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ABSTRACT

We prove that in the Musielak-Orlicz sequence spaces equipped with the Lux-
emburg norm, P-convexity coincides with reflexivity.

In 1970, Kottman [1] introduced an important geometric property-P-convexity in

order to describe a reflexive Banach space. We say that a Banach space (X, || - ||) is

P-convex if X is P(ne)-convex for some positive integer n and a real number ¢ > 0,

i.e. for any x1,xs,...,x, in the unit sphere of X, H;ém |z;i—z;|| < 2—e for some n and
i#]

¢ > 0. Moreover Kottman proved that any P-convex Banach space is reflexive. After
P-convexity property was introduced, many people tried to give a distinct relation
between P-convexity and reflexivity. But there are a lot of differences between them
in a Banach space.

In 1978 Sastry and Naidu [2] introduced a new geometric property, O-convexity
intermediate between P-convexity and reflexivity, and proved that P-convexity im-
plies O-convexity and O-convexity implies reflexivity.

In 1984, D. Amir and C. Franhetti [3] gave two geometric properties, O-
convexity and H-convexity by the preceding results and proved O-convexity implies
Q-convexity, ()-convexity implies reflexivity and H-convexity implies B-convexity
and these convexities do not coincide with each other.

In 1988, Yeyining, Hemiaohong and Ryszard Pluciennik [4] proved that in Orlicz
spaces P-convexity coincides with reflexivity, and reflexivity coincides with P(3,¢)-
convexity for some € > 0.

In this paper we prove that in Musielak-Orlicz sequence spaces equipped with
the Luxemburg norm P-convexity coincides with reflexivity.
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0. Introduction

Let X be a Banach space equipped with the norm ||| and S(X) be the unit sphere of
the space X, i.e. S(X) = {z € X:|z|| = 1}. Denote by N the set of positive integers
and by R the set of real numbers. Let ¢ = (¢, ) be a sequence of Young functions,
i.e. forevery n € N, ¢, (-): R — [0, 00] is a convex, ¢, (0) =0, lim ¢, (u) = 0o, ¢n(-)
is continuous at 0 and not identically equal to the zero functqito_r)lcjoand there exists a
real number wug, s.t. ¢, (up) < co. We define a modular on the family of all sequences
x = (x,) of real numbers by the following formula

Io(@) = pnlwn).
n=1
The linear set
lo ={x = (zy):3a > 0,1,(azx) < oo}

equipped with so - called Luxemburg norm
||| = inf{k > 0: I,(k"'z) < 1}

is said to be a Musielak-Orlicz sequence space.
We say that ¢ = (p,,) satisfies the 63-condition if there are constants a, k, and
a sequence (c,,) of non-negative real numbers such that

Z cn <00 and ¢, (2u) < kpy(u) + ¢y

n=1

for all n € N and u € R with ¢,(u) <a .
The complementary function of Young function ¢ = (¢,,) is defined by

oy (v) = sup{ulv| — ¢n(u)}, forall neN.
u>0

A Musielak-Orlicz sequence space [, is reflexive if and only if ¢ = (¢,) and ¢* =
(pF) satisfy the d2-condition. Let a,, = sup{u > 0: ¢, (u) < 1} for all n € N.
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1. Auxiliary lemmas

Lemma 1
Let ¢ = (vy,) satisfy the 6a-condition, then
(i) if A =infp,(ay), then A > 0,
(ii) for any l; > 1,a1 > 0, there are ky > 1 and a sequence (c£})) of non-negative
real numbers such that

[e.e]
Z D) < oo and @, (lu) < ke, (u) 4 P
n=1
for allm € N and u € R with ¢, (l1u) < aq,
(iii) for any ki > 1,13 > 1,a9 > 0, there are o € (0,lo — 1) and a sequence (cg)) of
non-negative real numbers such that

Z c? <00 and on((1+8)u) < kapn(u) + e

n=1

for alln € N and u € R with ¢, (lou) < as.

Proof. (i) Obviously A > 0, so it is enough to prove A # 0. Assume that A = 0.
Then for any a > 0 there is ng € N, such that ¢,,(an,,) < a. It is easy to see
that a,, # 0 by the definition of ¢, (u). We may assume without loss of generality
that a < 1. Then ¢y, (an,) < 1 implies @, (2a,,) = 0o because @, (u) is a convex
function and so it has the only discontinuous point wug, such that ¢,,(uo —0) < oo
and ¢p, (uo+0) = co. By the definition of a,,, and ¢, (an,) < 1 we may deduce that
ap, is the discontinuous point of ¢, (u), so ¢n,(2a,,) = co. But this contradicts
the 63-condition and so A > 0.

(ii) Let a positive integer a satisfy 2971 < [} < 22,

Since ¢ = (g,) satisfies the d2-condition, there are constants £ > 0,a > 0 and a
sequence (c,,) of non-negative real numbers such that

Z cn <oo and ¢, (2u) < kop(u) + cp

n=1
for all n € N and u € R with ¢, (u) < a. When ¢, (l1u) < a, p, (2% u) < @, (liu) <
a, then
pn(liu) < on(2%u)
<ken(2°7) Fep < <k (u) + (BT 4L+ k4 Dep.



310 YINING AND YAFENG

Let ¢ = (k' + ... 4+ k + 1)c,. Obviously Z ) < co. Then on(liu) <

k%o (u) + Y with on(liu) < a.
If a1 < a, it is enough to put k1 = k%. Let a < ¢, (liu) < ag and ¢, (lju) = a.
Then I} < 1. Hence
on(li,u) < ay = ara”ta = ara” o, (1u)
= a0 on (L3 ) < ara ko, (17 u) + V]
< ara k%o, (u) + ala_lcg).

Replace aija 'k* by ki,a1a” 07(11) by 07(11), then ) cg) < 00. So @p(liu) <
n=1

k1on(u) + B when on(liu) < ay.

(iii) For Iy > 1,as > 0, by (ii) there are k; > 1 and a sequence (¢

real numbers such that

())

of non-negative

o0
Z c&” <oo and ¢ (lau) < kipn(u) + ngl)

n=1

for all n € N and u € R with ¢, (lau) < ag. Take o satisfying
o <min{ly — 1,[(ks — 1)/(ky — 1)](Is — 1)} .

Because ¢, (u) is convex, when ¢, (lou) < as it follows that

on((1+0)u) = ‘Pn<wu)

lo —1
U )
< T eallan) + T e (w)
< 2w+ h;%l%n(u) Tl
<[ &+ et
(1)
i (I2 — Y;?lﬂl —)1) (=1)
= kapn(u) + :1 — 1 .

Let 2 = [(ka —1)/(k1 — 1)]0% ). which completes the proof of (iii). O
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Lemma 2

If ¢ = (pn) and ¢* = () satisfy the 6o-condition, then for any ls > 1, b > 1
there are ks > 1 and a sequence (cn3)) of non-negative real numbers such that

00 1
Y e <00 and h(v) < gl (lsv) + e,
I3ks

n=1

for alln € N and v € R with ¢} (v) <b.

Proof. First we prove when ¢ (v) < b, there is a > 0 such that ¢, (u) < a for all
n € N where v = p, (u).

Otherwise, there is a sequence {u}52, of real numbers such that ¢, (ug) — oo
as k — oo, while ¢ (v) <b.

Notice that for some I3 > 1, there is b’ > 0, such that ¢} (I3v) < b for alln € N.
It is enough to put b’ = 2i3b. If ¢} (I3v) > 2I3b, Lemma 2 obviously holds.

By Lemma 1, there is o € (0,13 — 1) such that ¢}, ((1+0)vx) < kaeoy,, (V) + c
for all n € N with

@ (lsv) <V, where ko > 1,ch < 0.
n=1
Let by = kob + Iax C. Then ¢}, ((1+0)vx) < by for all k € N.

On the other hand, when vy = py, (ur), ¢, (V&) = |urvr| — @n, (ur) > 0, and
On,(ug) — 00 as k — oo, i.e. there is kg € N such that o, (uy) > bjo~! with
k > kg. So, when k > kg, we have

@ (L+o)vr) = sup {(1+o)vklu = on, (u) }
u>
= (14 0)|owur| = on, (uk)
> (1 + O-)San (uk) — Pny (uk) = 0Pny (uk) > by.

This contradicts the inequality oj, ((1+o)vx) < by.

Therefore, there is a > 0 such that ¢, (u) < a for all n € N with ¢} (v) < b.
Hence by ¢} (I3v) < ' there is @’ > 0 such that ¢, (lsu) < a’ for all n € N.

By Lemma 1 (iii) for ko = l3,ly = l3,a2 = d/, there are ¢ € (0,l3 — 1) and a
sequence (cg)) of non-negative real numbers such that

oo

Z ¢ <oo and  pu((14e)u) < lspn(u) + ¢

n=1
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for all n € N and u € R with ¢, (l3u) < a’. Then

. (v) = sup {ulv| — pn(u):u > 0,0} (I3v) <0’}

< sup {u|v[ — @n(u): pn(lzu) < a/}
(2)

on(u+e)u) — cp

< —
< sup {ul —

1 I3|v] o)
— = 1 — (1 } en_

zgili%{we( +e)u—pn((1+e)u) p + L
1 *( lsv >+c£12)
- lgcpn 1+¢ 13

(2)
1 Cn

< ———F(l —_—

13(1_'_5)%07’1,( 3'1))+ 13

Let ks =1+ ¢, 67(13) = 67(12)/13, which completes the proof of Lemma 2. [J

Lemma 3

If o = () and ¢* = (p}) satisfy the do-condition, then there is a sequence

(¢cn) of non-negative real numbers such that > ¢, (c,) < oo, and if
n=1

1
d,, = sup {a(u,n):gpn( ) > iapn(u),cn < |u| < an}, n=1,2,...

dy = lim sup d,,

m—oon>m

au,n)

then dq < 2.

Proof. Let I3 =2,b =1 in Lemma 2. Then there are k3 > 1 and a sequence (07(13))

of non-negative real numbers such that

oo

1
S oo and pu(u) < 5o pn(2u) + o ®
3

n=1

for all n and u with ¢, (u) < 1.
In Lemma 1 (iii) let ks = (k3 +1)/2,la = 2,a2 = 1. There are ¢ € (0,1) and a

oo
sequence ([3,) of positive numbers such that > (3, < co, and when ¢, (2u) < 1,

n=1

on((1+ ) < %(kg F1)on(u) + fo. )



P-convexity property in Musielak-Orlicz sequence spaces 313

Let
o = 2ks(ks + 1) (3 4 4ks

ks —1 " ks—1

Bn.-

oo
Obviously »_ ¢, < oo.
n=1

Since A = inf ¢, (a,) > 0 is true by Lemma 1 (i), so there is ny € N such that
¢, < A for n > ng. We define a sequence (c,,) by
{ 0 when n < ng
Cn =

o 1(c))  when n > ng.

oo oo
Then > @n(cy) < > ¢, < .
n=1 n=1

We will show the sequence (¢, ) satisfies Lemma 3.
Obviously d; < 2. If dy = 2, for n > ng there are subsequence {uy,}n>n, and
{a(tn,n) }nsn, (let the subsequence be {u,} and {a(u,,n)}) such that
Ug 1
n\ _ /N > = n\%n )/, n S n n 3
(i) 2 g#nlun)s n < Junl < (3)
and a(u,,n) — 2 as n — 0.
So there is n; € N, such that 2/a(u,,n) < 1+ ¢ for n > ny.
Let i, = a(uy,n). By formula (2) it follows that

() < (00 0%) < B (%)

By (1), we get

Uy, ks+171 1 ks+1 ks +1
eu(Gr) < T gy entn) + 0]+ B = T entun) + 2=l 4 5.

By (3), we have

1 ks + 1 ks +1 (g

QSOn(un) < ks On(un) + 9 '’ + Bns
i.e.

2ks(ks + 1) 3) 3ks
on(uy) < ———¢;) + ——— 0, . (4)

ks—1 "  ks3—1
But when n > max(ng,n1), we have

2]€3(k3 + 1) 4k3
> — ¢ =B\ B3) y 3 g
Son(un) - @n(cn) Cn k3 -1 Cn + kB — 1ﬁn

This contradicts (4), so Lemma 3 is true. O
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2. Result

Theorem

A Musielak-Orlicz sequence space [, is P-convex if and only if [, is reflexive.

Proof. We may obtain necessity according to paper [1], so it is enough to prove
sufficiency.

Assume sufficiency is false. Let l, be reflexive i.e. ¢ = () and ¢* = (¢})
satisfy the 62-condition but [, is not P-convex. Then for any ¢ > 0 and positive
integer Ny, there is a set X = {2’} having N; elements in S(l,) such that

lat —af|| > 21 —€); i#j, i.j=12,..., M.

We will complete the proof of theorem in two steps.

Step 1. There is €9 > 0 such that ||z, | < (1 —&¢)ay, for any z = (z,) € X and
all n € N.

(1a) We define some constants.
By Lemma 3, there are a sequence (c¢;,) of non-negative real numbers, N’ € N,d > 0
[ee]
such that Y ¢, < 00,d; < d < 2 and d,, < d with n > N’. Let = g¢/4, then
n=1
8 < 1.
By Lemma 1 (ii), for [y = 1/8 and a; = 1, there are k; > 1 and a sequence
(cg)) of non-negative real numbers such that

Yol <oo and pu(u/B) < kipn(u) + e (1)
n=1
foralln € Nand u € R with ¢, (u/8) < 1. Let Ay = (2—d)/(24k1), A2 = (2—d)/2d.

By Lemma 1 (iii), for ko = 1 + min(A1, A2),lo > 1 and a = 1, there are a € (0,1 — 1)

and a sequence (CS))) of non-negative real numbers such that

Z ¥ <00 and on((L+6)u) < kapn(u) + e® (2)
n=1

for all n € N and v € R with ¢, (lou) < 1.
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By Lemma 1 (ii), for [ = 2, and a; = 1, there are k£ > 1 and a sequence (cﬁf))

of non-negative real numbers such that

Z M) <oo and o, (2u) < kop(u) + P (3)
n=1

for all n € N and u € R with ¢,,(2u) < 1. Let hy be, such that 0 < h; < 1. Let

2—d 2—d}
8k ' 4

. l—hl hg(l—hl)
“_mm{4(1+k1)’ 12kk; }
_ ha(1—hy)

1203k +1)°

ho = min{

2

By > ¢nl(cn) < oo and (1), (2), (3), there is Ny > N, such that

n=1

Z(pn(cn) <, Z D <r i=1,2,3. (4)
n=1 TL:NO

(1b) Now we will prove that for any hy, 0 < h; < 1, there do not exist three
elements 2!, 2% and 23 in X, such that

> enlah) 2T~ =1-h, i=1,2,3. (5)
n=1

Assume (1b) is false:
(i) If0 < & < g9/4, then ¢, ((z},— %) /2(1—¢)) < oo foralln € N,i # j, i,j = 1,2,3.

Let u,, = max{|zl]|,|22|, |23 |}, w, = min{|zl]|,|z2|, |#3|}, v, be the arithmetic
mean of u, and w,. Since u,v, > 0, or u,w, > 0, or vyw, > 0 is true, we first
consider v,,,w, > 0.

Divide positive integers n > Ny into the following sets:

I n:|—| >3 and |vn|20n}

fon
|
— A
S
|
3

>0 and |v,| <y

&
I

S
|

=
Il

< B and |uy,| < ¢y

s
|

}
< and \un|20n}
3
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When n € I, by formula (2) for Iy = (1 —e0/2)/[(1 —e0)(1 —¢)], if 0 =
1/(1 —¢) —1, then o <l — 1. Since

(l un—vn)_ (1—50/2 un—vn)
2Ty ) T U1 g 21—

1—80/2 2un
1 —60/4 2(1 —60)

<on( ) < onlan) <1

by (2) and ky = 1 + min(\q, A\z), it follows that

Un — Un - Un — Un Un — Un 3)
" = a1 ) < haen )+¢
4 (2(1—5)) 4 (( Fo) T ) Shee 5 )T

Uy, — U
< (1+M)en (%) +®

(6)
< (14 \) Pultin) ¥ Pnltn) + (3
2
1 1
< gcpn(un) + 5‘1071(071) + A1n(un) + ngg) .
By the same argumentation, we get
on (2 < 2 pn(uin) + () + Ao (tn) + 0. 7)
2(1—¢)/) = 2 2 "
By v, w, > 0 and |v,| > |w,|, it follows that
Vp — W v v
n n<n7“<1)\n(_n) (3)
S"(2(1—@) =9 (2(1—5)> =+ )eal 5 ) +en
By |vn| > ¢, and the definition of d, we get
(5)=en(55) < 5on(F) < Gonten
) T\g ) =g ) = gt
S0 p
Vp — W
n = - <-(1 n\%n (3) .
on(ir=2) S T+ Aenlon) + ¢l ®)
Let

f(n) = %(%) + wn(%) + w(%)
— @n(Un) = Pn(vn) — on(wn).
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By (1) we get ¢n,(un) < k1o, (Buy,) + P By (6), (7) and (8) it follows
d
Z f(n S 2>\190n(un) + 1(1 + A1)@n(vn) + 30(3) - 59071(“71)
nel;
2—d
S 3)\1Q0n(un) - Tgpn Un, :| + 3 Z
nely
2—d
_s-° (3)
< 3[Rl = 5 e(Bu)] +3 3 )
2 ) ©)
< )\ n\%n ) — ; n\%n - (3)
_Z 18X (1) =~ n ()| + = D
nel; nel;
+3 Z c%s)
ne[l
2-d
— (3)
2y T T
nely nely nel;

When n € Iy, |2=| > 3, |vn| < ¢,. Since

n — n — n an — bl
o —g) = \1 -5/ =¥

by (3) we get

t) A < on(un) + ),

SO

Up — U 2u
‘p”<2(1 = 5)) = ‘P"<2(1 - g)> < kon(un) + ¢
< kky @n(Bun) + ke'? + M < kkypn(cn) + ke + D)
We have also

Up — W
Un = Wn\ _ (M) 4 1ol®
gon(2(1_€)> < kg (cn) + e + ke

©On (Un — w") < kkipn(cn) + CS) + kcg),

21 —¢)
so we get
2= [¢”<%) ron(si=g) te(5=a)]

<3Bkk1 > onlen) +3 ) 43k ) )

nels nels nels
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When n € I3, ]Z—’;| < B, |un| > ¢p, by

denoting (1 +¢e¢/4)/(1—¢)=1/(1—¢"),0' =1/(1 —¢€') — 1, we get as in (6),

en(5r=2)) <

<

n Un Un (3)
— < _
n<(1+a) 5 ) < (1+A2)gon( 5 ) +ct
(1 4+ X2)on(un) + CS))

and

2(1-¢)

S 1)< 3 [Geonlam) + S hainlom) + 269 — o)

nel; nels
2—d 2—d
< [7 T‘Pn(un) + T‘Pn(un)] +2 Z 01(13) (11)
nels nels
= D onun) +2) e
nels nels

When n € Iy, |u,| < ¢, as in the case of n € I, we get

Up — U
oG y) < Ronlum) + D < Rpulen) + i)

Then
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By (9), (10), (11) and (12), we get

D fm) < —hy > pnlun) Fha D onlua)
n=DNy n=~Np neElUly
+3 > (e + ) (13)
TL:NO
+3kk1 Y enlen) + <3k+ 2= d) i o2
4k, "
n=DNy n=DNp
When n € I, since (1) implies p,(u,) < k1on(cn) + ), then

ha Z ©n(un) = ho Z ©On(Un) + ho Z on(un)

n€I2UI4 n612 TLEI4

< hs Z [k1pn(cn) + 07(12)] + ho Z ®n(cn)

nels nely

< ha(k1 +1) Z on(en) + ha Z 2
n=Ny nely
It we put (14) into (13), by (4) and (5), we get

Z f(n) < —hy Z on(un) + ha(k1 + 1) Z ¢n(cn)
n=~Ny n=~Ny n=Np

+ 3kk; Z on(cn)

Tl:No
oo (15)

+3 ) (V) +Be+1) )Y P
TLZNO n:NO

< —hz(l — hl) + hg(kl + 1)7“1 + 3kkir1 + 3(3]€ + 1)7“2
ho(1 — hq)
—
No—1 . )
(ii) Formula (5) implies Y ¢n(z}) < h, i =1,2,3. We deduce that |22}, | < a,
n=1
forallm < N, and 7 = 1,2, 3. Let

o' = min 71( ho )
n<Nogon 48N0 ’

Th L= n n L .
on K = e g, n()/in() < o0
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So when |2u,| € [&/, an], on(2un) < K'op(uy); when |2u,| < o, @, (2uy,) < @n(a)).
Hence

Np—1 Np—1 W — v, N R
nzl flm) < nzl [90”(2(1 - 5)) +¢”<2(1 —5)) +‘p”<m)]

]\[01 N()l

N
352 o (2u,,) <3kZ<pnun +3Z<pn
=

and when h; < ﬁ-%%ﬁ < %,then

No—1
R ha ha  hy  ho(l—hy)
> ) <3Khi+3 48N, 16 716 8 4 (16)

By (15) and (16), we get > f(n) <0, i.e.
n=1

PRI 22— B PRI . ,
I¢<m) +Lp(m) +I¢<m) — Lp(a!) = I (2?) = I(z") < 0.

Since I, (z') = 1,i = 1,2,3, 50 Io(5775) < 1, or I,(57%) < 1, or I(57%) < 1,
and this implies ||z! —2?|| < 2(1—¢) or ||2? — 23| < 2(1—¢), or ||z! — 23| < 2(1—¢).
This contradicts the assumption in the theorem, so result (1b) is true.

Repeating the same argumentation, we may prove result (1b) in case of uw > 0

and uv > 0.
(1c) Let Ny = 2Ny + 1, Ny is the number of elements of X. Result (1b) implies
that there are at least 2Ny — 1 elements in X such that

No—1

Z (Pn(xn) > h1~ (17)

Let

hl 1 71< (651 )
o] = ——, Ug = min — - ).
Lo Ny -1 T a2 1 \a(v, — 1)

The fact that a continuous function is uniformly continuous in a closed interval
implies that there is ¢/, > 0 such that

U (6731
© <onu)+ ——, n=,1,2,...,Ny—1 18
( )* () ANy —1) " 0 (18)

1-6

for all 6 < 4], and u € [ug, ay)].
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Let & = min 6],. Take ¢ < g9/4 and 0 < ¢ < ¢'. Among the elements satisfying

n<Np
(17), there are three ones z!, z%, 2% and ny < Ny such that

h1
No—1’

cpno(xfm) > 1=1,2,3

this is because 2Ny — 1 elements satisfy (17) in the former Ny — 1 components, then

there are three elements satisfying the above formula in the same component.

Since there are at least two elements having same sign among x> | 22 | 23

10> T s T and
without loss of generality we have

zh, o, >0 and |z, | > |22 |.
By analogy of the former proof we get
o0 1 2 o0 o0
3 e(5i=) < ;;V onlah) + 5 IR
Divide the positive integers of n < Ny(n # ng) into three sets:

Iy = {n:max(|z}|,|z2]) > 2uy and x,z2 <0}

Is = {n:max(z)|, |22]) > 2up and z,z2 >0}

I; = {n:max(|zy,|, [22]) < 2uo} .

When n € I, ]I}‘;zil > Lmax(|xl|, |22]) > uo, we get by £ < 6, and (18)

1 2 1 2
l’n—$n)< (mn—a:n) o
S0”(2(1 —o) =T ) Y amn, -
1 1

Spn(xrlz) + §¢n($i) +

aq

4(Ng—1)°
When n € I,

When n € I,
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since
oo (I8 < (50 ) < (T0) O
"N2(1 —¢) N2l —¢g)/ T TN 2 4(No — 1)
1 (651
<t 1
< 59 @n) + IR T
notice @n, (z2,) > Ngl_l = aq, by (19) and (23)
xl — 22 Ll — 22 No ! zl — o
WEE) - () ¥ (Bog)
P\a(i—a)) =P a9 )T nz_:l 212
Tl,#_n()
o0 1_ .2
x, —x
p> ‘p"<2(1 5))
n:N()
1 1 a1
< 290710(‘,1:7“)) + 4(N0 _ 1)
2 a1 }
n#ng
> 1 1 1 2 051
+ 3 [Genlan) + 5enlad)] + 2
n:NO
1 1 1 2 1 2 aq (6751
= 5l )+§I (@%) = 5no(@n,) + -+ 7
1
< )+ L) =1

so ||at — 22| < 2(1 — €), and we get a contradiction again.

Steps (1b) and (1c) complete the proof of theorem.

Step 2. We discuss the general case without the restriction of step 1. For any
e <1/4,let A=infp,((1—¢)a,). By the proof of Lemma 1 (i) we get A > 0. Let
Ny = [1/4], ie. ]\?2 be the integer part of 1/A. If I, is reflexive but not P-convex,
then for any £:0 < &' < /4, there is a set X consisted of any finite elements in

S(I,) such that
2" — 27| > 2(1 —¢'), i#3].

Let the number of X be (2Ny 4 1)2(V2+DN2/2 where N is the positive integer

satisfying (4).
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Take any element z° in X. The definition of A implies that 2" has at most N
numbers of components, such that |#2] > (1 — ¢)a,; hence

1
an )= (No+DA> S A=1,

this leads to contradiction. Without loss of generality we have |20 > (1 — €)a,
for n < Np. For any z € X, we define a map: = — (r{,73,...,7%,), i.e. for
n:1,2,...,NQ

x

{ 1, when 2%z, <0 and |z,,| > (1 — €)a,
rt =

0, otherwise.

This makes us classify the elements of X into 2V1 categories, we say that the
category mapping the vector (0,0, ...,0) is O-category.

First we assume: apart from 0-category, the number of elements in other cate-
gory is less than (2Ng + 1)2(N+HIHDN/2 /9N — (9N, + 1)2N2(V2=1)/2 Take another
element from O-category and let it be x°, then classify X again by the former pro-
gram.

After we classify each time, if the number of the elements in category, except
0-category, is less than (2Ny + 1)2N1(V1=1)/2when we classify (2Ny + 1)—times we
get a set X having (2Ny + 1) elements such that

vixl >0 or |z4|>(1—¢)a, and |2)]>(1—¢)a, (24)

for any ¢, 27 € X¢(i # j) and n € N, then
22
'I’l

‘2 (1—¢)

an + (1 —¢)ay, 2—¢
‘ = an < ap,

2(1—¢/4) 2—¢/2

ie. |z¢| < (1—¢")a, for all n < N», and this is the case of section 1. But in section
1, we proved that there is no set X having (2N + 1) elements such that

=2l >21—¢), i 2t al e X
| : j, x°, ,

so we deduce that apart from 0-category there is a category X; such that the number
of elements in X is (2Ny + 1)2N1(V2=1)/2 and the element z of 1 satisfies rp =1

for some ny < Ns.
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Apart from ni-th component, any = (z,) in X; has at most (N2 — 1) numbers
of components such that |x,| > (1 —¢)a,. Let |z,| > (1 —¢)a, for n = No+1, No +
2,..., 2Ny — 1.

For any x € X1, define a map:  — (r{,73,...,r%, _), i.e. forn = No+1, No+
2,...,2Ny — 1

r

x
n

1, when 292, <0 and |z,| > (1 —¢)a,
0, otherwise

then we may classify X into 2V2~!

categories.

If the number of elements in category except 0-category is less than (2Ny +
1)2(N1=1(N2=2)/2 " e take one element from those mapping 0-category and let it
be 2°, and then classify X; by the former program. When we classify (2Ny + 1)
times, the number of elements in the category except O-category is less than (2Ny +
1)2(NV2=1D(N2=2)/2 " then we get a set having (2Ny + 1) elements such that (24), which
leads a contradiction again.

We assume there a category Xs having (2N0+1)2(N1_1)(N2_2)/2 elements except
0-category. Repeating the same discussion, when we classify No-times we get a
category X, having (2Ny + 1) elements such that

il >0 and |z| > (1 —¢€)an, |22| > (1 —¢)an
for any 2%, 27 € Xy,,i # j.n = ni,na,...,ny,. Then for any z € Xy,

I'=1I,(x) = Z Pn, (Tn;) + Z Pn(@n)

J<N: n#n;
> o, ((1=2)an,) + D onlzn) > NoA+ D pnlwn)
7<Np n#n; n#n;
ie.
Z on(xy) <1— N1 A= % — {%}A <A= igf@n((l —£)ay)

n#En;

80 |zn| < (1 —€)ay, with n # nj, but when n = n; xixJ, > 0(i # j). This shows that
(24) is true for any x € Xy, and all n € N, which leads to a contradiction again.

Section 1 and section 2 complete the proof of theorem. [
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Now we give an example of a Musielak-Orlicz sequence space which is P-convex
but not P(3,e)-convex.

Let a Young function ¢ = (¢,) and ¢* = (¢} ) satisfy the 63-condition, and
such that there are two positive integers n; and ny (nq < ng)

(pnl (a’n1) + 90712 (anz) S 1 and (Pnl (an1) > 07 90712 (a’nz) > O

By Theorem we know that the I, generated by ¢ is P-convex but not P(3,¢)-

convex. Let
z1=(0,...,0,an,,0,...,0,a,,,0,...)

x9 =1(0,...,0,ap,,0,...,0,—an,,0,...
x3=(0,...,0,—apn,,0,...,0,a,,,0,...).

~—

Then x1, 2,23 € S(I,). But for any € > 0
T1 — To 2ay,
L(E) o)
P\aa—o)) ~P=oa—o)~
T — X; 2a,
L) - ) >
\oi—o) " ¥ma—g)~
Tl ; 2a, 2a,
) = ) o)
o —a) = an—g) TP aa—g

0 [|z1 — 2] > 2(1 —€), [|[x2 — a3|| > 2(1 —¢€), ||z1 — z4]] > 2(1 — €), hence [, is not
P(3,¢)-convex.
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