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Abstract

LetLϕ be an Orlicz space defined by a Young functionϕ over aσ-finite measure
space, and let ϕ∗ denote the complementary function in the sense of Young. We
give a characterization of the Mackey topology τ(L∗, Lϕ

∗
) in terms of some

family of norms defined by some regular Young functions. Next, we describe
order continuous (= absolutely continuous) Riesz seminorms on Lϕ, and obtain
a criterion for relative σ(Lϕ, Lϕ

∗
)-compactness in Lϕ. As an application we

get a representation of Lϕ as the union of some family of other Orlicz spaces.
Finally, we apply the above results to the theory of Lebesgue spaces.

0. Introduction and preliminaries

In 1915 de la Vallée Poussin (see [12]) showed that a set Z of L1
(
for a

finite measure space (Ω,Σ, µ)
)

has uniformly absolutely continuous L1-norms
(i.e., lim

µ(E)→0
(sup
x∈Z

∫
E

|x(t)|dµ) = 0) iff there exists a Young function ψ such that

lim
u→∞

ψ(u)/u = ∞ in terms of which sup
x∈Z

∫
Ω

ψ(|x(t)|)dµ < ∞.

On the other hand, in view of the Dunford-Pettis criterion (on relatively com-
pact sets in L1)(see [3, p. 294]) the set Z ⊂ L1 has uniformly absolutely continuous
L1-norms iff it is relatively σ(L1, L∞)-compact.

Thus we have the following criterion for relative weak compactness in L1 (for
finite measures): a set Z of L1 is relatively σ(L1, L∞)-compact iff there exists a
Young function ψ such that lim

u→∞
ψ(u)/u = ∞ and sup

x∈Z

∫
Ω

ψ(|x(t)|)dµ < ∞.
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In 1962 T. Ando [2, Theorem 2] found similar criterion for relative σ(Lϕ, Lϕ
∗
)-

compactness in Lϕ for ϕ being an N -function and a finite measure. This criterion was
extended by the present author to the case of σ-finite measures ([15, Theorem 1.2]).

In this paper, using a different method, we extend the Ando’s criterion to the
case of ϕ belonging to a much wider class of Young functions and σ-finite measures.
We can include Lϕ being equal to L1 + L∞ (so L1 if µ(Ω) < ∞), L1 + Lp, Lp + L∞

(p > 1).
In section 1, making use of the author’s results concerning the so-called modular

topology T ∧
ϕ on Lϕ (see [13], [14], [18], [19]), we obtain a characterization of the

Mackey topology τ(Lϕ, Lϕ
∗
) in terms of some family of norms defined by some

regular Young functions, dependent on ϕ (see Theorem 1.5). As an application we
have a description of absolutely continuous (= order continuous) Riesz seminorms
on Lϕ (see Corollary 1.6).

In section 2, in view of the close connection between relative σ(Lϕ, Lϕ
∗
)-

compactness in Lϕ and the absolute continuity of some seminorm in Lϕ
∗
, we can

describe relatively σ(Lϕ, Lϕ
∗
)-compact sets in Lϕ as norm bounded subsets of an

Orlicz space Lψ for some regular Young function ψ (see Theorem 2.4). As an appli-
cation we get a representation of the Orlicz space Lϕ as the union of some family of
other Orlicz spaces. At last, we examine the absolute weak topology |σ|(Lϕ, Lϕ∗

).
In section 3 we apply the results of sections 1 and 2 to the theory of Lebesgue

spaces.

For notation and terminology concerning Riesz spaces we refer to [1], [21]. As
usual, N stands for the set of all natural numbers.

Let (Ω,Σ, µ) be σ-finite measure space, and let L0 denote the set of equivalence
classes of all real valued measurable functions defined and a.e. finite on Ω. Then
L0 is a super Dedekind complete Riesz space under the ordering x ≤ y whenever
x(t) ≤ y(t) a.e. on Ω. The Riesz F -norm

‖x‖0 =
∫

Ω

|x(t)|
1 + |x(t)|f(t)dµ for x ∈ L0,

where f : Ω → (0,∞) is measurable and
∫
Ω

f(t)dµ = 1, determines the Lebesgue

topology T0 on L0, which generates the convergence in measure on subsets of Ω
of finite measure. For a sequence (xn) in L0 we will write xn → x(µ) whenever
‖xn − x‖0 → 0.

For a subset A of Ω and x ∈ L0 we will write xA = x · χA, where χA stands for
the characteristic function of A. We will write En ↘ ∅ if (En) is a decreasing
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sequence of measurable subsets of Ω such that µ(En ∩ E) → 0 for every set E ⊂ Ω
of finite measure.

Now we recall some notation and terminology concerning Orlicz spaces (see [6],
[8], [10], [20] for more details).

By an Orlicz function we mean a function ϕ: [0,∞) → [0,∞] which is non-
decreasing, left continuous, continuous at 0 with ϕ(0) = 0, not identically equal
to 0.

An Orlicz function ϕ is called convex, whenever ϕ(αu + βv) ≤ αϕ(u) + βϕ(v)
for α, β ≥ 0, α + β = 1 and u, v ≥ 0. A convex Orlicz function is usually called a
Young function.

For a Young function ϕ we denote by ϕ∗ the function complementary to ϕ in
the sense of Young, i.e.,

ϕ∗(v) = sup
{
uv − ϕ(u):u ≥ 0

}
for v ≥ 0.

For a set Ψ of Young functions we will write

Ψ∗ = {ψ∗:ψ ∈ Ψ} .

We shall say that an Orlicz function ψ is completely weaker than another ϕ

for all u (resp. for small u; resp. for large u), in symbols ψ
a
� ϕ (resp. ψ

s
� ϕ;

resp. ψ
l
� ϕ), if for an arbitrary c > 1 there exists a constant d > 0 such that

ψ(cu) ≤ dϕ(u) for u ≥ 0 (resp. for 0 ≤ u ≤ u0; resp. for u ≥ u0 ≥ 0). (See [2], [20,
Ch. II]).

It is seen that ϕ satisfies the so called ∆2-condition for all u (resp. for small u;

resp. for large u) if and only if ϕ
a
� ϕ (resp. ϕ

s
� ϕ; resp. ϕ

l
� ϕ).

We shall say that an Orlicz function ϕ increases more rapidly than another ψ

for all u (resp. for small u; resp. for large u) in symbols ψ
a
≺− ϕ (resp. ψ

s
≺− ϕ; resp.

ψ
l
≺− ϕ), if for an arbitrary c > 0 there exists d > 0 such that cψ(u) ≤ 1

dϕ(du) for
all u ≥ 0 (resp. for 0 ≤ u ≤ u0; resp. for u ≥ uo ≥ 0).

Note that ϕ satisfies the so called ∇2-condition for all u (resp. for small u; resp.

for large u) if and only if ϕ
a
≺− ϕ (resp. ϕ

s
≺− ϕ; resp. ϕ

l
≺− ϕ).

One can verify that for given Young functions ψ and ϕ the relation ψ
a
� ϕ (resp.

ψ
s
� ϕ; resp. ψ

l
� ϕ) holds iff ϕ∗ a

≺− ψ∗ (resp. ϕ∗ s
≺− ϕ∗, resp. ϕ∗ l

≺− ψ∗) holds (see
[2], [20, Proposition 2.2.4]).
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An Orlicz function ϕ determines the functional mϕ:L0 → [0,∞] by

mϕ(x) =
∫

Ω

ϕ(|x(t)|)dµ.

The Orlicz space generated by ϕ is the ideal of L0 defined by

Lϕ = {x ∈ L0:mϕ(λx) < ∞ for some λ > 0}.
The functional mϕ restricted to Lϕ is an orthogonally additive semimodular

(see [10], [11]).
Lϕ can be equipped with the complete metrizable linear topology Tϕ of the

Riesz F -norm
x ϕ = inf

{
λ > 0:mϕ

(x

λ

)
≤ λ

}
.

Moreover, when ϕ is a Young function, the topology Tϕ can be generated by two
Riesz norms (called the Orlicz and the Luxemburg norms resp.) defined as follows:

‖x‖ϕ = sup
{∫

Ω

|x(t)y(t)|dµ: y ∈ Lϕ
∗
,mϕ∗(y) ≤ 1

}
|||x|||ϕ = inf

{
λ > 0:mϕ(

x

λ
) ≤ 1

}
.

For an Orlicz function ϕ let

Eϕ = {x ∈ L0:mϕ(λx) < ∞ for all λ > 0}
and

Lϕa = {x ∈ Lϕ: xEn ϕ → 0 as En ↘ ∅}.
It is well known that for ϕ taking only finite values these spaces coincide, i.e.,
Eϕ = Lϕa .

1. The Mackey topology τ(Lϕ, Lϕ
∗
)

First we recall the definition and the basic properties of the so-called modular topol-
ogy on Orlicz spaces (see [13], [14]).

Let ϕ be an Orlicz function vanishing only at 0. For given ε > 0, let Uϕ(ε) =
{x ∈ Lϕ:mϕ(x) ≤ ε}. Then the family of all sets of the form

∞⋃
N=1

( N∑
n=1

Uϕ(εn)
)

where (εn) is a sequence of positive numbers, forms a base of neighborhoods of 0 for
a linear topology on Lϕ, that will be called the modular topology on Lϕ and will be
denoted by T ∧

ϕ .
The basic properties of T ∧

ϕ are included in the following theorem (see [14, The-
orem 1.1], [18, Theorem 2.2], [19. Theorem 4.2]):
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Theorem 1.1

Let ϕ be an Orlicz function vanishing only at 0. Then the following statements

hold:

(i) T ∧
ϕ is the finest σ-Lebesgue topology on Lϕ.

(ii) T ∧
ϕ ⊂ Tϕ and the equality T ∧

ϕ = Tϕ holds whenever ϕ ∈ ∆2.

(iii) T ∧
ϕ coincides with the Mackey topology τ(Lϕ, Lϕ

∗
), whenever ϕ is a Young

function.

To present the crucial for this paper characterization of the modular topology
T ∧
ϕ we will distinguish some classes of Orlicz functions.

An Orlicz function ϕ continuous for all u ≥ 0, taking only finite values, vanishing
only at zero, and such that ϕ(u) → ∞ as u → ∞ is usually called a ϕ-function (see
[10]). We will denote by Φ the collection of all ϕ-functions.

A Young function ϕ vanishing only at 0 and taking only finite values is called
an N -function whenever lim

u→0
ϕ(u)/u = 0 and lim

u→∞
ϕ(u)/u = ∞ (see [6], [10]). We

will denote by ΦN the collection of all N -functions.
Let Φ0 be the collection of all Orlicz functions ϕ vanishing only at 0 and such

that ϕ(u) → ∞ as u → ∞. Let

Φ01 = {ϕ ∈ Φ0:ϕ(u) < ∞ for u ≥ 0}
Φ02 = {ϕ ∈ Φ0:ϕ jumps to ∞, i.e., ϕ(u) = ∞ for u > u0 > 0}.

The following characterizations of the modular topology T ∧
ϕ will be crucial for

this paper (see [13, Theorem 2.1], [14, Theorem 1.2]).

Theorem 1.2

Let ϕ ∈ Φ0i(i = 1, 2). Then the modular topology T ∧
ϕ is generated by the

family of F -norms:

{ · ψ|Lϕ :ψ ∈ Ψϕ
0i}

where

Ψϕ
01 = {ψ ∈ Ψ:ψ

a
� ϕ}, Ψϕ

02 = {ψ ∈ Φ:ψ
s
� ϕ}.

Now, for ϕ being a Young function we are going to apply Theorem 1.2 to obtain
a description of the Mackey topology τ(Lϕ, Lϕ

∗
) in terms of some family of norms

defined by some regular Young functions.
For this purpose we distinguish some classes of Young functions.
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Let Φc0 be the collection of all Young functions ϕ vanishing only at 0 and such
that lim

u→∞
ϕ(u)/u = ∞ .

Let

Φc01 = {ϕ ∈ Φc0:ϕ(u) < ∞ for all u ≥ 0 and lim
u→0

ϕ(u)
u = 0},

Φc02 = {ϕ ∈ Φc0:ϕ jumps to ∞ and lim
u→0

ϕ(u)
u = 0},

Φc03 = {ϕ ∈ Φc0:ϕ(u) < ∞ for all u ≥ 0 and lim
u→0

ϕ(u)
u > 0},

Φc04 = {ϕ ∈ Φc0:ϕ jumps to ∞ and lim
u→0

ϕ(u)
u > 0}.

Then Φc0 =
4⋃
i=1

Φc0i, and the sets Φc0i(i = 1, 2, 3, 4) are pairwise disjoint. It is seen

that Φc01 = ΦN . Denote by

Ψϕ
01(c) = {ψ ∈ ΦN :ψ

a
� ϕ}, whenever ϕ ∈ Φc01,

Ψϕ
02(c) = {ψ ∈ ΦN :ψ

s
� ϕ}, whenever ϕ ∈ Φc02,

Ψϕ
03(c) = {ψ ∈ Φ03:ψ

l
� ϕ}, whenever ϕ ∈ Φc03,

Ψϕ
04(c) = Φc03, whenever ϕ ∈ Φc04.

The following two lemmas will be needed.

Lemma 1.3

Let ϕ ∈ Φc0i(i = 1, 2) and let ψ be a ϕ-function such that ψ
a
� ϕ for i = 1 (resp.

ψ
s
� ϕ for i = 2). Then there exists ψ0 ∈ Ψϕ

0i(c) such that

ψ(u) ≤ ψ0(2u) for u ≥ 0.

Proof. Take an arbitrary N -function ψ1 such that ψ1
a
� ϕ for i = 1 (resp. ψ1

s
� ϕ for

i = 2). Let us set
ψ2(u) = max

(
ψ(u), ψ1(u)

)
for u ≥ 0.

Let us put

p(s) =

{
0 for s = 0,

sup0<t≤s
ψ2(t)
t for s > 0,
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and let

ψ0(u) =
∫ u

0

p(s)ds.

To show that ψ0 is an N -function we have to check that lim
u→0

p(u) = 0 and lim
u→∞

p(u) =
∞.

Indeed, since ψ
a
� ϕ we get that ψ(u) ≤ aϕ(u) for some a > 0 and u ≥ 0. Hence

p(u) = sup
0<t≤u

ψ2(t)
t

≤ sup
0<t≤u

ψ(t)
t

+ sup
0<t≤u

ψ1(t)
t

≤ a sup
0<t≤u

ϕ(t)
t

+ sup
0<t≤u

ψ1(t)
t

= a
ϕ(u)
u

+
ψ1(t)
u

.

Thus lim
u→∞

p(u) = 0, because lim
u→0

ϕ(u)/u = 0 and lim
u→0

ψ1(u)/u = 0. Moreover,

we have: p(u) = sup
0<t≤u

ψ2(t)/t ≥ sup
0<t≤u

ψ1(t)/t = ψ1(u)/u, because ψ1 is a Young

function. Hence lim
u→∞

p(u) = ∞, because lim
u→∞

ψ1(u)/u = ∞.

Now we shall show that ψ0
a
� ϕ if i = 1 (resp. ψ

s
� ϕ if i = 2). Indeed, given

c > 0 there exist d > 0 such that

ψ2(u) = ψ(u) ∨ ψ1(u) ≤ dϕ
(u

c

)
for u ≥ 0.

Hence

p(cu) = sup
0<t≤cu

ψ2(t)
t

≤ sup
0<t≤cu

dϕ( tc )
t

=
dϕ(u)
cu

for u ≥ 0,

so
ψ0(cu) ≤ p(cu) · cu ≤ dϕ(u) for u ≥ 0.

Similarly we can show that ψ0
s
� ϕ if i = 2.

At last we will show that ψ(u) ≤ ψ0(2u) for u ≥ 0. Indeed, we have ψ0(2u) ≥
p(u) · u and

p(u) = sup
0<t≤u

ψ2(t)
t

≥ sup
0<t≤u

ψ(t)
t

≥ ψ(u)
u

for u ≥ 0.

Thus
ψ0(2u) ≥ ψ(u) for u ≥ 0. �
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Lemma 1.4

Let ϕ ∈ Φc0i (i = 3, 4) and let ψ be a ϕ-function such that ψ
a
� ϕ for i = 3 (resp.

ψ
s
� ϕ for i = 4). Then there exists a Young function ψ0 ∈ Ψϕ

0i(c) such that

ψ(u) ≤ ψ0(2u) for u ≥ 0.

Proof. Take an arbitrary N -function ψ1 such that ψ1(u) ≤ ϕ(u) and ψ1
a
� ϕ. Let

a > 1 be such that aψ1(1) = ϕ(1). Let us set

ψ2(u) =

{
max

(
ψ(u), ϕ(u)

)
for 0 ≤ u ≤ 1,

max
(
ψ(u), aψ1(u)

)
for u ≥ 1.

Let

p(s) =

{
0 for s = 0,

sup0<t≤s
ψ2(t)
t for s > 0,

and let
ψ0(u) =

∫ u

0

p(s)ds for u ≥ 0.

We shall show that ψ0 ∈ Ψc
03, i.e., that lim

u→0
ψ0(u)/u > 0 and lim

u→∞
ψ0(u)/u = ∞.

Indeed, for 0 ≤ u ≤ 1 we have

p(u) = sup
0<t≤u

ψ2(t)
t

≥ sup
0<t≤u

ϕ(t)
t

=
ϕ(u)
u

,

so

lim
u→0

p(u) ≥ lim
u→0

ϕ(u)
u

> 0.

Since ψ0(u) ≥ p(u2 ) · u2 , we get lim
u→0

ψ0(u)/u > 0.

To show that lim
u→∞

ψ0(u)/u = ∞ it is enough to show that lim
u→∞

p(u) = ∞.

Indeed, let u0 > 1 be such that aψ1(u)/u ≥ K = sup
0<t≤1

ψ2(t)/t for u ≥ u0. Then for

u ≥ u0 we have:

p(u) = sup
0<t≤u

ψ2(t)
t

= max
(
K, sup

1≤t≤u

ψ2(t)
t

)
≥ max

(
K, sup

1≤t≤u

ψ1(t)
t

)

= max
(
K, sup

1≤t≤u

ψ1(u)
u

)
=

aψ1(u)
u

.
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Thus lim
u→∞

p(u) = ∞, because lim
u→∞

ψ1(u)/u = ∞.

Now, for i = 3 we shall show that ψ0
l
� ϕ. Indeed, given c > 1 there exists d > 1

such that for u ≥ 0

ψ(u) ≤ dϕ
(u

c

)
and aψ1(u) ≤ dϕ

(u

c

)
.

Let u0 > 0 be such that dϕ(u0)/u0 ≥ K = sup
0<t≤1

ψ2(t)/t. Then for u ≥ uo we get

p(cu) = sup
0<t≤cu

ψ2(t)
t

= max
(

sup
0<t≤1

ψ2(t)
t

, sup
0<t≤cu

ψ2(t)
t

)

≤ max
(
K, sup

1≤t≤cu

dϕ( tc )
t

)
= max

(
K,

dϕ(u)
cu

)
=

dϕ(u)
cu

.

Thus for u ≥ u0

ψ0(cu) ≤ p(cu) · cu ≤ dϕ(u) ,

i.e. ψ0
l
� ϕ.

At last, we shall show that ψ(u) ≤ ψ0(2u) for u ≥ 0 (i = 3, 4). Indeed, we have
ψ0(2u) ≥ p(u) · u and

p(u) = sup
0<t≤u

ψ2(t)
t

≥ sup
0<t≤u

ψ(u)
u

for u ≥ 0.

Thus ψ(u) ≤ ψ0(2u) for u ≥ 0. �

We are now in position to present a description of the Mackey topology
τ(Lϕ, Lϕ

∗
) in terms of some family of norms defined by some regular Young func-

tions.

Theorem 1.5

Let ϕ ∈ Φc0i (i = 1, 2, 3, 4). Then the Mackey topology τ(Lϕ, Lϕ
∗
) is generated

by the family of norms:

{||| · |||ψ|Lϕ :ψ ∈ Ψϕ
0i(c)}.
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Proof. In view of Theorem 1.1 the equality T ∧
ϕ = τ(Lϕ, Lϕ

∗
) holds. Let ϕ ∈

Φc0i (i = 1, 2, 3, 4). Then ϕ ∈ Φ01 for i = 1, 3, and ϕ ∈ Φ02 for i = 2, 4. Thus,
according to Theorem 1.2 the Mackey topology τ(Lϕ, Lϕ

∗
) is generated by the family

{ · ψ|Lϕ :ψ ∈ Ψϕ
01} for i = 1, 3, and by the family { · ψ|Lϕ :ψ ∈ Ψϕ

01} for i = 2, 4.
Now let ψ ∈ Ψϕ

01 (resp. ψ ∈ Ψϕ
02), and let r > 0 be given. In view of Lemma

1.3 (resp. Lemma 1.4) there exists ψ0 ∈ Ψϕ
0i(c) for i = 1, 3 (resp. ψ0 ∈ Ψϕ

0i(c) for
i = 2, 4) such that ψ(u) ≤ ψ0(2u) for u ≥ 0. Hence

x ψ ≤ 2x ψ0 for all x ∈ Lψ0 . (1)

Since the F -norms · ψ0 and ||| · |||ψ0 are equivalent on Lψ0 , there exists r1 > 0
such that

B(ψ0)(r1) ⊂ Bψ0(r), (2)

where

Bψ0(r) = {x ∈ Lψ0 : x ψ0 ≤ r} and B(ψ0)(r1) = {x ∈ Lψ0 : |||x|||ψ0 ≤ r1}.

We shall show that B(ψo)( r12 ) ∩ Lϕ ⊂ Bψ(r). Indeed, let x ∈ B(ψ0)(
r1
2 ) ∩ Lϕ.

Then |||2x|||ψ0 ≤ r1; hence by (2), 2x ψ0 ≤ r. Next, by (1) we get that x ψ ≤ r.
Thus we proved that the topology τ∗ϕ generated by the family of norms

{||| · |||ψ:ψ ∈ Ψϕ
0i(c)} is finer than τ(Lϕ, Lϕ

∗
).

On the other hand, since for ψ ∈ Ψϕ
0i(c) the F -norms · ψ and ||| · |||ψ are equiv-

alent on Lϕ, we get that τ(Lϕ, Lϕ
∗
) is finer than τ∗ϕ. Thus the proof is completed. �

As an application of Theorem 1.5 we obtain a characterization of absolutely
continuous (order continuous) seminorms on Lϕ (see [2, Theorem 3]).

Corollary 1.6

Let ϕ ∈ Φc0i (i = 1, 2, 3, 4). Then for a Riesz seminorm p on Lϕ the following

statements are equivalent:

(i) p is order continuous (i.e., p(xn) ↓ 0 whenever xn ↓ 0 in Lϕ).

(ii) p is absolutely continuous (i.e. p(xEn) → 0 whenever En ↘ ∅ and x ∈ Lϕ ).

(iii) There exists ψ ∈ Ψϕ
0i(c) and a number a > 0 such that

p(x) ≤ a|||x|||ψ for x ∈ Lϕ.
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Proof. (i)⇔(ii) See [9, Theorem 2.1].

(i)⇒(iii) Let ϕ ∈ Φc0i (i = 1, 2, 3, 4). Since τ(Lϕ, Lϕ
∗
) is the finest σ-Lebesgue

topology on Lϕ (see Theorem 1.1) in view of Theorem 1.5 and [5, Ch. 4, § 18, (4)]
there exist ψ1, . . . , ψn ∈ Ψϕ

0i(c) and a number a > 0 such that

p(x) ≤ amax{|||x|||ψ1 , . . . , |||x|||ψn} for all x ∈ Lϕ.

Let us put
ψ(u) = max

(
ψ1(u), . . . , ψn(u)

)
for u ≥ 0.

Then ψ ∈ Ψϕ
0i(c) and |||x|||ψi ≤ |||x|||ψ for x ∈ Lϕ, so p(x) ≤ a|||x|||ψ for x ∈ Lϕ.

(iii)⇒(i) Since τ(Lϕ, Lϕ
∗
) is a σ-Lebesgue topology, by Theorem 1.5, for each

ψ ∈ Ψϕ
0i(c) the norm ||| · |||ψ is order continuous on Lϕ; so p is also order continuous

on Lϕ. �

2. Weak compactness in Orlicz spaces

Throughout this section we assume that (Ω,Σ, µ) is a σ-finite measure space.
For any Young function ϕ the following criterion for relative σ(Lϕ, Lϕ

∗
)-

compactness is well known (see [11, §28], [8, Ch. I, §3, Theorem 5], [20, Corollary
4.5.2]):

Theorem 2.1

Let ϕ be a Young function. For a subset Z of Lϕ the following statements are

equivalent:

(i) Z is relatively σ(Lϕ, Lϕ
∗
)-compact.

(ii) Z is σ(Lϕ, Lϕ
∗
)-bounded and for each y ∈ Lϕ

∗

lim
n→∞

sup
x∈Z

∫
En

|x(t)y(t)|dµ = 0 whenever En ↘ ∅.

The next theorem presents conditions for relative σ(Lϕ, Lϕ
∗
)-compact embeddings

of Orlicz spaces. This theorem was proved in a different way in [20, Theorem 5.3.3]
for ϕ being an N -function.



228 Nowak

Theorem 2.2

Let ϕ and ψ be Young functions.

10. If ϕ
a
≺− ψ (resp. ϕ

l
≺− ψ if µ(Ω) < ∞, resp. ϕ

s
≺− ψ if µ is the counting measure

on N), then the embedding

i:Lψ ↪→ Lϕ

is relatively σ(Lϕ, Lϕ
∗
)-compact (i.e., every norm bounded subset of Lϕ is relatively

σ(Lϕ, Lϕ
∗
)-compact).

2 0. Let Lψ ⊂ Lϕ with lim
u→∞

ψ(u)/u = ∞, and let the measure space (Ω,Σ, µ) be

infinite and atomless (resp. finite and atomless; resp. Ω = N with µ being the

counting measure). If the embedding

i:Lψ ↪→ Lϕ

is relatively σ(Lϕ, Lϕ
∗
)-compact, then ϕ

a
≺− ψ (resp. ϕ

l
≺− ψ; resp. ϕ

s
≺− ψ).

Proof. 10. We have Lψ ⊂ Lϕ and the Young function ψ∗ is finite valued because
lim
u→∞

ψ(u)/u = ∞. Let the set Z ⊂ Lψ be norm bounded, i.e., sup{|||x|||ψ:x ∈ Z} <

∞. For y ∈ Lϕ
∗

let us put

pZ(y) = sup
{∫

Ω

|x(t)y(t)|dµ:x ∈ Z
}
.

In view of Theorem 2.1 we have to show that the seminorm pZ is absolutely contin-
uous on Lϕ

∗
, i.e., pZ(yEn

) → 0, as En ↘ ∅ for y ∈ Lϕ
∗
. Indeed, let y ∈ Lϕ

∗
and

En ↘ ∅. Since ϕ
a
≺− ψ (resp. ϕ

l
≺− ψ; resp. ϕ

s
≺− ψ) we get that ψ∗ a

� ϕ∗ (resp.

ψ∗ l
� ϕ∗; resp. ψ∗ s

� ϕ∗). Hence Lψ
∗ ⊂ Eψ∗

= Lψ
∗

a (see [20, Theorem 5.3.1]).
By applying Hölder’s inequality (see [20, Ch. III, §3]) we get

pZ(yEn
) = sup

{∫
Ω

|x(t)yEn
(t)|dµ:x ∈ Z

}
≤ ‖yEn‖ψ∗ · sup

{
|||x|||ψ:x ∈ Z

}
.

Thus pZ(yEn) → 0, because y ∈ Lψ
∗

a .
20. Since Lψ ⊂ Lϕ we have Lϕ

∗ ⊂ Lψ
∗
, and ψ∗ is finite valued. To prove that

ϕ
a
≺− ψ (resp. ϕ

s
≺− ψ, resp. ϕ

l
≺− ψ) it is enough to show that Lϕ

∗ ⊂ Eψ∗
, because

this inclusion implies that ψ∗ a
� ϕ∗ (resp. ψ∗ s

� ϕ∗; resp. ψ∗ l
� ϕ∗) (see [20, Theorem

5.3.1]).
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Indeed, let y ∈ Lϕ
∗
. Since the unit ball Bψ(1) = {x ∈ Lψ: |||x|||ψ ≤ 1} ⊂ Lϕ is

σ(Lϕ, Lϕ
∗
)-compact, in view of Theorem 2.1 we get that

‖yEn
‖ψ∗ = sup

{∫
Ω

|x(t)yEn
(t)|dµ:x ∈ Lψ, x ∈ Bψ(1)

}
→ 0 as En ↘ ∅.

This means that y ∈ Lψ
∗

a = Eψ∗
. �

Corollary 2.3
Let ϕ be a Young function, and let the measure space (Ω,Σ, µ) be infinite and

atomless (resp. finite and atomless; resp. Ω = N with µ being the counting measure).
Then the following statements are equivalent:
(i) ϕ satisfies the �2-condition for all u (resp. for large u; resp. for small u).
(ii) Every norm bounded subset of Lϕ is relatively σ(Lϕ, Lϕ

∗
)-compact.

The main aim of this section is to show that a relatively σ(Lϕ, Lϕ
∗
)-compact

subset of Lϕ (for ϕ being a finite valued Young function) is norm bounded in Lψ

for some regular Young function ψ dependent on ϕ.
This result extends the well-known Ando’s criterion for relative weak compact-

ness in Lϕ obtained for ϕ being an N -function and finite measures (see [2, Theo-
rem 2]). For this purpose we distinguish some classes of Young functions.

Let Φc1 be the collection of Young functions taking only finite values and such
that lim

u→0
ϕ(u)/u = 0.

Let

Φc11 = {ϕ ∈ Φc1:ϕ(u) > 0 for u > 0, and lim
u→∞

ϕ(u)
u = ∞} ,

Φc12 = {ϕ ∈ Φc1:ϕ(u) > 0 for u > 0, and lim
u→∞

ϕ(u)
u < ∞} ,

Φc13 = {ϕ ∈ Φc1:ϕ(u) = 0 near u > 0, and lim
u→∞

ϕ(u)
u = ∞} ,

Φc14 = {ϕ ∈ Φc1:ϕ(u) = 0 near u > 0, and lim
u→∞

ϕ(u)
u < ∞} .

Then Φc1 =
∞⋃
i=1

Φc1i, and the sets Φc1i are pairwise disjoint. It is seen that Φc11 = ΦN .

Denote by

Ψϕ
11(c) = {ψ ∈ ΦN :ϕ

a
≺− ψ}, whenever ϕ ∈ Φc11,

Ψϕ
12(c) = {ψ ∈ ΦN :ϕ

s
≺− ψ}, whenever ϕ ∈ Φc12,

Ψϕ
13(c) = {ψ ∈ Φc13:ϕ

l
≺− ψ}, whenever ϕ ∈ Φc13,

Ψϕ
14(c) = Φc13, whenever ϕ ∈ Φc14.

The next important lemma shows the relation between the sets Φc0i and Φc1i,
and the sets Ψϕ

0i(c) and Ψϕ
1i(c) (i = 1, 2, 3, 4).
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Lemma 2.4

10. Let ϕ ∈ Φc0i (i = 1, 2, 3, 4). Then ϕ∗ ∈ Φc1i and

(
Ψϕ

0i(c)
)∗ = Ψϕ∗

1i (c).

2 0. Let ϕ ∈ Φc1i (i = 1, 2, 3, 4). Then ϕ∗ ∈ Φc0i and

(
Ψϕ

1i(c)
)∗ = Ψϕ∗

0i (c).

Proof. In view of [17, Lemma 3.1] ϕ∗ ∈ Φc1i whenever ϕ ∈ Φc0i, and ϕ∗ ∈ Φc0i
whenever ϕ ∈ Φc1i (i = 1, 2, 3, 4).

But it is known that for Young functions ψ and ϕ the relation ψ
a
� ϕ (resp.

ψ
s
� ϕ; resp. ψ

l
� ϕ) holds if and only if the relation ϕ∗ a

≺− ψ∗ (resp. ϕ∗ s
≺− ψ∗; resp.

ϕ∗ l
≺− ψ∗) holds (see [20, proposition 2.2.4]). �

Now we are ready to obtain our desired description of relatively σ(Lϕ, Lϕ
∗
)-

compact sets in Lϕ.

Theorem 2.5

Let ϕ ∈ Φc1i (i = 1, 2, 3, 4). For a subset Z of Lϕ the following statements are

equivalent:

(i) Z is relatively σ(Lϕ, Lϕ
∗
)-compact.

(ii) There exists ψ ∈ Ψϕ
1i(c) such that Z ⊂ Lψ and

sup
{
‖x‖ψ:x ∈ Z

}
< ∞ .

Proof. (i)⇒(ii) Since the set Z ⊂ Lϕ is relatively σ(Lϕ, Lϕ
∗
)-compact, in view

of Theorem 2.1 the seminorm pZ(y) = sup{
∫
Ω

|x(t)y(t)|dµ:x ∈ Z} is absolutely

continuous on Lϕ
∗
. Hence by Corollary 1.6 there exist ψ0 ∈ Ψϕ∗

0i (c) (so Lϕ
∗ ⊂ Eψ0)

and a number a > 0 such that

pZ(y) ≤ a|||y|||ψ0 for y ∈ Lϕ
∗
. (1)

We shall show that Z ⊂ Lψ
∗
0 and sup{‖x‖ψ∗

0
:x ∈ Z} ≤ a.
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Indeed, let x ∈ Z. Then by (1), for y ∈ Lϕ
∗
, |||y|||ψ0 ≤ 1 we get that∫

Ω

|x(t)y(t)|dµ ≤ a. (2)

Since the measure space (Ω,Σ, µ) is σ-finite, there exists a sequence (Ωn) of measur-

able subsets of Ω such that Ωn ↑,Ω =
∞⋃
n=1

Ωn, µ(Ωn) < ∞. Let z ∈ Lψ0 and z �= 0.

For n = 1, 2, . . . denote by

z(n)(t) =

{
z(t) if |z(t)| ≤ n and t ∈ Ωn,

0 elsewhere.

Then |x(t)z(n)(t)| ↑n |x(t)z(t)| on Ω, so by Fatou’s lemma and (2) we obtain

1
|||z|||ψ0

∫
Ω

|x(t)z(t)|dµ ≤ 1
|||z|||ψ0

sup
n

∫
Ω

|x(t)z(n)(t)|dµ

≤ sup
{∫

Ω

|x(t)y(t)|dµ: y ∈ Lϕ
∗
, |||y|||ψ0 ≤ 1

}
≤ a.

Hence x ∈ (Lψ0)× = Lψ
∗
0 , where (Lψ0)× denotes the Köthe dual of Lψ0 . Moreover,

since
‖x‖ψ∗

0
= sup

{∣∣∣ ∫
Ω

x(t)z(t)dµ
∣∣∣: z ∈ Lψ0 , |||z|||ψ0 ≤ 1

}
we get that ‖x‖ψ∗

0
≤ a. Putting ψ = ψ∗

0 and using Lemma 2.4 we get that ψ ∈ Ψϕ
1i(c)

and Z ⊂ Lψ with sup{‖x‖ψ:x ∈ Z} ≤ a.
(ii)⇒(i) It follows from Theorem 2.2. �
As an application of Theorem 2.5 we obtain a representation of Lϕ as the union

of some family of other Orlicz spaces.

Corollary 2.6
Let ϕ ∈ Φc1i (i = 1, 2, 3, 4). Then the following equality holds:

Lϕ =
⋃

{Lψ:ψ ∈ Ψϕ
1i(c)}.

Proof. From Theorem 2.5 we obtain that Lϕ ⊂ ⋃{Lψ:ψ ∈ Ψϕ
1i(c)}. On the other

hand, Lψ ⊂ Lϕ for each ψ ∈ Ψϕ
1i(c). �

Remark. The equality from Corollary 2.6 for i = 1, 2 was obtained in a different
way in [14, Theorem 2.6].

At last, we apply Theorem 2.5 to examination of the absolute weak topology
|σ|(Lϕ, Lϕ∗

) (see [8, Definition 2, p. 27]).
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Theorem 2.7

Let ϕ ∈ Φc1i (i = 1, 2, 3, 4). For a sequence (xn) in Lϕ the following statements

are equivalent:

(i) xn → 0 for |σ|(Lϕ, Lϕ∗
).

(ii) xn → 0(µ) and the set {xn} is relatively σ(Lϕ, Lϕ
∗
)-compact.

(iii) xn → 0(µ) and supn ‖xn‖ψ < ∞ for some Young function ψ ∈ Ψϕ
1i(c).

Proof. (i)⇔(ii) See [16, Theorem 2.1].

(ii)⇔(iii) It follows from Theorem 2.5. �

Theorem 2.8

Let ϕ ∈ Φc1i (i = 1, 2, 3, 4). If ψ ∈ Ψϕ
1i(c) and Z ⊂ Lψ ⊂ Lϕ and sup{‖x‖ψ:x ∈

Z} < ∞, then the topologies T0 and |σ|(Lϕ, Lϕ∗
) coincide on Z, i.e.,

T0|Z = |σ|(Lϕ, Lϕ∗
)|Z .

Proof. It is well known that T0|Z ⊂ |σ|(Lϕ, Lϕ∗
)|Z (see [7, Ch. X, §5, Lemma

1]). Since T0 is a linear metrizable topology from Theorem 2.7 it follows that
|σ|(Lϕ, Lϕ∗

)|Z ⊂ T0|Z . �

Theorem 2.9

Let ϕ ∈ Φc1i (i = 1, 2, 3, 4). For a subset Z of Lϕ the following statements are

equivalent:

(i) Z is relatively compact for |σ|(Lϕ, Lϕ∗
).

(ii) Z is relatively compact for T0, and there exists a Young function ψ ∈ Ψϕ
1i(c)

such that Z ⊂ Lψ and sup{‖x‖ψ:x ∈ Z} < ∞.

Proof. It follows from Theorem 2.5 and [8, Ch. I, §3, Corollary of Lemma 11]. �

3. Applications to the theory of Lebesgue spaces

In this section we will apply Theorem 1.5, Corollary 1.6, Theorem 2.5 and Corollary
2.6 to the theory of Lebesgue spaces. We will assume that (Ω,Σ, µ) is a σ-finite
measure space.

A. Let
ϕ(u) = χ1(u) ∨ χ∞(u) for u ≥ 0,
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where

χ1(u) = u for u ≥ 0, χ∞ =

{
0 for 0 ≤ u ≤ 1,

∞ for u > 1.

Then ϕ ∈ Φc04 and Lϕ = L1 ∩ L∞. Moreover, by Lemma 2.4, ϕ∗ ∈ Φc14 and
ϕ∗ = (χ1 ∨ χ∞)∗ a∼ χ∗

1 ∨ χ∗
∞ = χ∞ ∨ χ1, so Lϕ

∗
= L1 + L∞ (see [4, Theorem 3]).

Theorem 3.1

The following statements hold:

10. The Mackey topology τ(L1∩L∞, L1 +L∞) is generated by the family of norms:

{||| · |||ψ|L1∩L∞ :ψ ∈ Φc03}.

2 0. For a Riesz seminorm p on L1 ∩ L∞ the following statements are equivalent:

(i) p is order continuous.

(ii) There exist ψ ∈ Φc03 and a number a > 0 such that

p(x) ≤ a|||x|||ψ for x ∈ L1 ∩ L∞.

3 0. For a subset Z of L1 + L∞ the following statements are equivalent

(i) Z is relatively σ(L1 + L∞, L1 ∩ L∞)-compact.

(ii) There exists ψ ∈ Φc13 such that Z ⊂ Lψ and

sup{|||x|||ψ:x ∈ Z} < ∞.

4 0. The following equality holds

L1 + L∞ =
⋃

{Lψ:ψ ∈ Φc13}.

B. Let p > 1, q > 1 and 1
p + 1

q = 1. Let

ϕ(u) = χp(u) ∨ χ∞(u) for u ≥ 0,

where χp(u) = up for u ≥ 0. Then ϕ ∈ Φc02 and Lϕ = Lp ∩ L∞. Moreover, by
Lemma 2.4, ϕ∗ ∈ Φc12 and ϕ∗ = (χp∨χ∞)∗ a∼ χ∗

p∧χ∗
∞ = χq ∧χ1; so Lϕ

∗
= L1 +Lq.
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Theorem 3.2.

The following statements hold:

10. The Mackey topology τ(Lp ∩L∞, Lq +L1) is generated by the family of norms:

{
||| · |||ψ|Lp∩L∞ :ψ ∈ ΦN and lim sup

u→0

ψ(u)
up

< ∞
}
.

2 0. For a Riesz seminorm p on Lp ∩ L∞ the following statements are equivalent:

(i) p is order continuous.

(ii) There exist an N -function ψ with lim sup
u→0

ψ(u)
up < ∞ and a number a > 0

such that

p(x) ≤ a|||x|||ψ for x ∈ Lp ∩ L∞.

3 0. For a subset Z of Lq + L1 the following statements are equivalent:

(i) Z is relatively σ(Lq + L1, Lp ∩ L∞)-compact.

(ii) There exists an N -function ψ with χ1

s
≺− ψ such that Z ⊂ Lψ and

sup{|||x|||ψ:x ∈ Z} < ∞.

4 0. The following equality holds:

Lq + L1 =
⋃

{Lψ:ψ ∈ ΦN and χq
s
≺− ψ}.

C. Let p > 1, q > 1 and 1
p + 1

q = 1. Let

ϕ(u) = χ1(u) ∨ χp(u) for u ≥ 0.

Then ϕ ∈ Φc03 and Lϕ = L1 ∩ Lp. Moreover, by Lemma 2.4, ϕ∗ ∈ Φc13, and
ϕ∗ = (χ1 ∨ χp)∗

a∼ χ∗
1 ∧ χ∗

p = χ∞ ∧ χq. Hence Lϕ
∗

= Lq + L∞.

Theorem 3.3

The following statements hold:

10. The Mackey topology τ(L1 ∩Lp, Lq +L∞) is generated by the family of norms:

{
||| · |||ψ|L1∩Lp : ψ ∈ Φc03 and lim sup

u→∞

ψ(u)
up

< ∞
}
.

2 0. For a Riesz seminorm p on L1 ∩ Lp the following statements are equivalent:

(i) p is order continuous on L1 ∩ Lp.
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(ii) There exist ψ ∈ Φc03 with lim sup
u→∞

ψ(u)
up < ∞ and a number a > 0 such that

p(x) ≤ a|||x|||ψ for x ∈ L1 ∩ Lp.

3 0. For a subset Z of Lq + L∞ the following statements are equivalent:

(i) Z is relatively σ(Lq + L∞, L1 ∩ Lp)-compact.

(ii) There exists ψ ∈ Φc13 with χq
l
≺− ψ such that Z ⊂ Lψ and

sup{|||x|||ψ:x ∈ Z} < ∞.

4 0. The following equality holds:

Lq + L∞ =
⋃

{Lψ:ψ ∈ Φc13 and χq
l
≺− ψ}.

References

1. C.D. Aliprantis, 0. Burkinshaw, Locally solid Riesz spaces, Academic Press, New York, 1978.
2. T. Ando, Weakly compact sets in Orlicz spaces, Canadian J. Math. 14 (1962), 170–176.
3. N. Dunford, J. Schwartz, Linear operators I, Interscience Publishers, New York, 1958.
4. H. Hudzik, Intersections and algebraic sums of Musielak-Orlicz spaces, Portugaliae Math. 40

(1985), 287–296.
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