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Abstract

We prove that in the Musielak-Orlicz sequence spaces equipped with the Lux-
emburg norm, P -convexity coincides with reflexivity.

In 1970, Kottman [1] introduced an important geometric property-P -convexity in
order to describe a reflexive Banach space. We say that a Banach space (X, ‖ · ‖) is
P -convex if X is P (nε)-convex for some positive integer n and a real number ε > 0,
i.e. for any x1, x2, . . . , xn in the unit sphere ofX, min

i �=j
‖xi−xj‖ < 2−ε for some n and

ε > 0. Moreover Kottman proved that any P -convex Banach space is reflexive. After
P -convexity property was introduced, many people tried to give a distinct relation
between P -convexity and reflexivity. But there are a lot of differences between them
in a Banach space.

In 1978 Sastry and Naidu [2] introduced a new geometric property, O-convexity
intermediate between P -convexity and reflexivity, and proved that P -convexity im-
plies O-convexity and O-convexity implies reflexivity.

In 1984, D. Amir and C. Franhetti [3] gave two geometric properties, O-
convexity and H-convexity by the preceding results and proved O-convexity implies
Q-convexity, Q-convexity implies reflexivity and H-convexity implies B-convexity
and these convexities do not coincide with each other.

In 1988, Yeyining, Hemiaohong and Ryszard Pluciennik [4] proved that in Orlicz
spaces P -convexity coincides with reflexivity, and reflexivity coincides with P (3, ε)-
convexity for some ε > 0.

In this paper we prove that in Musielak-Orlicz sequence spaces equipped with
the Luxemburg norm P -convexity coincides with reflexivity.
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0. Introduction

LetX be a Banach space equipped with the norm ‖·‖ and S(X) be the unit sphere of
the space X, i.e. S(X) = {x ∈ X: ‖x‖ = 1}. Denote by N the set of positive integers
and by R the set of real numbers. Let ϕ = (ϕn) be a sequence of Young functions,
i.e. for every n ∈ N, ϕn(·): R → [0,∞] is a convex, ϕn(0) = 0, lim

u→∞
ϕn(u) = ∞, ϕn(·)

is continuous at 0 and not identically equal to the zero function, and there exists a
real number u0, s.t. ϕn(u0) <∞. We define a modular on the family of all sequences
x = (xn) of real numbers by the following formula

Iϕ(x) =
∞∑

n=1

ϕn(xn).

The linear set
lϕ = {x = (xn):∃a > 0, Iϕ(ax) <∞}

equipped with so - called Luxemburg norm

‖x‖ = inf{k > 0: Iϕ(k−1x) ≤ 1}

is said to be a Musielak-Orlicz sequence space.
We say that ϕ = (ϕn) satisfies the δ2-condition if there are constants a, k, and

a sequence (cn) of non-negative real numbers such that

∞∑
n=1

cn <∞ and ϕa(2u) ≤ kϕn(u) + cn

for all n ∈ N and u ∈ R with ϕa(u) ≤ a .
The complementary function of Young function ϕ = (ϕn) is defined by

ϕ∗
n(v) = sup

u≥0
{u|v| − ϕn(u)}, for all n ∈ N.

A Musielak-Orlicz sequence space lϕ is reflexive if and only if ϕ = (ϕn) and ϕ∗ =
(ϕ∗

n) satisfy the δ2-condition. Let an = sup{u > 0:ϕn(u) ≤ 1} for all n ∈ N.
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1. Auxiliary lemmas

Lemma 1

Let ϕ = (ϕn) satisfy the δ2-condition, then

(i) if A = inf
n
ϕn(an), then A > 0,

(ii) for any l1 > 1, a1 > 0, there are k1 > 1 and a sequence (c(1)n ) of non-negative

real numbers such that

∞∑
n=1

c(1)n <∞ and ϕn(lu) ≤ kϕn(u) + c(1)n

for all n ∈ N and u ∈ R with ϕn(l1u) ≤ a1,
(iii) for any k1 > 1, l2 > 1, a2 > 0, there are σ ∈ (0, l2 − 1) and a sequence (c(2)n ) of

non-negative real numbers such that

∞∑
n=1

c(2)n <∞ and ϕn

(
(1 + δ)u

)
≤ k2ϕn(u) + c(2)n

for all n ∈ N and u ∈ R with ϕn(l2u) ≤ a2.

Proof. (i) Obviously A ≥ 0, so it is enough to prove A �= 0. Assume that A = 0.
Then for any a > 0 there is n0 ∈ N, such that ϕn0(an0) < a. It is easy to see
that an0 �= 0 by the definition of ϕn(u). We may assume without loss of generality
that a < 1. Then ϕn0(an0) < 1 implies ϕn0(2an0) = ∞ because ϕn(u) is a convex
function and so it has the only discontinuous point u0, such that ϕn0(u0 − 0) < ∞
and ϕn0(u0+0) = ∞. By the definition of an0 and ϕn0(an0) < 1 we may deduce that
an0 is the discontinuous point of ϕn0(u), so ϕn0(2an0) = ∞. But this contradicts
the δ2-condition and so A > 0.

(ii) Let a positive integer α satisfy 2α−1 < l1 < 2α.
Since ϕ = (ϕn) satisfies the δ2-condition, there are constants k > 0, a > 0 and a
sequence (cn) of non-negative real numbers such that

∞∑
n=1

cn <∞ and ϕn(2u) ≤ kϕn(u) + cn

for all n ∈ N and u ∈ R with ϕn(u) ≤ a. When ϕn(l1u) ≤ a, ϕn(2α−1u) ≤ ϕn(l1u) ≤
a, then

ϕn(l1u) ≤ ϕn(2αu)

≤ kϕn(2α−1u) + cn ≤ . . . ≤ kαϕn(u) + (kα−1 + . . .+ k + 1)cn.



310 Yining and Yafeng

Let c(1)n = (kα−1 + · · · + k + 1)cn. Obviously
∞∑

n=1
c
(1)
n < ∞. Then ϕn(l1u) ≤

kαϕn(u) + c(1)n with ϕn(l1u) ≤ a.
If a1 ≤ a, it is enough to put k1 = kα. Let a < ϕn(l1u) ≤ a1 and ϕn(l′1u) = a.

Then l′1 < l. Hence

ϕn(l1, u) ≤ a1 = a1a−1a = a1a−1ϕn(l′1u)

= a1a−1ϕn(l1l−1
2 l′1u) ≤ a1a−1[kαϕn(l−1

1 l′1u) + c(1)n ]

≤ a1a−1kαϕn(u) + a1a−1c(1)n .

Replace a1a−1kα by k1, a1a−1c
(1)
n by c(1)n , then

∞∑
n=1

c
(1)
n < ∞. So ϕn(l1u) ≤

k1ϕn(u) + c(1)n when ϕn(l1u) ≤ a1.
(iii) For l2 > 1, a2 > 0, by (ii) there are k1 > 1 and a sequence (c(1)n ) of non-negative
real numbers such that

∞∑
n=1

c(1)n <∞ and ϕn(l2u) ≤ k1ϕn(u) + c(1)n

for all n ∈ N and u ∈ R with ϕn(l2u) ≤ a2. Take σ satisfying

σ < min
{
l2 − 1, [(k2 − 1)/(k1 − 1)](l2 − 1)

}
.

Because ϕn(u) is convex, when ϕn(l2u) ≤ a2 it follows that

ϕn

(
(1 + σ)u

)
= ϕn

( (l2 − 1)(l + σ)
l2 − 1

u
)

= ϕn

( σ

l2 − 1
l2u+

l2 − 1 − σ
l2 − 1

u
)

≤ σ

l2 − 1
ϕn(l2u) +

l2 − 1 − σ
l2 − 1

ϕn(u)

≤ k1σ

l2 − 1
ϕn(u) +

l2 − 1 − σ
l2 − 1

ϕn(u) +
σ

l2 − 1
c(1)n

=
[ (k1 − 1)σ
l2 − 1

+ 1
]
ϕn(u) +

σ

l2 − 1
c(1)n

≤
[ (k1 − 1)(k2 − 1)

(l2 − 1)(k1 − 1)
(l2 − 1) + 1

]
ϕn(u)

+
c
(1)
n (k2 − 1)

(l2 − 1)(k1 − 1)
(l2 − 1)

= k2ϕn(u) +
k2 − 1
k1 − 1

c(1)n .

Let c(2)n = [(k2 − 1)/(k1 − 1)]c(1)n , which completes the proof of (iii). �



P -convexity property in Musielak-Orlicz sequence spaces 311

Lemma 2

If ϕ = (ϕn) and ϕ∗ = (ϕ∗
n) satisfy the δ2-condition, then for any l3 > 1, b > 1

there are k3 > 1 and a sequence (c(3)n ) of non-negative real numbers such that

∞∑
n=1

c(3)n <∞ and ϕ∗
n(v) <

1
l3k3

ϕ∗
n(l3v) + c(3)n ,

for all n ∈ N and v ∈ R with ϕ∗
n(v) ≤ b.

Proof. First we prove when ϕ∗
n(v) ≤ b, there is a > 0 such that ϕn(u) ≤ a for all

n ∈ N where v = pn(u).
Otherwise, there is a sequence {uk}∞k=1 of real numbers such that ϕnk

(uk) → ∞
as k → ∞, while ϕ∗

nk
(v) ≤ b.

Notice that for some l3 > 1, there is b′ > 0, such that ϕ∗
n(l3v) ≤ b′ for all n ∈ N.

It is enough to put b′ = 2l3b. If ϕ∗
n(l3v) > 2l3b, Lemma 2 obviously holds.

By Lemma 1, there is σ ∈ (0, l3 − 1) such that ϕ∗
nk

((1 +σ)vk) ≤ k2ϕ∗
nk

(vk) + ck
for all n ∈ N with

ϕ∗
nk

(l3v) ≤ b′, where k2 > 1,
∞∑

n=1

ck <∞.

Let b1 = k2b+ max
k
ck. Then ϕ∗

nk
((1 + σ)vk) ≤ b1 for all k ∈ N.

On the other hand, when vk = pnk
(uk), ϕ∗

nk
(vk) = |ukvk| − ϕnk

(uk) > 0, and
ϕnk

(uk) → ∞ as k → ∞, i.e. there is k0 ∈ N such that ϕnk
(uk) > b1σ

−1 with
k > k0. So, when k > k0, we have

ϕ∗
nk

(
(1 + σ)vk

)
= sup

u≥0

{
(1 + σ)|vk|u− ϕnk

(u)
}

≥ (1 + σ)|vkuk| − ϕnk
(uk)

≥ (1 + σ)ϕnk
(uk) − ϕnk

(uk) = σϕnk
(uk) > b1.

This contradicts the inequality ϕ∗
nk

((1 + σ)vk) ≤ b1.
Therefore, there is a > 0 such that ϕn(u) ≤ a for all n ∈ N with ϕ∗

n(v) ≤ b.
Hence by ϕ∗

n(l3v) ≤ b′ there is a′ > 0 such that ϕn(l3u) ≤ a′ for all n ∈ N.
By Lemma 1 (iii) for k2 = l3, l2 = l3, a2 = a′, there are ε ∈ (0, l3 − 1) and a

sequence (c(2)n ) of non-negative real numbers such that

∞∑
n=1

c(2)n <∞ and ϕn

(
(1 + ε)u

)
≤ l3ϕn(u) + c(2)n
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for all n ∈ N and u ∈ R with ϕn(l3u) ≤ a′. Then

ϕ∗
n(v) = sup

{
u|v| − ϕn(u):u ≥ 0, ϕ∗

n(l3v) ≤ b′
}

≤ sup
{
u|v| − ϕn(u):ϕn(l3u) ≤ a′

}
≤ sup

u≥0

{
u|v| − ϕn(u+ ε)u) − c(2)n

l3

}

=
1
l3

sup
u≥0

{ l3|v|
1 + ε

(1 + ε)u− ϕn

(
(1 + ε)u

)}
+
c
(2)
n

l3

=
1
l3
ϕ∗
n

( l3v

1 + ε

)
+
c
(2)
n

l3

<
1

l3(1 + ε)
ϕ∗
n(l3v) +

c
(2)
n

l3
.

Let k3 = 1 + ε, c(3)n = c(2)n /l3, which completes the proof of Lemma 2. �

Lemma 3

If ϕ = (ϕn) and ϕ∗ = (ϕ∗
n) satisfy the δ2-condition, then there is a sequence

(cn) of non-negative real numbers such that
∞∑

n=1
ϕn(cn) <∞, and if

dn = sup
{
α(u, n):ϕn

( u

α(u, n)

)
≥ 1

2
ϕn(u), cn ≤ |u| ≤ an

}
, n = 1, 2, . . .

d1 = lim
m→∞

sup
n>m

dn,

then d1 < 2.

Proof. Let l3 = 2, b = 1 in Lemma 2. Then there are k3 > 1 and a sequence (c(3)n )
of non-negative real numbers such that

∞∑
n=1

c(3)n <∞ and ϕn(u) ≤ 1
2k3
ϕn(2u) + c(3)n (1)

for all n and u with ϕn(u) ≤ 1.
In Lemma 1 (iii) let k2 = (k3 + 1)/2, l2 = 2, a2 = 1. There are ε ∈ (0, 1) and a

sequence (βn) of positive numbers such that
∞∑

n=1
βn <∞, and when ϕn(2u) ≤ 1,

ϕn

(
(1 + ε)u

)
<

1
2
(k3 + 1)ϕn(u) + βn. (2)
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Let

c′n =
2k3(k3 + 1)
k3 − 1

c(3)n +
4k3
k3 − 1

βn.

Obviously
∞∑

n=1
c′n <∞.

Since A = inf
n
ϕn(an) > 0 is true by Lemma 1 (i), so there is n0 ∈ N such that

c′n < A for n > n0. We define a sequence (cn) by

cn =

{
0 when n ≤ n0

ϕ−1
n (c′n) when n > n0.

Then
∞∑

n=1
ϕn(cn) ≤

∞∑
n=1

c′n <∞.

We will show the sequence (cn) satisfies Lemma 3.
Obviously d1 ≤ 2. If d1 = 2, for n > n0 there are subsequence {un}n>n0 and

{α(un, n)}n>n0 (let the subsequence be {un} and {α(un, n)}) such that

ϕn

( u0

α(un, n)

)
≥ 1

2
ϕn(un), cn ≤ |un| < an (3)

and α(un, n) → 2 as n→ ∞.
So there is n1 ∈ N, such that 2/α(un, n) < 1 + ε for n > n1.

Let αn = α(un, n). By formula (2) it follows that

ϕn

(un
αn

)
≤ ϕn

(
(1 + ε)

un
2

)
<
k3 + 1

2
ϕn

(un
2

)
+ βn.

By (1), we get

ϕn

(un
αn

)
<
k3 + 1

2

[ 1
2k3
ϕn(un) + c(3)n

]
+ βn =

k3 + 1
4k3

ϕn(un) +
k3 + 1

2
c(3)n + βn.

By (3), we have
1
2
ϕn(un) <

k3 + 1
4k3

ϕn(un) +
k3 + 1

2
c(3)n + βn,

i.e.

ϕn(un) <
2k3(k3 + 1)
k3 − 1

c(3)n +
3k3
k3 − 1

βn . (4)

But when n > max(n0, n1), we have

ϕn(un) ≥ ϕn(cn) = c′n =
2k3(k3 + 1)
k3 − 1

c(3)n +
4k3
k3 − 1

βn.

This contradicts (4), so Lemma 3 is true. �
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2. Result

Theorem

A Musielak-Orlicz sequence space lϕ is P -convex if and only if lϕ is reflexive.

Proof. We may obtain necessity according to paper [1], so it is enough to prove
sufficiency.

Assume sufficiency is false. Let lϕ be reflexive i.e. ϕ = (ϕn) and ϕ∗ = (ϕ∗
n)

satisfy the δ2-condition but lϕ is not P -convex. Then for any ε > 0 and positive
integer N1, there is a set X = {xi} having N1 elements in S(lϕ) such that

‖xi − xj‖ ≥ 2(1 − ε); i �= j, i, j = 1, 2, . . . , N1.

We will complete the proof of theorem in two steps.

Step 1. There is ε0 > 0 such that ‖xn‖ < (1 − ε0)an for any x = (xn) ∈ X and
all n ∈ N.

(1a) We define some constants.
By Lemma 3, there are a sequence (cn) of non-negative real numbers, N ′ ∈ N, d > 0

such that
∞∑

n=1
cn < ∞, d1 < d < 2 and dn < d with n > N ′. Let β = ε0/4, then

β < 1.
By Lemma 1 (ii), for l1 = 1/β and a1 = 1, there are k1 > 1 and a sequence

(c(2)n ) of non-negative real numbers such that

∞∑
n=1

c(2)n <∞ and ϕn(u/β) ≤ k1ϕn(u) + c(2)n (1)

for all n ∈ N and u ∈ R with ϕn(u/β) ≤ 1. Let λ1 = (2−d)/(24k1), λ2 = (2−d)/2d.
By Lemma 1 (iii), for k2 = 1 + min(λ1, λ2), l2 > 1 and a = 1, there are a ∈ (0, l− 1)
and a sequence (c(3)n ) of non-negative real numbers such that

∞∑
n=1

c(3)n <∞ and ϕn

(
(1 + δ)u

)
≤ k2ϕn(u) + c(3)n (2)

for all n ∈ N and u ∈ R with ϕn(l2u) ≤ 1.
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By Lemma 1 (ii), for l1 = 2, and a1 = 1, there are k > 1 and a sequence (c(1)n )
of non-negative real numbers such that

∞∑
n=1

c(1)n <∞ and ϕn(2u) ≤ kϕn(u) + c(1)n (3)

for all n ∈ N and u ∈ R with ϕn(2u) ≤ 1. Let h1 be, such that 0 < h1 < 1. Let

h2 = min
{2 − d

8k
,
2 − d

4

}
r1 = min

{ 1 − h1

4(1 + k1)
,
h2(1 − h1)

12kk1

}

r2 =
h2(1 − h1)
12(3k + 1)

.

By
∞∑

n=1
ϕn(cn) <∞ and (1), (2), (3), there is N0 > N

′, such that

∞∑
n=1

ϕn(cn) < r1,
∞∑

n=N0

c(i)n < r, i = 1, 2, 3. (4)

(1b) Now we will prove that for any h1, 0 < h1 < 1, there do not exist three
elements x1, x2 and x3 in X, such that

∞∑
n=1

ϕn(xin) ≥ Iϕ(xi) − h1 = 1 − h1, i = 1, 2, 3. (5)

Assume (1b) is false:
(i) If 0 < ε < ε0/4, then ϕn((xin−xjn)/2(1−ε)) <∞ for all n ∈ N, i �= j, i, j = 1, 2, 3.

Let un = max{|x1
n|, |x2

n|, |x3
n|}, wn = min{|x1

n|, |x2
n|, |x3

n|}, vn be the arithmetic
mean of un and wn. Since unvn ≥ 0, or unwn ≥ 0, or vnwn ≥ 0 is true, we first
consider vn, wn ≥ 0.

Divide positive integers n ≥ N0 into the following sets:

I1 =
{
n:

∣∣∣ vn
un

∣∣∣ ≥ β and |vn| ≥ cn
}

I2 =
{
n:

∣∣∣ vn
un

∣∣∣ ≥ β and |vn| < cn
}

I3 =
{
n:

∣∣∣ vn
un

∣∣∣ < β and |un| ≥ cn
}

I4 =
{
n:

∣∣∣ vn
un

∣∣∣ < β and |un| < cn
}
.
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When n ∈ I1, by formula (2) for l2 = (1 − ε0/2)/[(1 − ε0)(1 − ε)], if σ =
1/(1 − ε) − 1, then σ < l2 − 1. Since

ϕn

(
l2
un − vn

2

)
= ϕn

(1 − ε0/2
1 − ε0

· un − vn
2(1 − ε)

)

≤ ϕn

(1 − ε0/2
1 − ε0/4

· 2un
2(1 − ε0)

)
≤ ϕn(an) ≤ 1

by (2) and k2 = 1 + min(λ1, λ2), it follows that

ϕn

(un − vn
2(1 − ε)

)
= ϕn

(
(1 + σ)

un − vn
2

)
≤ k2ϕn

(un − vn
2

)
+ c(3)n

≤ (1 + λ1)ϕn

(un − vn
2

)
+ c(3)n

≤ (1 + λ1)
ϕn(un) + ϕn(vn)

2
+ c(3)n

<
1
2
ϕn(un) +

1
2
ϕn(vn) + λ1ϕn(un) + c(3)n .

(6)

By the same argumentation, we get

ϕn

(un − wn

2(1 − ε)
)
≤ 1

2
ϕn(un) +

1
2
ϕn(wn) + λ1ϕn(un) + c(3)n . (7)

By vn, wn ≥ 0 and |vn| ≥ |wn|, it follows that

ϕ
(vn − wn

2(1 − ε)
)
≤ ϕn

( vn
2(1 − ε)

)
≤ (1 + λ1)ϕn

(vn
2

)
+ c(3)n .

By |vn| ≥ cn and the definition of d, we get

ϕn

(vn
2

)
= ϕn

(d
2
· vn
d

)
≤ d

2
ϕn

(vn
d

)
≤ d

4
ϕ4(vn),

so

ϕn

(vn − wn

2(1 − ε)
)
≤ d

4
(1 + λ1)ϕn(vn) + c(3)n . (8)

Let
f(n) = ϕn

(un − vn
2(1 − ε)

)
+ ϕn

(vn − wn

2(1 − ε)
)

+ ϕ
(un − wn

2(1 − ε)
)

− ϕn(un) − ϕn(vn) − ϕn(wn).
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By (1) we get ϕn(un) ≤ k1ϕn(βun) + c(2)n . By (6), (7) and (8) it follows∑
n∈I1

f(n) ≤
∑
n∈I1

[
2λ1ϕn(un) +

d

4
(1 + λ1)ϕn(vn) + 3c(3)n − 1

2
ϕn(vn)

]

≤
∑
n∈I1

[
3λ1ϕn(un) − 2 − d

4
ϕn(vn)

]
+ 3

∑
n∈I1

c(3)n

≤
∑
n∈I1

[
3λ1ϕn(un) − 2 − d

4
ϕ(βun)

]
+ 3

∑
n∈I1

c(3)n

≤
∑
n∈I1

[
3λ1ϕn(un) − 2 − d

4k1
ϕn(un)

]
+

2 − d
4k1

∑
n∈I1

c(3)n

+ 3
∑
n∈I1

c(3)n

=
2 − d
8k1

∑
n∈I1

ϕn(un) +
2 − d
4k1

∑
n∈I1

c(3)n + 3
∑
n∈I1

c(3)n .

(9)

When n ∈ I2, | vnun
| ≥ β, |vn| < cn. Since

ϕn

( 2un
2(1 − ε)

)
≤ ϕn

( un
1 − ε0

)
≤ ϕn(an) ≤ 1,

by (3) we get

ϕn

( 2un
2(1 + ε)

)
≤ kϕn

( un
2(1 − ε)

)
+ c(1)n ≤ kϕn(un) + c(1)n ,

so

ϕn

(un − vn
2(1 − ε)

)
≤ ϕn

( 2un
2(1 − ε)

)
≤ kϕn(un) + c(1)n

≤ kk1 ϕn(βun) + kc(2)n + c(1)n ≤ kk1ϕn(cn) + kc(2)n + c(1)n .

We have also
ϕn

(un − wn

2(1 − ε)
)
≤ kk1ϕn(cn) + c(1)n + kc(2)n

ϕn

(vn − wn

2(1 − ε)
)
≤ kk1ϕn(cn) + c(1)n + kc(2)n ,

so we get∑
n∈I2

f(n) ≤
∑
n∈I2

[
ϕn

(un − vn)
2(1 − ε)

)
+ ϕn

(vn − wn

2(1 − ε)
)

+ ϕn

(un − wn

2(1 − ε)
)]

≤ 3kk1
∑
n∈I2

ϕn(cn) + 3
∑
n∈I2

c(1)n + 3k
∑
n∈I3

c(3)n .
(10)
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When n ∈ I3, | vnun
| < β, |un| ≥ cn, by

ϕn

(un − vn
2(1 − ε)

)
≤ ϕn

( (1 + ε0/4)u0

2(1 − ε)
)
,

denoting (1 + ε0/4)/(1 − ε) = 1/(1 − ε′), σ′ = 1/(1 − ε′) − 1, we get as in (6),

ϕn

(un − vn
2(1 − ε)

)
≤ ϕn

(
(1 + σ′)

un
2

)
≤ (1 + λ2)ϕn

(un
2

)
+ c(3)n

≤ d

4
(1 + λ2)ϕn(un) + c(3)n

and

ϕn

(un − wn

2(1 − ε)
)
≤ d

4
(1 + λ2)ϕn(un) + c(3)n .

By ϕn(un−wn

2(1−ε) ) ≤ ϕn( vn

2(1−ε) ) ≤ ϕn(vn) we get

∑
n∈I1

f(n) ≤
∑
n∈I3

[d
2
ϕn(un) +

d

2
λ2ϕn(un) + 2c(3)n − ϕn(u4)

]

≤
∑
n∈I2

[
− 2 − d

2
ϕn(un) +

2 − d
4
ϕn(un)

]
+ 2

∑
n∈I3

c(3)n

= −2 − d
4

∑
n∈I3

ϕn(un) + 2
∑
n∈I3

c(3)n .

(11)

When n ∈ I4, |un| < cn, as in the case of n ∈ I2, we get

ϕn

(un − vn
2(1 − ε)

)
≤ kϕn(un) + c(1)n ≤ kϕn(cn) + c(1)n

ϕn

(un − vn
2(1 − ε)

)
≤ kϕn(cn) + c(1)n

ϕn

(un − wn

2(1 − ε)
)
≤ kϕn(cn) + c(1)m .

Then ∑
n∈I4

f(n) ≤ 3k
∑
n∈I4

ϕn(cn) + 3
∑
n∈I4

c(1)n . (12)
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By (9), (10), (11) and (12), we get
∞∑

n=N0

f(n) ≤ −h2

∞∑
n=N0

ϕn(un) + h2

∑
n∈I2∪I4

ϕn(un)

+ 3
∞∑

n=N0

(c(1)n + c(3)n )

+ 3kk1
∑
n=N0

ϕn(cn) +
(
3k +

2 − d
4k1

) ∞∑
n=N0

c(2)n .

(13)

When n ∈ I2, since (1) implies ϕn(un) ≤ k1ϕn(cn) + c(2)n , then

h2

∑
n∈I2∪I4

ϕn(un) = h2

∑
n∈I2

ϕn(un) + h2

∑
n∈I4

ϕn(un)

≤ h2

∑
n∈I2

[k1ϕn(cn) + c(2)n ] + h2

∑
n∈I4

ϕn(cn)

≤ h2(k1 + 1)
∞∑

n=N0

ϕn(cn) + h2

∑
n∈I2

c(2)n .

(14)

It we put (14) into (13), by (4) and (5), we get
∞∑

n=N0

f(n) ≤ −h2

∞∑
n=N0

ϕn(un) + h2(k1 + 1)
∞∑

n=N0

ϕn(cn)

+ 3kk1
∞∑

n=N0

ϕn(cn)

+ 3
∞∑

n=N0

(c(1)n + c(2)n ) + (3k + 1)
∞∑

n=N0

c(2)n

< −h2(1 − h1) + h2(k1 + 1)r1 + 3kk1r1 + 3(3k + 1)r2

< −h2(1 − h1)
4

.

(15)

(ii) Formula (5) implies
N0−1∑
n=1

ϕn(xin) < h, i = 1, 2, 3. We deduce that |2xin| < an
for all n < N, and i = 1, 2, 3. Let

α′ = min
n<N0

ϕ−1
n

( h2

48N0

)
.

Then k′ = max
n<N0

max
α′≤u≤an

ϕn(u)/ϕn(u2 ) <∞.
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So when |2un| ∈ [α′, an], ϕn(2un) ≤ k′ϕn(un); when |2un| < α′, ϕn(2un) ≤ ϕn(α′).
Hence

N0−1∑
n=1

f(n) <
N0−1∑
n=1

[
ϕn

(un − vn
2(1 − ε)

)
+ ϕn

(vn − wn

2(1 − ε)
)

+ ϕn

(un − wn

2(1 − ε)
)]

≤ 3
N0−1∑
n=1

ϕn(2un) ≤ 3k
N0−1∑
n=1

ϕn(un) + 3
N0−1∑
n=1

ϕn(α′)

and when h1 <
1

3k1
· h2

16 · h1 <
1
2 , then

N0−1∑
n=1

f(n) < 3k′h1 + 3N0
h2

48N0
≤ h2

16
+
h2

16
=
h2

8
<
h2(1 − h1)

4
. (16)

By (15) and (16), we get
∞∑

n=1
f(n) < 0, i.e.

Iϕ

( x1 − x2

2(1 − ε)
)

+ Iϕ
( x2 − x3

2(1 − ϕ)

)
+ Iϕ

( x1 − x3

2(1 − ε)
)
− Iϕ(x1) − Iϕ(x2) − Iϕ(x3) < 0.

Since Iϕ(xi) = 1, i = 1, 2, 3, so Iϕ( x1−x2

2(1−ε) ) < 1, or Iϕ( x2−x3

2(1−ε) ) < 1, or Iϕ( x1−x3

2(1−ε) ) < 1,
and this implies ‖x1−x2‖ < 2(1−ε) or ‖x2−x3‖ < 2(1−ε), or ‖x1−x3‖ < 2(1−ε).
This contradicts the assumption in the theorem, so result (1b) is true.

Repeating the same argumentation, we may prove result (1b) in case of uw > 0
and uv > 0.

(1c) Let N1 = 2N0 + 1, N1 is the number of elements of X. Result (1b) implies
that there are at least 2N0 − 1 elements in X such that

N0−1∑
n=1

ϕn(xn) > h1. (17)

Let
α1 =

h1

N0 − 1
, u0 = min

n<N0

1
4
ϕ−1
n

( α1

4(N0 − 1)

)
.

The fact that a continuous function is uniformly continuous in a closed interval
implies that there is δ′n > 0 such that

ϕ
( u

1 − δ
)
≤ ϕn(u) +

α1

4(N0 − 1)
, n =, 1, 2, . . . , N0 − 1 (18)

for all δ < δ′n and u ∈ [u0, an].
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Let δ′ = min
n<N0

δ′n. Take ε < ε0/4 and 0 < ε < δ′. Among the elements satisfying

(17), there are three ones x1, x2, x3 and n0 < N0 such that

ϕn0(x
i
n0

) >
h1

N0 − 1
, i = 1, 2, 3

this is because 2N0 − 1 elements satisfy (17) in the former N0 − 1 components, then
there are three elements satisfying the above formula in the same component.

Since there are at least two elements having same sign among x1
n0
, x2

n0
, x3

n0
and

without loss of generality we have

x1
n0
x2
n0

≥ 0 and |x1
n0
| ≥ |x2

n0
|.

By analogy of the former proof we get

∞∑
n=N0

ϕn

(x1
n − x2

n

2(1 − ε)
)
<

1
2

∞∑
n=N0

ϕn(x1
n) +

1
2

∞∑
n=N0

ϕn(x2
n) +

α1

4
. (19)

Divide the positive integers of n < N0(n �= n0) into three sets:

I5 =
{
n: max(|x1

n|, |x2
n|) ≥ 2u0 and x1

nx
2
n < 0

}
I6 =

{
n: max(x1

n|, |x2
n|) ≥ 2u0 and x1

nx
2
n ≥ 0

}
I7 =

{
n: max(|x1

n|, |x2
n|) < 2u0

}
.

When n ∈ I5, |x
1
n−x2

n

2 | ≥ 1
2 max(|x1

n|, |x2
n|) ≥ u0, we get by ε ≤ δn and (18)

ϕn

(x1
n − x2

n

2(1 − ε)
)
≤ ϕn

(x1
n − x2

n

2

)
+

α1

4(N0 − 1)

≤ 1
2
ϕn(x1

n) +
1
2
ϕn(x2

n) +
α1

4(N0 − 1)
.

(20)

When n ∈ I6,

ϕn

(x1
n − x2

n

2(1 − ε)
)
≤ max

{( x1
n

2(1 − ε)
)
, ϕn

( x2
n

2(1 − ε)
)}

≤ 1
2
ϕn(x1

n) +
1
2
ϕn(x2

n) +
α1

4(N0 − 1)
.

(21)

When n ∈ I7,

ϕn

(x1
n − x2

n

2(1 − ε)
)
≤ ϕn

( 4u0

2(1 − ε)
)
≤ ϕn(4u0) ≤

α1

4(N0 − 1)
(22)
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since

ϕn0

(x1
n − x2

n

2(1 − ε)
)
< ϕn0

( x1
n0

2(1 − ε)
)
≤ ϕn0

(x1
n0

2

)
+

α1

4(N0 − 1)

≤ 1
2
ϕn0(x

1
n0

) +
α1

4(N0 − 1)

(23)

notice ϕn0(x
2
n0

) > h1
N0−1 = α1, by (19) and (23)

Iϕ

(x1
n − x2

n

2(1 − ε)
)

= ϕn0

(x1
n0

− x2
n0

2(1 − ε)
)

+
N0−1∑
n=1
n �=n0

ϕn

(x1
n − x2

n

2(1 − ε)
)

+
∞∑

n=N0

ϕn

(x1
n − x2

n

2(1 − ε)
)

<
1
2
ϕn0(x

1
n0

) +
α1

4(N0 − 1)

+
∑
n<N0
n �=n0

[1
2
ϕn(x1

n) +
1
2
ϕn(x2

n) +
α1

4(N0 − 1)

]

+
∞∑

n=N0

[1
2
ϕn(x1

n) +
1
2
ϕn(x2

n)
]

+
α1

4

=
1
2
Iϕ(x1) +

1
2
Iϕ(x2) − 1

2
ϕn0(x

2
n0

) +
α1

4
+
α1

4

<
1
2
Iϕ(x1) +

1
2
Iϕ(x2) = 1

so ‖x1 − x2‖ < 2(1 − ε), and we get a contradiction again.

Steps (1b) and (1c) complete the proof of theorem.

Step 2. We discuss the general case without the restriction of step 1. For any
ε ≤ 1/4, let A = inf

n
ϕn((1 − ε)an). By the proof of Lemma 1 (i) we get A > 0. Let

N2 = [1/A], i.e. N2 be the integer part of 1/A. If lϕ is reflexive but not P -convex,
then for any ε′: 0 < ε′ < ε/4, there is a set X consisted of any finite elements in
S(Iϕ) such that

‖xi − xj‖ ≥ 2(1 − ε′), i �= j.

Let the number of X be (2N0 + 1)2(N2+1)N2/2 where N0 is the positive integer
satisfying (4).
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Take any element x0 in X. The definition of A implies that x0 has at most N2

numbers of components, such that |x0
n| ≥ (1 − ε)an; hence

Iϕ(x0) =
∞∑

n=1

ϕn(x0
n) ≥ (N2 + 1)A >

1
A

·A = 1,

this leads to contradiction. Without loss of generality we have |x0
n| ≥ (1 − ε)an

for n ≤ N2. For any x ∈ X, we define a map: x → (rx1 , r
x
2 , . . . , r

x
N2

), i.e. for
n = 1, 2, . . . , N2

rxn =

{
1, when x0

nxn < 0 and |xn| ≥ (1 − ε)an
0, otherwise.

This makes us classify the elements of X into 2N1 categories, we say that the
category mapping the vector (0, 0, . . . , 0) is 0-category.

First we assume: apart from 0-category, the number of elements in other cate-
gory is less than (2N0 + 1)2(N+1+1)N1/2/2N2 = (2N0 + 1)2N2(N2−1)/2. Take another
element from 0-category and let it be x0, then classify X again by the former pro-
gram.

After we classify each time, if the number of the elements in category, except
0-category, is less than (2N0 + 1)2N1(N1−1)/2, when we classify (2N0 + 1)−times we
get a set X0 having (2N0 + 1) elements such that

xinx
j
n > 0 or |xin| ≥ (1 − ε)an and |xjn| ≥ (1 − ε)an (24)

for any xi, xj ∈ X0(i �= j) and n ∈ N, then

∣∣∣x1
n − x2

n

2(1 − ε)
∣∣∣ < ∣∣∣an + (1 − ε)an

2(1 − ε/4)

∣∣∣ =
2 − ε

2 − ε/2an < an,

i.e. |xin| < (1− ε′)an for all n ≤ N2, and this is the case of section 1. But in section
1, we proved that there is no set X having (2N0 + 1) elements such that

‖xi − xj‖ ≥ 2(1 − ε), i �= j, xi, xj ∈ X,

so we deduce that apart from 0-category there is a category X1 such that the number
of elements in X is (2N0 + 1)2N1(N2−1)/2 and the element x of x1 satisfies rxn1

= 1
for some n1 ≤ N2.
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Apart from n1-th component, any x = (xn) in X1 has at most (N2−1) numbers
of components such that |xn| ≥ (1− ε)an. Let |xn| ≥ (1− ε)an for n = N2 +1, N2 +
2, . . . , 2N2 − 1.

For any x ∈ X1, define a map: x→ (rx1 , r
x
2 , . . . , r

x
N1−1), i.e. for n = N2+1, N2+

2, . . . , 2N2 − 1

rxn =

{
1, when x0

nxn < 0 and |xn| ≥ (1 − ε)an
0, otherwise

then we may classify X1 into 2N2−1 categories.
If the number of elements in category except 0-category is less than (2N0 +

1)2(N1−1)(N2−2)/2, we take one element from those mapping 0-category and let it
be x0, and then classify X1 by the former program. When we classify (2N0 + 1)
times, the number of elements in the category except 0-category is less than (2N0 +
1)2(N2−1)(N2−2)/2, then we get a set having (2N0 +1) elements such that (24), which
leads a contradiction again.

We assume there a categoryX2 having (2N0+1)2(N1−1)(N2−2)/2 elements except
0-category. Repeating the same discussion, when we classify N2-times we get a
category XN2 having (2N0 + 1) elements such that

xinx
j
n > 0 and |xin| ≥ (1 − ε)an, |xjn| ≥ (1 − ε)an

for any xi, xj ∈ XN2 , i �= j.n = n1, n2, . . . , nN2 . Then for any x ∈ XN2

I = Iϕ(x) =
∑
j≤N2

ϕnj (xnj ) +
∑
n �=nj

ϕn(xn)

≥
∑
j≤N0

ϕnj

(
(1 − ε)anj

)
+

∑
n �=nj

ϕn(xn) ≥ N2A+
∑
n �=nj

ϕn(xn)

i.e. ∑
n �=nj

ϕn(xn) ≤ 1 −N1A =
A

A
−

[ I
A

]
A < A = inf

n
ϕn

(
(1 − ε)an

)

so |xn| < (1− ε)an with n �= nj , but when n = nj xinx
j
n > 0(i �= j). This shows that

(24) is true for any x ∈ XN2 and all n ∈ N, which leads to a contradiction again.
Section 1 and section 2 complete the proof of theorem. �
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Now we give an example of a Musielak-Orlicz sequence space which is P -convex
but not P (3, ε)-convex.

Let a Young function ϕ = (ϕn) and ϕ∗ = (ϕ∗
n) satisfy the δ2-condition, and

such that there are two positive integers n1 and n2 (n1 < n2)

ϕn1(an1) + ϕn2(an2) ≤ 1 and ϕn1(an1) > 0, ϕn2(an2) > 0.

By Theorem we know that the Iϕ generated by ϕ is P -convex but not P (3, ε)-
convex. Let

x1 = (0, . . . , 0, an1 , 0, . . . , 0, an2 , 0, . . .)

x2 = (0, . . . , 0, an1 , 0, . . . , 0,−an2 , 0, . . .)

x3 = (0, . . . , 0,−an1 , 0, . . . , 0, an1 , 0, . . .).

Then x1, x2, x3 ∈ S(Iϕ). But for any ε > 0

Iϕ

( x1 − x2

2(1 − ε)
)

= ϕn2

( 2an2

2(1 − ε)
)
> 1

Iϕ

( x1 − xi
2(l − ε)

)
= ϕn1

( 2an1

2(1 − ε)
)
> 1

Iϕ

( x2ixj
2(1 − ε)

)
= ϕn1

( 2an1

2(1 − ε)
)

+ ϕn2

( 2an1

2(1 − ε)
)
> 1

so ‖x1 − x2‖ ≥ 2(1 − ε), ‖x2 − x3‖ ≥ 2(1 − ε), ‖x1 − x4‖ ≥ 2(1 − ε), hence lϕ is not
P (3, ε)-convex.
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