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ABSTRACT

Let L% be an Orlicz space defined by a Young function ¢ over a o-finite measure
space, and let ¢* denote the complementary function in the sense of Young. We
give a characterization of the Mackey topology 7(L*, L‘p*) in terms of some
family of norms defined by some regular Young functions. Next, we describe
order continuous (= absolutely continuous) Riesz seminorms on L%, and obtain
a criterion for relative o (L%, L )-compactness in L#. As an application we
get a representation of L¥ as the union of some family of other Orlicz spaces.
Finally, we apply the above results to the theory of Lebesgue spaces.

0. Introduction and preliminaries

In 1915 de la Vallée Poussin (see [12]) showed that a set Z of L' (for a
finite measure space (Q,E,,u)) has uniformly absolutely continuous L'-norms

(ie., lim (sup [|z(t)|dp) = 0) iff there exists a Young function ¢ such that
w(E)—0 zcZ B
lim ¢ (u)/u =00 in terms of which sup [ ¢(|z(¢)|)dp < oco.
On the other hand, in view of the Dunford-Pettis criterion (on relatively com-

pact sets in L1)(see [3, p. 294]) the set Z C L' has uniformly absolutely continuous
L'-norms iff it is relatively o (L', L°)-compact.

Thus we have the following criterion for relative weak compactness in L' (for
finite measures): a set Z of L! is relatively o(L!, L°)-compact iff there exists a
Young function t such that lim ¢ (u)/u = oo and sup [ ¢ (|z(t)|)du < cc.
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In 1962 T. Ando [2, Theorem 2] found similar criterion for relative o(L®, L¥")-
compactness in L¥ for ¢ being an N-function and a finite measure. This criterion was
extended by the present author to the case of o-finite measures ([15, Theorem 1.2]).

In this paper, using a different method, we extend the Ando’s criterion to the
case of ¢ belonging to a much wider class of Young functions and o-finite measures.
We can include L¥ being equal to L' + L> (so L' if u(Q) < o0), L' + LP, LP + L
(p>1).

In section 1, making use of the author’s results concerning the so-called modular
topology 7/ on L¥ (see [13], [14], [18], [19]), we obtain a characterization of the
Mackey topology 7(L¥,L¥¢") in terms of some family of norms defined by some
regular Young functions, dependent on ¢ (see Theorem 1.5). As an application we
have a description of absolutely continuous (= order continuous) Riesz seminorms
on L¥ (see Corollary 1.6).

In section 2, in view of the close connection between relative o(L¥,L#")-
compactness in L¥ and the absolute continuity of some seminorm in L¥", we can
describe relatively U(L“’,L“p*)—compact sets in L¥ as norm bounded subsets of an
Orlicz space LY for some regular Young function v (see Theorem 2.4). As an appli-
cation we get a representation of the Orlicz space L¥ as the union of some family of
other Orlicz spaces. At last, we examine the absolute weak topology |o|(L¥, L¥").

In section 3 we apply the results of sections 1 and 2 to the theory of Lebesgue
spaces.

For notation and terminology concerning Riesz spaces we refer to [1], [21]. As
usual, N stands for the set of all natural numbers.

Let (Q,3, 1) be o-finite measure space, and let LY denote the set of equivalence
classes of all real valued measurable functions defined and a.e. finite on 2. Then
LY is a super Dedekind complete Riesz space under the ordering x < y whenever
z(t) < y(t) a.e. on Q. The Riesz F-norm

[ )
o = /Q S Ode for we L

where f:Q — (0,00) is measurable and [ f(¢t)du = 1, determines the Lebesgue
Q

topology 7o on LY, which generates the convergence in measure on subsets of €
of finite measure. For a sequence (z,) in L° we will write z,, — z(u) whenever
[2n —zfo = 0.

For a subset A of Q and x € L° we will write x4 = x - x4, where x4 stands for
the characteristic function of A. We will write E, \, (0 if (E,) is a decreasing
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sequence of measurable subsets of Q such that u(E, N E) — 0 for every set E C Q
of finite measure.

Now we recall some notation and terminology concerning Orlicz spaces (see [6],
[8], [10], [20] for more details).

By an Orlicz function we mean a function ¢:[0,00) — [0, 00] which is non-
decreasing, left continuous, continuous at 0 with ¢(0) = 0, not identically equal
to 0.

An Orlicz function ¢ is called convex, whenever (au + v) < ap(u) + Bp(v)
for a, 6 > 0,a+ 3 =1 and u,v > 0. A convex Orlicz function is usually called a
Young function.

For a Young function ¢ we denote by ¢* the function complementary to ¢ in
the sense of Young, i.e.,

©*(v) =sup {uwv — p(u):u >0} for v >0.
For a set ¥ of Young functions we will write
U = {y*:p € ¥}.

We shall say that an Orlicz function ¢ is completely weaker than another ¢
for all u (resp. for small u; resp. for large u), in symbols 1 3 ¢ (resp. ¥ 3 ©;
resp. ¥ é ¢), if for an arbitrary ¢ > 1 there exists a constant d > 0 such that
P(cu) < dp(u) for u > 0 (resp. for 0 < u < ug; resp. for u > ug > 0). (See [2], [20,
Ch. I1]).

It is seen that ¢ satisfies the so called As-condition for all u (resp. for small u;

a s 1
resp. for large u) if and only if ¢ < ¢ (resp. ¢ < ¢; resp. ¢ < @).

We shall say that an Orlicz function ¢ increases more rapidly than another v
for all u (resp. for small u; resp. for large u) in symbols 2 @ (resp. ¥ < ©; resp.
1
Y =< ), if for an arbitrary ¢ > 0 there exists d > 0 such that cy(u) < S¢(du) for
all u > 0 (resp. for 0 < u < ug; resp. for u > u, > 0).
Note that ¢ satisfies the so called V,-condition for all u (resp. for small u; resp.
1
for large w) if and only if ¢ < @ (resp. ¢ < ©; TESP. Y < V).
One can verify that for given Young functions % and ¢ the relation ¢ g ¢ (resp.
S 1
Y <4 @; resp. P 4 ¢) holds iff * 2 Y* (resp. ¢* 2 ©*, resp. p* < 1*) holds (see
[2], [20, Proposition 2.2.4]).
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An Orlicz function ¢ determines the functional mg: L — [0,00] by

mo(@) = [ lla®ld
The Orlicz space generated by ¢ is the ideal of LY defined by
L? ={zx € L% m,(\z) < 0o for some A > 0}.
The functional m,, restricted to L? is an orthogonally additive semimodular
(see [10], [11]).

L¥ can be equipped with the complete metrizable linear topology 7, of the
Riesz F-norm

121, = inf {A> o:mw(f) <A}
Moreover, when ¢ is a Young function, the topology 7, can be generated by two
Riesz norms (called the Orlicz and the Luxemburg norms resp.) defined as follows:

Jello =sup { [ fatute)iduiy € 1 mo () < 1}

lz|ll, = inf {A > O:mv(g) < 1}.
For an Orlicz function ¢ let
E¥ ={z € L% m,(\r) <oco forall \>0}
and
L? ={z e L zg,l, — 0 as E,\ 0}.

It is well known that for ¢ taking only finite values these spaces coincide, i.e.,
E? =1L%.

1. The Mackey topology 7(L¥, L¢")

First we recall the definition and the basic properties of the so-called modular topol-
ogy on Orlicz spaces (see [13], [14]).

Let ¢ be an Orlicz function vanishing only at 0. For given € > 0, let U, (e) =
{z € LY my(x) < e}. Then the family of all sets of the form

N[j ( il Uw(gn))

=1
where (g,) is a sequence of positive numbers, forms a base of neighborhoods of 0 for
a linear topology on L¥, that will be called the modular topology on L¥ and will be
denoted by 7.

The basic properties of 7' are included in the following theorem (see [14, The-
orem 1.1], [18, Theorem 2.2], [19. Theorem 4.2]):
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Theorem 1.1

Let ¢ be an Orlicz function vanishing only at 0. Then the following statements
hold:
(i) ’Z:p/\ is the finest o-Lebesgue topology on L¥.
(ii) 7} C T, and the equality 7] = T, holds whenever ¢ € As.
(iii) ’Z:p/\ coincides with the Mackey topology T(L“",L“’*), whenever ¢ is a Young
function.

To present the crucial for this paper characterization of the modular topology
T@A we will distinguish some classes of Orlicz functions.

An Orlicz function ¢ continuous for all 4 > 0, taking only finite values, vanishing
only at zero, and such that ¢(u) — oo as u — oo is usually called a @-function (see
[10]). We will denote by ® the collection of all ¢-functions.

A Young function ¢ vanishing only at 0 and taking only finite values is called
an N -function whenever ilg%) o(u)/u = 0 and ulLH;O o(u)/u = oo (see [6], [10]). We
will denote by ® 5 the collection of all N-functions.

Let ®y be the collection of all Orlicz functions ¢ vanishing only at 0 and such
that p(u) — oo as u — oo. Let

Og; = {p € Pp:p(u) <oo for u>0}
Do = {p € Pp: ¢ jumps to oo, i.e., p(u) = oo for u > ug > 0}.

The following characterizations of the modular topology ’Z:OA will be crucial for
this paper (see [13, Theorem 2.1], [14, Theorem 1.2]).

Theorem 1.2

Let ¢ € ®¢;(i = 1,2). Then the modular topology T@/\ is generated by the
family of F-norms:

{1 e € UG}

where

‘liglz{we‘lizwglcp}, W&z{@bé@:qﬁzgp}.

Now, for ¢ being a Young function we are going to apply Theorem 1.2 to obtain
a description of the Mackey topology 7(L¥, L¥") in terms of some family of norms
defined by some regular Young functions.

For this purpose we distinguish some classes of Young functions.
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Let ®§ be the collection of all Young functions ¢ vanishing only at 0 and such
that lim ¢(u)/u=oco.
Let

D, = {p € ¥: p(u) < oo forall u >0 and iigb# = 0},
O6y = {p € D§: ¢ jumps to co  and ili% # =0},
Ohs ={p € D5 p(u) < oo forall u>0and iii%# > 0},
O6, = {p € Df: ¢ jumps to co and iLmo # > 0}.
4
Then ®§ = U ®F,, and the sets ®§;(i = 1,2,3,4) are pairwise disjoint. It is seen

=1
that ®f; = ®x. Denote by

©
Wi (c

©
Wi,

(¢)
(¢)
Ws(c)
(¢)

€ Oy:ep <), whenever € E,

(8
¢) =¥

€ dy:9p d ), whenever € E,,

{
{
{1 € Pp3z: 1) 4 ¢}, whenever ¢ € ®fs,

%)
04

K

c) = ®g5, whenever ¢ € &f,.

The following two lemmas will be needed.

Lemma 1.3

Let ¢ € ®§,(i = 1,2) and let ¢ be a ¢-function such that S fori=1 (resp.
W 4 fori = 2). Then there exists Vg € U# (c) such that

P(u) < o(2u) for u > 0.

Proof. Take an arbitrary N-function ¢ such that g @ for i =1 (resp. i 3 @ for
i =2). Let us set

9 (u) = max (¢(u),w1(u)) for u > 0.

0 for s =0,
p(s) = 2 (1)

SUPg<t<s th for s >0,

Let us put
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and let

To show that 1)g is an N-function we have to check that lir% p(u) =0and lim p(u) =
u— uU—0o0
0.

Indeed, since 1 < ¢ we get that ¥(u) < ap(u) for some a > 0 and u > 0. Hence

t t ¢
p(u):SUP%—()S Supm+ supwl_()
0<t<u 0<t<u t 0<t<u t
t t t
< a sup M_F sup (1) :a¢(u)+¢1()_
o<t<u 1 o<t<u U u u

Thus lim p(u) = 0, because lin%) e(u)/u = 0 and lirrb P1(u)/u = 0. Moreover,

we have: p(u) = sup a(t)/t > sup ¥1(t)/t = 1(u)/u, because 1y is a Young
0<t<u 0<t<u

function. Hence lim p(u) = oo, because lim 11 (u)/u = oo.

Now we shall show that 1 < pif i =1 (resp. ¥ g ¢ if i = 2). Indeed, given
¢ > 0 there exist d > 0 such that

Po(u) = (u) Vi (u) Sdgp(%) for u > 0.

Hence

pleu) = sup %—(t)ﬁ sup d(p(g):dw(u)

o<t<cu t 0<t<cu t cu

for u >0,

SO
Yo(cu) < p(eu) - cu < dp(u) for u > 0.

Similarly we can show that g 3 pifi=2.

At last we will show that 1(u) < 9o(2u) for u > 0. Indeed, we have o (2u) >
p(u) - u and
Pa(t) P@) _ P(w)

p(u) = sup > sup —= > ——~ for u>0.
o<t<u t o<t<u T u

Thus
Yo (2u) > 1p(u) for uw> 0.0
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Lemma 1.4
Let ¢ € ®F, (i = 3,4) and let ¢ be a @-function such that 1 o fori=3 (resp.
¢ & for i =4). Then there exists a Young function v € W (c) such that

W(u) < Yo(2u) for u > 0.

Proof. Take an arbitrary N-function v such that ¢ (u) < ¢(u) and 91 3 . Let
a > 1 be such that a1 (1) = p(1). Let us set

max (¢(u), ¢(u)) for 0 <u <1,
V() = { max (¢(u), ayhr (u)) for u > 1.
Let 0 for s =0,
ple) = {sup0<t<s %t(t) for s > 0,
and let

Po(u) = /Ou p(s)ds for u > 0.

We shall show that ¢y € ¥§s, i.e., that lin%zﬁo(u)/u > 0 and lim ¢p(u)/u = oo.
Indeed, for 0 < u <1 we have

t t
p(u) = sup 'po( ) > sup 90( ) _ QO(U)7
o<t<u 1 o<t<u 1t u
SO ( )
. . plu
> lim —— .
ampple) 2 iy =7 > 0

Since 1o(u) > p(%) - 5, we get limowo(u)/u > 0.
To show that lim to(u)/u = oo it is enough to show that lim p(u) = oc.

Indeed, let ug > 1 be such that ay;(u)/u > K = sup s(t)/t for u > ug. Then for
0<t<1

u > ug we have:

p(u) = sup ¥a(t) _ max (K, sup w2_(t)) > max (K, sup ¢1(t))
o<t<u U 1<t<u t 1§t§u—
= max (K, sup ¥ u)) — ay )
1<t<u U U
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Thus lim p(u) = co, because lim 1 (u)/u = co.

1
Now, for i = 3 we shall show that vy < . Indeed, given ¢ > 1 there exists d > 1
such that for v > 0

) <dp(=) and ayr(u) < do( ).

Let ug > 0 be such that dp(ug)/ug > K = sup o(t)/t. Then for u > u, we get
0<t<1

p(CU) = Sup wQ—(t) = max ( sup ¢2 (t> , sup ¢2 (t))
0<t<cu ¢ 0<t<1 13 0<t<cu t
do(t
< max (K’ sup M) — max <K, d‘P(U)) _ d@(u) '
1<t<cu U cu cu

Thus for u > ug
o(cu) < p(eu) - cu < dp(u),

i.e. g il ®.
At last, we shall show that ¥ (u) < 9o(2u) for u >0 (i = 3,4). Indeed, we have
Yo(2u) = p(u) - v and

p(u) = sup 1/’2_@)2 sup M for u > 0.

o<t<u t o<t<u U

Thus ¥ (u) < ¥o(2u) for u > 0. O

We are now in position to present a description of the Mackey topology
T(L?, L*O*) in terms of some family of norms defined by some regular Young func-
tions.

Theorem 1.5

Let ¢ € ®¢, (i = 1,2,3,4). Then the Mackey topology T(L¥,L¢") is generated
by the family of norms:

{1 yize: v € ¥G(e)}-
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Proof. In view of Theorem 1.1 the equality 7)' = 7(L¥,L¥") holds. Let ¢ €
o5, (1 = 1,2,3,4). Then ¢ € &gy for i = 1,3, and ¢ € Pgy for i = 2,4. Thus,
according to Theorem 1.2 the Mackey topology 7(L¥, L¥") is generated by the family
{1 e € U} for i = 1,3, and by the family {§ - lyre:1p € ¥} for i =2, 4.

Now let ¢ € U§, (resp. ¢ € ¥F,), and let 7 > 0 be given. In view of Lemma
1.3 (resp. Lemma 1.4) there exists ¢ € U (c) for i = 1,3 (resp. 1o € ¥y (c) for
i = 2,4) such that ¥ (u) < 9o(2u) for u > 0. Hence

12l <I 201y, forall ze€ LYo, (1)
Since the F-norms | - |y, and ||| - |||, are equivalent on L¥°, there exists r; > 0
such that
B(¢0) (Tl) - Bwo (T)v (2)
where

Byy(r) ={z € L™ 3 ok, <} and By (r1) = { € L:|||zlly, <}

We shall show that B(y,)(%5) N LY C By(r). Indeed, let x € By, (%) N L.
Then |||2x|||, < 71; hence by (2), ] 2z by, < r. Next, by (1) we get that |z |, < 7.

Thus we proved that the topology 7 generated by the family of norms

{11 g € BE(c)} is finer than 7(L¥, L¥").
On the other hand, since for ¢ € U, (¢) the F-norms| - Iy and ||| |||, are equiv-
alent on L%, we get that 7(L®, L¥") is finer than 7. Thus the proof is completed. [J

As an application of Theorem 1.5 we obtain a characterization of absolutely
continuous (order continuous) seminorms on L¥ (see [2, Theorem 3]).

Corollary 1.6

Let ¢ € ®§, (i =1,2,3,4). Then for a Riesz seminorm p on L¥ the following
statements are equivalent:
(i) p is order continuous (i.e., p(zy) | 0 whenever x,, | 0 in L?).
(ii) p is absolutely continuous (i.e. p(xg,) — 0 whenever E,, \, ) and x € L¥ ).
(iii) There exists 1) € ¥§;(¢) and a number a > 0 such that

p(@) <alllellly for e L?.
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Proof. (i)<(ii)  See [9, Theorem 2.1].

(1)=(iii) Let o € ®, (i =1,2,3,4). Since 7(L¥, L¥") is the finest o-Lebesgue
topology on L¥ (see Theorem 1.1) in view of Theorem 1.5 and [5, Ch. 4, § 18, (4)]
there exist ¢1,...,¢, € ¥§.(c) and a number a > 0 such that

p(z) < amax{|[z[|g,,-- .. |[|7]lly,} forall z e L?

Let us put
¥(u) = max (Y1(u), ..., ¥n(w)) for u>0.

Then ¢ € ¥§.(c) and |||z]||y; < |||z|||¢ for z € L?, so p(x) < al||z]||y for x € L¥.

(iii)=(i) Since 7(L¥, L¥") is a o-Lebesgue topology, by Theorem 1.5, for each
1 € ¥{.(c) the norm ||| - |||, is order continuous on L¥; so p is also order continuous
on L¥. I

2. Weak compactness in Orlicz spaces

Throughout this section we assume that (2, %, p) is a o-finite measure space.

For any Young function ¢ the following criterion for relative O'(L"O,LL’D*>—
compactness is well known (see [11, §28], [8, Ch. I, §3, Theorem 5], [20, Corollary
4.5.2]):

Theorem 2.1

Let ¢ be a Young function. For a subset Z of L¥ the following statements are
equivalent:
(i) Z is relatively o(L¥?, L¥")-compact.
(ii) Z is o(L¥?, L¥")-bounded and for each y € L¥"

lim sup/ |z(t)y(t)|dp =0 whenever E, \ 0.
E,

The next theorem presents conditions for relative o(L?, L )-compact embeddings
of Orlicz spaces. This theorem was proved in a different way in [20, Theorem 5.3.3]
for ¢ being an N-function.
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Theorem 2.2
Let ¢ and ¢ be Young functions.

1
10, If 2 W (resp. @ < ¢ if u(Q) < oo, resp. ¢ 2 1 if p is the counting measure
on N), then the embedding

i LY — L¥

is relatively o(L¥, L¥")-compact (i.e., every norm bounded subset of L¥ is relatively
o(L¥, L¥")-compact).
20 Let LY C L¥ with lim (u)/u = oo, and let the measure space (2,%, ) be
infinite and atomless (resp. finite and atomless; resp. Q@ = N with u being the
counting measure). If the embedding

i LY < L¥

* 1
is relatively o(L¥, L¥ )-compact, then ¢ 2 Y (resp. ¢ < ; resp. ¢ 2 ).

Proof. 1°. We have LY C L¥ and the Young function 1* is finite valued because
lim 1 (u)/u = oco. Let the set Z C LY be norm bounded, i.e., sup{|||z|||4:x € Z} <
uU— 00

o0. For y € L¥" let us put

pz(y) = sup { /Q l2(t)y(t)|dp: z € Z}.

In view of Theorem 2.1 we have to show that the seminorm p is absolutely contin-
uous on L¥ | i.e., pz(yp,) — 0, as E, \, 0 for y € L¥ . Indeed, let y € L¥" and

1 a
E, ™\, 0. Since ¢ = Y (resp. ¢ < 1; resp. @ 2 1) we get that ¥* < p* (resp.

(G a ©*; resp. Y~ 3 ©*). Hence LY" € EY" = LY (see [20, Theorem 5.3.1]).
By applying Holder’s inequality (see [20, Ch. III, §3]) we get

pz(YE, ) = sup { /Q lz(t)ym, (t)|du: z € Z}

we - sup {[llellly: @ € 2},

< lyg,|

Thus pz(ye,) — 0, because y € LY.
20, Since LY C L¥ we have L¥" C LY", and ¢* is finite valued. To prove that

l * *
® < Y (resp. ¢ 2 1, resp. @ =< 1) it is enough to show that L¥  C EY", because

this inclusion implies that ¢* g ©* (resp. ¥* g ©*; resp. ¥* 4 ©*) (see [20, Theorem
5.3.1]).
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Indeed, let y € L¥". Since the unit ball By (1) = {z € L¥:|||z|||, < 1} C L¥ is
o(L¥, L¥")-compact, in view of Theorem 2.1 we get that

= sup { /Q l2(t)yg, (t)|du:x € LY 2 € Bw(l)} —0 as E,\,0.

This means that y € LY = E¥". O

lye, |

Corollary 2.3

Let ¢ be a Young function, and let the measure space (2,2, ) be infinite and
atomless (resp. finite and atomless; resp. Q = N with p being the counting measure).
Then the following statements are equivalent:

(i) ¢ satisfies the \7o-condition for all u (resp. for large u; resp. for small u).
(ii) Every norm bounded subset of L¥ is relatively o(L¥, L¥" )-compact.

The main aim of this section is to show that a relatively o(L¥, L¥" )-compact
subset of L¥ (for ¢ being a finite valued Young function) is norm bounded in LY
for some regular Young function ¢ dependent on ¢.

This result extends the well-known Ando’s criterion for relative weak compact-
ness in L¥ obtained for ¢ being an N-function and finite measures (see [2, Theo-
rem 2|). For this purpose we distinguish some classes of Young functions.

Let ®¢ be the collection of Young functions taking only finite values and such
that ili% o(u)/u = 0.

Let

>0 forwu>0,and lim M:oo}

uU—00

>0 foru>0,and lim 2% < oo}

1) = {p € 27:9(u)
) Jm =
)
)

i

=

=0 mnear u >0, and lim #:oo},
U—00

O3 ={p e df:p

(
@7, = {p € 21:p(u
(
P74 = {p € 21:¢p(

=0 near u >0, and lim #<oo}.
uU—o0

Then ®f = Ej ®{,, and the sets @, are pairwise disjoint. It is seen that &7, = ®x.
Denotezg;/

Ve (c)={YePn:gp < ¥}, whenever ¢ € @7,

Ue(c)={Y e Py < ¥}, whenever ¢ € ®9,,
()

1
Ue(e) ={¢ € ®{5: 0 < ¢}, whenever ¢ € ®fs,
0¥ (c) = @5, whenever ¢ € @Y.

The next important lemma shows the relation between the sets ®f, and @Y,
and the sets U7 () and ¥¥,(c) (i =1,2,3,4).
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Lemma 2.4

10. Let %) & q)(c)Z (7/ - 17 27374> Then ()0* € ¢§z a“nd
(\Ilgi<c)) =07, (o).
29, Let p € ®S; (i =1,2,3,4). Then ¢* € ®§, and

(T5i(c)" = g, (c).

Proof. In view of [17, Lemma 3.1] ¢* € ®f, whenever ¢ € ®f,, and ¢* € @,
whenever ¢ € ., (i =1,2,3,4).
But it is known that for Young functions ¢ and ¢ the relation g ¢ (resp.
S 1
1 < p; resp. 1 < ) holds if and only if the relation p* 2 Y* (resp. ¢* 2 *; resp.
1
©* < 1*) holds (see [20, proposition 2.2.4]). O
Now we are ready to obtain our desired description of relatively o(L?,L¢")-
compact sets in L¥.

Theorem 2.5

Let ¢ € ®f, (i = 1,2,3,4). For a subset Z of L¥ the following statements are
equivalent:
(i) Z is relatively o(L¥, L¥")-compact.
(i) There exists ¢ € WY (c) such that Z C LY and

sup {||z|p:z € Z} < .

Proof. (i)=(ii) Since the set Z C L¥ is relatively o(L?, L¥ )-compact, in view
of Theorem 2.1 the seminorm pz(y) = sup{[ |z(t)y(¢)|du:x € Z} is absolutely
Q

continuous on L¥ . Hence by Corollary 1.6 there exist 1 € \110“0; (¢) (so L¥" C EYo)
and a number a > 0 such that

pz(y) < alllyllly, for yeL?. (1)

We shall show that Z C L% and sup{||z]|

yir €72} <a.
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Indeed, let € Z. Then by (1), for y € L, |||y]||y, < 1 we get that

/ 2()y(®)|dp < a. 2)
Since the measure space (2, 3, uu) is o-finite, there exists a sequence (£2,,) of measur-
oo
able subsets of Q such that Q, 7,2 = | Q,, () < 0o. Let z € L¥° and 2z # 0.
n=1
For n =1,2,... denote by
z(t) if |z(t)| <nmandt € Q,,
zw(t):{ (0) i =) <
0 elsewhere.

Then |z()2™) ()| T, |2(t)2(t)| on ©Q, so by Fatou’s lemma and (2) we obtain

1
[2(t)=(0) dp < sup [ [a()=0(0)ld
||rz||r¢o/ E
<sun{ [ le@uyOldny e L7yl <1} < a

Hence z € (L¥0)* = L¥5, where (L¥°)* denotes the Kéthe dual of L¥°. Moreover,
since

o =sw{| [ a®0duf:z € 211zl < 1)

we get that ||z[[ys < a. Putting ¢ = g and using Lemma 2.4 we get that ¢ € Ue(c)
and Z C LY with sup{||z|/y:z € Z} < a.

(ii)=(@1) It follows from Theorem 2.2. [J

]

As an application of Theorem 2.5 we obtain a representation of L¥ as the union
of some family of other Orlicz spaces.

Corollary 2.6
Let p € ®f, (i =1,2,3,4). Then the following equality holds:

L? = {LV:¢ € Ti(0)}.

Proof. From Theorem 2.5 we obtain that L¥ C [J{L¥:¢ € ¥¥,(c)}. On the other
hand, LY C L¥ for each v € ¥¥,(c). O

Remark. The equality from Corollary 2.6 for ¢ = 1,2 was obtained in a different
way in [14, Theorem 2.6].

At last, we apply Theorem 2.5 to examination of the absolute weak topology
lo|(L?,L¥") (see [8, Definition 2, p. 27]).
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Theorem 2.7
Let ¢ € 5, (i =1,2,3,4). For a sequence (x,) in L? the following statements
are equivalent:
(i) x, — 0 for |o|(L¥?,L¥").
(ii) z, — 0(p) and the set {x,} is relatively o(L¥, L¥")-compact.
(iii) x, — 0(p) and sup,, ||z, ||y < co for some Young function i) € VY, (c).
Proof. (i)<(ii) See [16, Theorem 2.1].
(ii)<(iii) It follows from Theorem 2.5. OJ

Theorem 2.8

Let p € 5, (i =1,2,3,4). Ifp € V¥, (¢) and Z C LY C L¥ and sup{||z||y:z €
Z} < oo, then the topologies Ty and |o|(L¥, L¥") coincide on Z, i.e.,

%\z = |O-|(L<P7LLP*)|Z-

Proof. It is well known that 7o, C |0\(L¢,L¢*)|Z (see [7, Ch. X, §5, Lemma
1]). Since 7; is a linear metrizable topology from Theorem 2.7 it follows that
lo|(L?, L¥ )z C 7o, O

Theorem 2.9

Let ¢ € ®f, (i =1,2,3,4). For a subset Z of L¥ the following statements are
equivalent:
(i) Z is relatively compact for |o|(L?, L¥").
(ii) Z is relatively compact for Ty, and there exists a Young function ¢ € ¥{,(c)
such that Z C LY and sup{||z||y:z € Z} < oo.

Proof. Tt follows from Theorem 2.5 and [8, Ch. I, §3, Corollary of Lemma 11]. O

3. Applications to the theory of Lebesgue spaces

In this section we will apply Theorem 1.5, Corollary 1.6, Theorem 2.5 and Corollary
2.6 to the theory of Lebesgue spaces. We will assume that (2, %, ) is a o-finite
measure space.

A. Let

@(u) = x1(u) V Xoo(u) for u >0,
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where
0 for0<u<l,
x1(u) =u for wu >0, Xoo:{
oo foru > 1.

Then ¢ € ®§, and LY = L' N L*°. Moreover, by Lemma 2.4, ¢* € ®$, and
©* = (X1 V Xoo)™ © XFV X% = Xoo V X1, 50 L¥ = L' + L™ (see [4, Theorem 3)).

Theorem 3.1

The following statements hold:
1°. The Mackey topology T(L'*NL>, L' + L>) is generated by the family of norms:

(11 Mlgpzinpe: € DS},
20, For a Riesz seminorm p on L' N L™ the following statements are equivalent:
(i) p is order continuous.
(ii) There exist 1) € G, and a number a > 0 such that
p(x) < all|z||]y for xeL'nL*™.
30, For a subset Z of L' 4+ L the following statements are equivalent
i) Z is relatively o(L' + L®, L' N L®)-compact.
(i) y ; p
(ii) There exists ¢ € ®$; such that Z C LY and
sup{llall]: @ € Z} < oc.

49, The following equality holds

L'+ L™ = J{LV: ¢ € 953}

BL%p>Lq>1md%+%:LLa

o(u) = xp(u) V Xoo(u) for wu>0,

where x,(u) = u? for v > 0. Then ¢ € ®f, and L¥ = LP N L. Moreover, by
Lemma 2.4, ¢* € ®$, and ¢* = (x, V Xoo)* ~ Xp N X5 = Xg/\X1; 80 LY = L'+ 9.
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Theorem 3.2.

The following statements hold:
1°. The Mackey topology T7(LP N L*°, L4 + L') is generated by the family of norms:

U
{H\ . H|¢|meLoo:1/J € dy and 1imsupw < oo}.
u—0 upP

29, For a Riesz seminorm p on LP N L™ the following statements are equivalent:
(i) p is order continuous.

(ii) There exist an N-function v with limsup % < oo and a number a > 0
u—0

such that
p(z) <al||z|||ly for x e LPNL™.

30, For a subset Z of L1+ L' the following statements are equivalent:
(i) Z is relatively o(L9 + L', LP N L°®)-compact.
(ii) There exists an N-function 1 with x1 2 v such that Z C LY and

sup{|||z|||y:z € Z} < 0.

4°. The following equality holds:

Lrr L = J{LY g e dy and y, < ¥}

C.Letp>1,q>1and%+%:1. Let

p(u) = x1(u) V xp(u) for u=>0.

Then ¢ € ®5; and LY = L' N LP. Moreover, by Lemma 2.4, ¢* € ®$;, and
0 =1V xp)* 2 X1 A Xp = Xoo N Xq- Hence L¥ = L9+4 L.

Theorem 3.3

The following statements hold:
1°. The Mackey topology T(L* N LP, L9+ L*°) is generated by the family of norms:

. P(u
{\||-||\¢‘L1QLP: P € ®gy  and hmsup%<oo}.

29, For a Riesz seminorm p on L' N LP the following statements are equivalent:
(i) p is order continuous on L' N LP.
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(ii) There exist ¢ € PG5 with lim sup YW < 50 and a number a > 0 such that

up
uU—o0
p(z) <al||z|]l, for zeL'nLP.

39, For a subset Z of L1+ L™ the following statements are equivalent:
(i) Z is relatively o(L9 4+ L°°, L* N LP)-compact.

1
(i) There exists ¢ € ®¢; with x, < 1 such that Z C LY and
sup{|[[z|||y: 2z € Z} < oc.

4°. The following equality holds:

1
LI+ L™ = {LV:¢ € 855 and x4 < ¢},
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