^{(2)}$, then

$$
\begin{align*}
h_{2} \sum_{n \in I_{2} \cup I_{4}} \varphi_{n}\left(u_{n}\right) & =h_{2} \sum_{n \in I_{2}} \varphi_{n}\left(u_{n}\right)+h_{2} \sum_{n \in I_{4}} \varphi_{n}\left(u_{n}\right) \\
& \leq h_{2} \sum_{n \in I_{2}}\left[k_{1} \varphi_{n}\left(c_{n}\right)+c_{n}^{(2)}\right]+h_{2} \sum_{n \in I_{4}} \varphi_{n}\left(c_{n}\right) \tag{14}\\
& \leq h_{2}\left(k_{1}+1\right) \sum_{n=N_{0}}^{\infty} \varphi_{n}\left(c_{n}\right)+h_{2} \sum_{n \in I_{2}} c_{n}^{(2)} .
\end{align*}
$$

It we put (14) into (13), by (4) and (5), we get

$$
\begin{align*}
& \sum_{n=N_{0}}^{\infty} f(n) \leq-h_{2} \sum_{n=N_{0}}^{\infty} \varphi_{n}\left(u_{n}\right)+h_{2}\left(k_{1}+1\right) \sum_{n=N_{0}}^{\infty} \varphi_{n}\left(c_{n}\right) \\
&+3 k k_{1} \sum_{n=N_{0}}^{\infty} \varphi_{n}\left(c_{n}\right) \\
&+3 \sum_{n=N_{0}}^{\infty}\left(c_{n}^{(1)}+c_{n}^{(2)}\right)+(3 k+1) \sum_{n=N_{0}}^{\infty} c_{n}^{(2)} \tag{15}\\
&<-h_{2}\left(1-h_{1}\right)+h_{2}\left(k_{1}+1\right) r_{1}+3 k k_{1} r_{1}+3(3 k+1) r_{2} \\
&<-\frac{h_{2}\left(1-h_{1}\right)}{4}
\end{align*}
$$

(ii) Formula (5) implies $\sum_{n=1}^{N_{0}-1} \varphi_{n}\left(x_{n}^{i}\right)<h, i=1,2,3$. We deduce that $\left|2 x_{n}^{i}\right|<a_{n}$ for all $n<\mathbb{N}$, and $i=1,2,3$. Let

$$
\alpha^{\prime}=\min _{n<N_{0}} \varphi_{n}^{-1}\left(\frac{h_{2}}{48 N_{0}}\right) .
$$

Then $k^{\prime}=\max _{n<N_{0}} \max _{\alpha^{\prime} \leq u \leq a_{n}} \varphi_{n}(u) / \varphi_{n}\left(\frac{u}{2}\right)<\infty$.

So when $\left|2 u_{n}\right| \in\left[\alpha^{\prime}, a_{n}\right], \varphi_{n}\left(2 u_{n}\right) \leq k^{\prime} \varphi_{n}\left(u_{n}\right)$; when $\left|2 u_{n}\right|<\alpha^{\prime}, \varphi_{n}\left(2 u_{n}\right) \leq \varphi_{n}\left(\alpha^{\prime}\right)$. Hence

$$
\begin{aligned}
\sum_{n=1}^{N_{0}-1} f(n) & <\sum_{n=1}^{N_{0}-1}\left[\varphi_{n}\left(\frac{u_{n}-v_{n}}{2(1-\varepsilon)}\right)+\varphi_{n}\left(\frac{v_{n}-w_{n}}{2(1-\varepsilon)}\right)+\varphi_{n}\left(\frac{u_{n}-w_{n}}{2(1-\varepsilon)}\right)\right] \\
& \leq 3 \sum_{n=1}^{N_{0}-1} \varphi_{n}\left(2 u_{n}\right) \leq 3 k \sum_{n=1}^{N_{0}-1} \varphi_{n}\left(u_{n}\right)+3 \sum_{n=1}^{N_{0}-1} \varphi_{n}\left(\alpha^{\prime}\right)
\end{aligned}
$$

and when $h_{1}<\frac{1}{3 k_{1}} \cdot \frac{h_{2}}{16} \cdot h_{1}<\frac{1}{2}$, then

$$
\begin{equation*}
\sum_{n=1}^{N_{0}-1} f(n)<3 k^{\prime} h_{1}+3 N_{0} \frac{h_{2}}{48 N_{0}} \leq \frac{h_{2}}{16}+\frac{h_{2}}{16}=\frac{h_{2}}{8}<\frac{h_{2}\left(1-h_{1}\right)}{4} . \tag{16}
\end{equation*}
$$

By (15) and (16), we get $\sum_{n=1}^{\infty} f(n)<0$, i.e.

$$
I_{\varphi}\left(\frac{x^{1}-x^{2}}{2(1-\varepsilon)}\right)+I_{\varphi}\left(\frac{x^{2}-x^{3}}{2(1-\varphi)}\right)+I_{\varphi}\left(\frac{x^{1}-x^{3}}{2(1-\varepsilon)}\right)-I_{\varphi}\left(x^{1}\right)-I_{\varphi}\left(x^{2}\right)-I_{\varphi}\left(x^{3}\right)<0 .
$$

Since $I_{\varphi}\left(x^{i}\right)=1, i=1,2,3$, so $I_{\varphi}\left(\frac{x^{1}-x^{2}}{2(1-\varepsilon)}\right)<1$, or $I_{\varphi}\left(\frac{x^{2}-x^{3}}{2(1-\varepsilon)}\right)<1$, or $I_{\varphi}\left(\frac{x^{1}-x^{3}}{2(1-\varepsilon)}\right)<1$, and this implies $\left\|x^{1}-x^{2}\right\|<2(1-\varepsilon)$ or $\left\|x^{2}-x^{3}\right\|<2(1-\varepsilon)$, or $\left\|x^{1}-x^{3}\right\|<2(1-\varepsilon)$. This contradicts the assumption in the theorem, so result (1b) is true.

Repeating the same argumentation, we may prove result (1b) in case of $u w>0$ and $u v>0$.
(1c) Let $N_{1}=2 N_{0}+1, N_{1}$ is the number of elements of X. Result (1b) implies that there are at least $2 N_{0}-1$ elements in X such that

$$
\begin{equation*}
\sum_{n=1}^{N_{0}-1} \varphi_{n}\left(x_{n}\right)>h_{1} . \tag{17}
\end{equation*}
$$

Let

$$
\alpha_{1}=\frac{h_{1}}{N_{0}-1}, \quad u_{0}=\min _{n<N_{0}} \frac{1}{4} \varphi_{n}^{-1}\left(\frac{\alpha_{1}}{4\left(N_{0}-1\right)}\right) .
$$

The fact that a continuous function is uniformly continuous in a closed interval implies that there is $\delta_{n}^{\prime}>0$ such that

$$
\begin{equation*}
\varphi\left(\frac{u}{1-\delta}\right) \leq \varphi_{n}(u)+\frac{\alpha_{1}}{4\left(N_{0}-1\right)}, \quad n=, 1,2, \ldots, N_{0}-1 \tag{18}
\end{equation*}
$$

for all $\delta<\delta_{n}^{\prime}$ and $u \in\left[u_{0}, a_{n}\right]$.

Let $\delta^{\prime}=\min _{n<N_{0}} \delta_{n}^{\prime}$. Take $\varepsilon<\varepsilon_{0} / 4$ and $0<\varepsilon<\delta^{\prime}$. Among the elements satisfying (17), there are three ones x^{1}, x^{2}, x^{3} and $n_{0}<N_{0}$ such that

$$
\varphi_{n_{0}}\left(x_{n_{0}}^{i}\right)>\frac{h_{1}}{N_{0}-1}, \quad i=1,2,3
$$

this is because $2 N_{0}-1$ elements satisfy (17) in the former $N_{0}-1$ components, then there are three elements satisfying the above formula in the same component.

Since there are at least two elements having same sign among $x_{n_{0}}^{1}, x_{n_{0}}^{2}, x_{n_{0}}^{3}$ and without loss of generality we have

$$
x_{n_{0}}^{1} x_{n_{0}}^{2} \geq 0 \quad \text { and } \quad\left|x_{n_{0}}^{1}\right| \geq\left|x_{n_{0}}^{2}\right|
$$

By analogy of the former proof we get

$$
\begin{equation*}
\sum_{n=N_{0}}^{\infty} \varphi_{n}\left(\frac{x_{n}^{1}-x_{n}^{2}}{2(1-\varepsilon)}\right)<\frac{1}{2} \sum_{n=N_{0}}^{\infty} \varphi_{n}\left(x_{n}^{1}\right)+\frac{1}{2} \sum_{n=N_{0}}^{\infty} \varphi_{n}\left(x_{n}^{2}\right)+\frac{\alpha_{1}}{4} \tag{19}
\end{equation*}
$$

Divide the positive integers of $n<N_{0}\left(n \neq n_{0}\right)$ into three sets:

$$
\begin{aligned}
I_{5} & =\left\{n: \max \left(\left|x_{n}^{1}\right|,\left|x_{n}^{2}\right|\right) \geq 2 u_{0} \quad \text { and } \quad x_{n}^{1} x_{n}^{2}<0\right\} \\
I_{6} & =\left\{n: \max \left(x_{n}^{1}\left|,\left|x_{n}^{2}\right|\right) \geq 2 u_{0} \quad \text { and } \quad x_{n}^{1} x_{n}^{2} \geq 0\right\}\right. \\
I_{7} & =\left\{n: \max \left(\left|x_{n}^{1}\right|,\left|x_{n}^{2}\right|\right)<2 u_{0}\right\}
\end{aligned}
$$

When $n \in I_{5},\left|\frac{x_{n}^{1}-x_{n}^{2}}{2}\right| \geq \frac{1}{2} \max \left(\left|x_{n}^{1}\right|,\left|x_{n}^{2}\right|\right) \geq u_{0}$, we get by $\varepsilon \leq \delta_{n}$ and (18)

$$
\begin{align*}
\varphi_{n}\left(\frac{x_{n}^{1}-x_{n}^{2}}{2(1-\varepsilon)}\right) & \leq \varphi_{n}\left(\frac{x_{n}^{1}-x_{n}^{2}}{2}\right)+\frac{\alpha_{1}}{4\left(N_{0}-1\right)} \\
& \leq \frac{1}{2} \varphi_{n}\left(x_{n}^{1}\right)+\frac{1}{2} \varphi_{n}\left(x_{n}^{2}\right)+\frac{\alpha_{1}}{4\left(N_{0}-1\right)} \tag{20}
\end{align*}
$$

When $n \in I_{6}$,

$$
\begin{align*}
\varphi_{n}\left(\frac{x_{n}^{1}-x_{n}^{2}}{2(1-\varepsilon)}\right) & \leq \max \left\{\left(\frac{x_{n}^{1}}{2(1-\varepsilon)}\right), \varphi_{n}\left(\frac{x_{n}^{2}}{2(1-\varepsilon)}\right)\right\} \tag{21}\\
& \leq \frac{1}{2} \varphi_{n}\left(x_{n}^{1}\right)+\frac{1}{2} \varphi_{n}\left(x_{n}^{2}\right)+\frac{\alpha_{1}}{4\left(N_{0}-1\right)}
\end{align*}
$$

When $n \in I_{7}$,

$$
\begin{equation*}
\varphi_{n}\left(\frac{x_{n}^{1}-x_{n}^{2}}{2(1-\varepsilon)}\right) \leq \varphi_{n}\left(\frac{4 u_{0}}{2(1-\varepsilon)}\right) \leq \varphi_{n}\left(4 u_{0}\right) \leq \frac{\alpha_{1}}{4\left(N_{0}-1\right)} \tag{22}
\end{equation*}
$$

since

$$
\begin{align*}
\varphi_{n_{0}}\left(\frac{x_{n}^{1}-x_{n}^{2}}{2(1-\varepsilon)}\right) & <\varphi_{n_{0}}\left(\frac{x_{n_{0}}^{1}}{2(1-\varepsilon)}\right) \leq \varphi_{n_{0}}\left(\frac{x_{n_{0}}^{1}}{2}\right)+\frac{\alpha_{1}}{4\left(N_{0}-1\right)} \tag{23}\\
& \leq \frac{1}{2} \varphi_{n_{0}}\left(x_{n_{0}}^{1}\right)+\frac{\alpha_{1}}{4\left(N_{0}-1\right)}
\end{align*}
$$

notice $\varphi_{n_{0}}\left(x_{n_{0}}^{2}\right)>\frac{h_{1}}{N_{0}-1}=\alpha_{1}$, by (19) and (23)

$$
\begin{aligned}
I_{\varphi}\left(\frac{x_{n}^{1}-x_{n}^{2}}{2(1-\varepsilon)}\right)= & \varphi_{n_{0}}\left(\frac{x_{n_{0}}^{1}-x_{n_{0}}^{2}}{2(1-\varepsilon)}\right)+\sum_{\substack{n=1 \\
n \neq n_{0}}}^{N_{0}-1} \varphi_{n}\left(\frac{x_{n}^{1}-x_{n}^{2}}{2(1-\varepsilon)}\right) \\
& +\sum_{n=N_{0}}^{\infty} \varphi_{n}\left(\frac{x_{n}^{1}-x_{n}^{2}}{2(1-\varepsilon)}\right) \\
< & \frac{1}{2} \varphi_{n_{0}}\left(x_{n_{0}}^{1}\right)+\frac{\alpha_{1}}{4\left(N_{0}-1\right)} \\
& +\sum_{n<N_{0}}\left[\frac{1}{2} \varphi_{n}\left(x_{n}^{1}\right)+\frac{1}{2} \varphi_{n}\left(x_{n}^{2}\right)+\frac{\alpha_{1}}{4\left(N_{0}-1\right)}\right] \\
& +\sum_{n=N_{0}}^{\infty}\left[\frac{1}{2} \varphi_{n}\left(x_{n}^{1}\right)+\frac{1}{2} \varphi_{n}\left(x_{n}^{2}\right)\right]+\frac{\alpha_{1}}{4} \\
= & \frac{1}{2} I_{\varphi}\left(x^{1}\right)+\frac{1}{2} I_{\varphi}\left(x^{2}\right)-\frac{1}{2} \varphi_{n_{0}}\left(x_{n_{0}}^{2}\right)+\frac{\alpha_{1}}{4}+\frac{\alpha_{1}}{4} \\
< & \frac{1}{2} I_{\varphi}\left(x^{1}\right)+\frac{1}{2} I_{\varphi}\left(x^{2}\right)=1
\end{aligned}
$$

so $\left\|x^{1}-x^{2}\right\|<2(1-\varepsilon)$, and we get a contradiction again.
Steps (1b) and (1c) complete the proof of theorem.
Step 2. We discuss the general case without the restriction of step 1. For any $\varepsilon \leq 1 / 4$, let $A=\inf _{n} \varphi_{n}\left((1-\varepsilon) a_{n}\right)$. By the proof of Lemma 1 (i) we get $A>0$. Let $N_{2}=[1 / A]$, i.e. N_{2} be the integer part of $1 / A$. If l_{φ} is reflexive but not P-convex, then for any $\varepsilon^{\prime}: 0<\varepsilon^{\prime}<\varepsilon / 4$, there is a set X consisted of any finite elements in $S\left(I_{\varphi}\right)$ such that

$$
\left\|x^{i}-x^{j}\right\| \geq 2\left(1-\varepsilon^{\prime}\right), \quad i \neq j
$$

Let the number of X be $\left(2 N_{0}+1\right) 2^{\left(N_{2}+1\right) N_{2} / 2}$ where N_{0} is the positive integer satisfying (4).

Take any element x^{0} in X. The definition of A implies that x^{0} has at most N_{2} numbers of components, such that $\left|x_{n}^{0}\right| \geq(1-\varepsilon) a_{n}$; hence

$$
I_{\varphi}\left(x^{0}\right)=\sum_{n=1}^{\infty} \varphi_{n}\left(x_{n}^{0}\right) \geq\left(N_{2}+1\right) A>\frac{1}{A} \cdot A=1
$$

this leads to contradiction. Without loss of generality we have $\left|x_{n}^{0}\right| \geq(1-\varepsilon) a_{n}$ for $n \leq N_{2}$. For any $x \in X$, we define a map: $x \rightarrow\left(r_{1}^{x}, r_{2}^{x}, \ldots, r_{N_{2}}^{x}\right)$, i.e. for $n=1,2, \ldots, N_{2}$

$$
r_{n}^{x}= \begin{cases}1, & \text { when } x_{n}^{0} x_{n}<0 \text { and }\left|x_{n}\right| \geq(1-\varepsilon) a_{n} \\ 0, & \text { otherwise }\end{cases}
$$

This makes us classify the elements of X into $2^{N_{1}}$ categories, we say that the category mapping the vector $(0,0, \ldots, 0)$ is 0 -category.

First we assume: apart from 0-category, the number of elements in other category is less than $\left(2 N_{0}+1\right) 2^{(N+1+1) N_{1} / 2} / 2^{N_{2}}=\left(2 N_{0}+1\right) 2^{N_{2}\left(N_{2}-1\right) / 2}$. Take another element from 0 -category and let it be x^{0}, then classify X again by the former program.

After we classify each time, if the number of the elements in category, except 0 -category, is less than $\left(2 N_{0}+1\right) 2^{N_{1}\left(N_{1}-1\right) / 2}$, when we classify $\left(2 N_{0}+1\right)$-times we get a set X_{0} having $\left(2 N_{0}+1\right)$ elements such that

$$
\begin{equation*}
x_{n}^{i} x_{n}^{j}>0 \quad \text { or } \quad\left|x_{n}^{i}\right| \geq(1-\varepsilon) a_{n} \quad \text { and } \quad\left|x_{n}^{j}\right| \geq(1-\varepsilon) a_{n} \tag{24}
\end{equation*}
$$

for any $x^{i}, x^{j} \in X_{0}(i \neq j)$ and $n \in \mathbb{N}$, then

$$
\left|\frac{x_{n}^{1}-x_{n}^{2}}{2(1-\varepsilon)}\right|<\left|\frac{a_{n}+(1-\varepsilon) a_{n}}{2(1-\varepsilon / 4)}\right|=\frac{2-\varepsilon}{2-\varepsilon / 2} a_{n}<a_{n}
$$

i.e. $\left|x_{n}^{i}\right|<\left(1-\varepsilon^{\prime}\right) a_{n}$ for all $n \leq N_{2}$, and this is the case of section 1 . But in section 1 , we proved that there is no set X having $\left(2 N_{0}+1\right)$ elements such that

$$
\left\|x^{i}-x^{j}\right\| \geq 2(1-\varepsilon), \quad i \neq j, x^{i}, x^{j} \in X
$$

so we deduce that apart from 0-category there is a category X_{1} such that the number of elements in X is $\left(2 N_{0}+1\right) 2^{N_{1}\left(N_{2}-1\right) / 2}$ and the element x of x_{1} satisfies $r_{n_{1}}^{x}=1$ for some $n_{1} \leq N_{2}$.

Apart from n_{1}-th component, any $x=\left(x_{n}\right)$ in X_{1} has at most ($N_{2}-1$) numbers of components such that $\left|x_{n}\right| \geq(1-\varepsilon) a_{n}$. Let $\left|x_{n}\right| \geq(1-\varepsilon) a_{n}$ for $n=N_{2}+1, N_{2}+$ $2, \ldots, 2 N_{2}-1$.

For any $x \in X_{1}$, define a map: $x \rightarrow\left(r_{1}^{x}, r_{2}^{x}, \ldots, r_{N_{1}-1}^{x}\right)$, i.e. for $n=N_{2}+1, N_{2}+$ $2, \ldots, 2 N_{2}-1$

$$
r_{n}^{x}= \begin{cases}1, & \text { when } x_{n}^{0} x_{n}<0 \text { and }\left|x_{n}\right| \geq(1-\varepsilon) a_{n} \\ 0, & \text { otherwise }\end{cases}
$$

then we may classify X_{1} into $2^{N_{2}-1}$ categories.
If the number of elements in category except 0 -category is less than $\left(2 N_{0}+\right.$ 1) $2^{\left(N_{1}-1\right)\left(N_{2}-2\right) / 2}$, we take one element from those mapping 0 -category and let it be x^{0}, and then classify X_{1} by the former program. When we classify $\left(2 N_{0}+1\right)$ times, the number of elements in the category except 0 -category is less than $\left(2 N_{0}+\right.$ 1) $2^{\left(N_{2}-1\right)\left(N_{2}-2\right) / 2}$, then we get a set having $\left(2 N_{0}+1\right)$ elements such that (24), which leads a contradiction again.

We assume there a category X_{2} having $\left(2 N_{0}+1\right) 2^{\left(N_{1}-1\right)\left(N_{2}-2\right) / 2}$ elements except 0 -category. Repeating the same discussion, when we classify N_{2}-times we get a category $X_{N_{2}}$ having $\left(2 N_{0}+1\right)$ elements such that

$$
x_{n}^{i} x_{n}^{j}>0 \quad \text { and } \quad\left|x_{n}^{i}\right| \geq(1-\varepsilon) a_{n},\left|x_{n}^{j}\right| \geq(1-\varepsilon) a_{n}
$$

for any $x^{i}, x^{j} \in X_{N_{2}}, i \neq j . n=n_{1}, n_{2}, \ldots, n_{N_{2}}$. Then for any $x \in X_{N_{2}}$

$$
\begin{aligned}
I=I_{\varphi}(x) & =\sum_{j \leq N_{2}} \varphi_{n_{j}}\left(x_{n_{j}}\right)+\sum_{n \neq n_{j}} \varphi_{n}\left(x_{n}\right) \\
& \geq \sum_{j \leq N_{0}} \varphi_{n_{j}}\left((1-\varepsilon) a_{n_{j}}\right)+\sum_{n \neq n_{j}} \varphi_{n}\left(x_{n}\right) \geq N_{2} A+\sum_{n \neq n_{j}} \varphi_{n}\left(x_{n}\right)
\end{aligned}
$$

i.e.

$$
\sum_{n \neq n_{j}} \varphi_{n}\left(x_{n}\right) \leq 1-N_{1} A=\frac{A}{A}-\left[\frac{I}{A}\right] A<A=\inf _{n} \varphi_{n}\left((1-\varepsilon) a_{n}\right)
$$

so $\left|x_{n}\right|<(1-\varepsilon) a_{n}$ with $n \neq n_{j}$, but when $n=n_{j} x_{n}^{i} x_{n}^{j}>0(i \neq j)$. This shows that (24) is true for any $x \in X_{N_{2}}$ and all $n \in \mathbb{N}$, which leads to a contradiction again.

Section 1 and section 2 complete the proof of theorem.

Now we give an example of a Musielak-Orlicz sequence space which is P-convex but not $P(3, \varepsilon)$-convex.

Let a Young function $\varphi=\left(\varphi_{n}\right)$ and $\varphi^{*}=\left(\varphi_{n}^{*}\right)$ satisfy the δ_{2}-condition, and such that there are two positive integers n_{1} and $n_{2}\left(n_{1}<n_{2}\right)$

$$
\varphi_{n_{1}}\left(a_{n_{1}}\right)+\varphi_{n_{2}}\left(a_{n_{2}}\right) \leq 1 \quad \text { and } \quad \varphi_{n_{1}}\left(a_{n_{1}}\right)>0, \varphi_{n_{2}}\left(a_{n_{2}}\right)>0
$$

By Theorem we know that the I_{φ} generated by φ is P-convex but not $P(3, \varepsilon)$ convex. Let

$$
\begin{aligned}
& x_{1}=\left(0, \ldots, 0, a_{n_{1}}, 0, \ldots, 0, a_{n_{2}}, 0, \ldots\right) \\
& x_{2}=\left(0, \ldots, 0, a_{n_{1}}, 0, \ldots, 0,-a_{n_{2}}, 0, \ldots\right) \\
& x_{3}=\left(0, \ldots, 0,-a_{n_{1}}, 0, \ldots, 0, a_{n_{1}}, 0, \ldots\right) .
\end{aligned}
$$

Then $x_{1}, x_{2}, x_{3} \in S\left(I_{\varphi}\right)$. But for any $\varepsilon>0$

$$
\begin{aligned}
I_{\varphi}\left(\frac{x_{1}-x_{2}}{2(1-\varepsilon)}\right) & =\varphi_{n_{2}}\left(\frac{2 a_{n_{2}}}{2(1-\varepsilon)}\right)>1 \\
I_{\varphi}\left(\frac{x_{1}-x_{i}}{2(l-\varepsilon)}\right) & =\varphi_{n_{1}}\left(\frac{2 a_{n_{1}}}{2(1-\varepsilon)}\right)>1 \\
I_{\varphi}\left(\frac{x_{2} i x_{j}}{2(1-\varepsilon)}\right) & =\varphi_{n_{1}}\left(\frac{2 a_{n_{1}}}{2(1-\varepsilon)}\right)+\varphi_{n_{2}}\left(\frac{2 a_{n_{1}}}{2(1-\varepsilon)}\right)>1
\end{aligned}
$$

so $\left\|x_{1}-x_{2}\right\| \geq 2(1-\varepsilon),\left\|x_{2}-x_{3}\right\| \geq 2(1-\varepsilon),\left\|x_{1}-x_{4}\right\| \geq 2(1-\varepsilon)$, hence l_{φ} is not $P(3, \varepsilon)$-convex.

References

1. C.A. Kottman, Packing and reflexivity in Banach spaces, Trans. Amer. Math. Soc. $\mathbf{1 5 0}$ (1970), 565-576.
2. K.P.R. Sastry and S,V. R. Naidu, Convexity conditions in normed linear spaces, J. Reine Ange Math. 297 (1978), 35-53.
3. D. Amir and C. Franchetti, The radius ratio and convexity properties in normed linear spaces, Trans. Amer. Math. Soc. 282 (1984), 275-291.
4. Ye Yining, He Miaohong and R. Pluciennik, P-convexity and reflexivity of Orlicz spaces, Comm. Math. XXX 1 (1991), 203-216.
5. H. Hudzik and A. Kaminska, On uniformly convexifiable and B-convex Musielak-Orlicz spaces, Comment. Math. (Prace Mat.) 24 (1985), 59-75.
