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Abstract

Let E([0, 1]; m) be a rearrangement invariant space (RIS) on [0, 1] with
Lebesgue measure m. That is, E is a Banach lattice and if m(t: |x(t)| >
τ) = m(t: |y(t)| > τ)∀τ , then ‖x‖E = ‖y‖E . For each of this kind of
spaces we have inclusions C ⊂ L∞ ⊂ E ⊂ L1 and canonical inclusion maps
I(C, E) or I(E1, E2). The aim of this paper is to represent a number of RIS,
which are boundary for various properties of canonical inclusion maps. There
are still some unsolved problem in this area.

1. Strict singularity

An operator T ∈ L(X, Y ) between two Banach spaces (BS) X and Y is called strictly
singular if there is no infinite dimensional subspace Z of X such that the restriction
T |Z is an isomorphism. The set of this kind of operators will be denoted σ(X, Y ).
It is an ideal in the Pietsch sense.

According to a well-known Grothendieck’s theorem I(L∞, Lp)∈ σ, 1 ≤ p < ∞
(see, for example, the text book of W. Rudin). A more general fact seems to be
true:

Theorem 1

Let E be a RIS and E 
= L∞. Then I(L∞, E) is strictly singular.
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Proof. The function ϕE(t) := ‖1[0,t]‖E , the so-called fundamental function of the
space E is a quasi-concave function. We may define Lorentz space Λ(ϕ

E
) :=

{f :
∫ 1

0
f∗dϕ

E
< ∞}, where f∗ is the decreasing rearrangement of |f |, besides we

have another inclusion: E ⊃ Λ(ϕ
E
), E 
= L∞. It’s known, that if E 
= L∞, then the

function ϕ
E

is continuous at zero and the space Λ(ϕ
E
) is weakly sequential com-

plete. From this we deduce that the p-convexification Λp(ϕE
) := {f : |f |p ∈ Λ(ϕ

E
)}

is reflexive for 1 < p < ∞. So, we have: E ⊃ Λ(ϕ
E
) ⊃ Λp(ϕE

) ⊃ L∞. As L∞ has
the Dunford-Pettis property (i.e., ∀Y,∀ weakly compact T ∈ L(L∞, Y ),∀ convex
weakly compact K ⊂ L∞, T (K) is compact in Y ), we have that the unit ball BH of
each subspace H ⊂ E, such that H ⊂ L∞, is compact in E. �

In spite of the fact that Theorem 1 solves the problem of strict singularity of the
inclusion map I(L∞, E), there are still left a lot of problems concerning inclusion
maps between general RIS E1 ⊂ E2. For example, there is no full description of the
set of such RIS E, for which I(E, L1) ∈ σ. In this direction we know only a partial
answer:

Theorem 2

If RIS E ⊂ L2, then I(E, L1) ∈ σ iff E 
⊃ G, where G is the closure of C[0, 1]
in the Orlicz space LN , N(u) = eu

2 − 1.

Proof. If E ⊃ G, then according to the classical result of Rodin-Semenov ([6], [2]),
E contains an infinite dimensional subspace R closed in L1.

Now suppose that I(E, L1) is not strictly singular. It means that E contains
an infinite dimensional subspace H, closed in L1. This subspace is closed in L2

also (cf. condition). Let {fi} be a sequence of elements of H, equivalent to the
unit basis of l2 and ‖fi‖L2 = 1, i = 1, 2, . . .. We can assume that fi → 0 weakly
in L2 and lim inf ‖fi‖L1 > 0; this may be done by choosing subsequences. The last
inequality ensures the existence of a function 0 ≤ g ∈ L1 with m(supp g) > 0 such
that f2

i → g weakly in L1. Now we will use the following theorem of V. Gaposhkin
([1], Th. 1.5.1):
If {fk} is a sequence of functions such that:
1) ‖fk‖L2 = 1 ∀k;
2) fk → 0 weakly in L2;
3) ∃g ∈ L+

1 , ‖g‖L1 = 1 such that fk → g weakly in L1;
then it’s possible to choose a subsequence {fki} such that the next equality, like in
central limit theorem, takes place

lim
m→∞

m
{

t:
1√
m

m∑
i=1

fki(t) ≥ s
}

=
1
2π

∫ 1

0

dt

∫ ∞

s/
√

g(t)

exp
(−u2

2

)
du .
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Using this fact it’s not difficult to see that the function (ln 1
t )

1
2 ∈ E′′, where E′′ is

the Köthe dual of E. The last condition is known to be equivalent to the inclusion
E ⊃ G. �

2. Absolutely summing properties

Definition. An operator T is called (q, p) – absolutely summing (T ∈ Πq,p(X, Y )
if ∃C > 0:∀{x1, x2, . . . , xn} ∈ X

( ∑
i

‖Txi‖q
)1/q

≤ C sup
{( ∑

i

|F (xi)|p
)1/p

: ‖F‖X∗ ≤ 1
}

.

This definition makes sense only if 0 < p ≤ q < ∞; if p > q then only 0 – operator is
(q, p) – absolutely summing. For p = q we use the notations Πp and “p – absolutely
summing”.

Theorem 3

Let E1 ⊂ E2 and p ≥ 1. The inclusion map I(E1, E2) ∈ Πp iff E1 = L∞, E2 ⊃
Lp.

Proof. Sufficiency is obvious. Now assume that I(E1, E2) is p – absolutely summing.
Then each weak convergent sequence in E1 is convergent in norm in E2. Repeating
the proof of Theorem 1 we deduce that E1 = L∞. From classical factorization
theorem of Pietsch we have: ∃ probability measure ν on [0, 1] such that

‖f‖E2 ≤ πp(I)
( ∫

|f(s)|pdν(s)
)1/p

, f ∈ C[0, 1].

Now let t ∈ [0, 1] and ft(s) := f(t + s), addition by mod 1. We have:

‖ft‖pE2
≤ πp(I)

( ∫
|ft(s)|pdν(s)

)
, t ∈ [0, 1].

Integrating this inequality by Lebesgue measure, we have

‖f‖E2 ≤ πp(I)‖f‖Lp , f ∈ C[0, 1]. �

In order to give the analogous fact for (q, p) – absolutely summing operators, we
again return to Lorentz spaces Lq,1 := Λ(ϕq), where ϕq(t) = t

1
q . Another description

of its norm is as following: ‖f‖ =
∫ ∞
0

(m(|f | > t))
1
q dt .
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Theorem 4

Let 1 ≤ p < q < ∞. The following assertions are equivalent:

1) I(C[0, 1]; E[0, 1]) ∈ Πq,p;
2) ∃K > 0: ϕ

E
(t) ≤ Kt

1
q , 0 ≤ t ≤ 1;

3) E ⊃ Lq,1.

Proof. This theorem may be easily deduced from the recent factorization theorem of
G. Pisier [5], but we prefer the direct way from the rather old paper of I. Novikov [3].

1) ⇒ 2). Let I(C, E) ∈ Πq,p. Then, as is known from the results of B. Maurey
I ∈ Πq,1, that is

∃K > 0:∀{x1, . . . , xn} ∈ C[0, 1],
( ∑

‖xi‖q
)1/q

≤ K
∥∥∥∑

|xi|
∥∥∥.

This inequality may be continued on {x1, . . . , xn} ⊂ L∞. If we set xi = 1[ i−1
n , i

n ],
then nϕq( 1

n ) ≤ K, n = 1, 2, . . .; that is equivalent to 2).
2)⇒3) is well-known ([7]).
3)⇒1). Simple calculations (cf. [8] for q = 2) show that I(C, Lq,1) is (q, 1) –

absolutely summing. �
There are some open problems in this area. As far as I know, there is not a

single result concerning the (q, p) – absolutely summing property of inclusion map
I(E1, E2) for another RIS besides Lp-spaces.

3. Another ideal properties

Definition. An operator T ∈ L(X, Y ) is of gaussian cotype q if for some C > 0
and all sequences (xi) of X, we have (

∑ ‖Txi‖q)
1
q ≤ CE‖gixi‖, where (gi) denotes

a sequence of independent normalized N(0, 1) –gaussian random variables. The set
of all operators of such kind forms an ideal and will be denoted by C(g)

q . Not long ago
M. Talagrand (preprint) and S. Montgomery-Smith (dissertation) found boundary
spaces for the gaussian cotype 2 – property of inclusion map. Their result is the
following

Theorem 5

I(C, E) is of gaussian cotype 2 iff E ⊃ LΦ,2, where Φ(t) = t2 log t. The space

LΦ,2 is defined by the following norm:

‖f‖ =
( ∫

θ
(
m(|f | ≥ t)

)
dt2

)1/2

, where θ(t) = t ln
2
t
.
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It’s not difficult to show that LΦ,2 ⊇ L2,1 and so I(C; L2,1) ∈ Π2,1 \ C(g)
2 , i.e.

we have a nice counterexample to the conjecture C(g)
2 = Π2,1. Thus, the space L2,1

is still a rich source of counterexamples. Another example of this statement is the
following. Let E ⊆ L2. The following conjecture was made by M. Braverman, N.
Carothers and others. If (f1) ⊂ E and (fi) are independent, identically distributed
random variables such that Efi = 0, then [span (fi)]E is isomorphic to l2. But this
conjecture is not true. As shown in [4] the following equality is valid:
A(L2,1) := {(ai) ∈ R∞:

∑
aifi converges for each sequence of i.i.d. {fi} :

∫
fi =

0, f1 ∈ L2,1} = l2,1. If the conjecture were true, we would have to have that
A(L2,1) = l2. The Theorems 1–5 give the basis for the following

Conjecture. For each ideal U of operators there exists a boundary RIS EU such
that I(C, E) ∈ U iff E ⊃ EU , where the inclusion in the right hand may be strict
or unstrict in dependence of the ideal U . As far as I know there is no answer to the
question about the boundary space for the ideal of Rademacher cotype q – property.
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