Collectanea Mathematica (electronic version): http://www.imub.ub.es/collect

Collect. Math. **44** (1993), 147–154 © 1994 Universitat de Barcelona

Higher order Hardy inequalities

Alois Kufner

Math. Institute, Czech. Acad. Sci., Zitna 25, 11567 Praha 1, Czech Republic

Abstract

This note deals with the inequality

$$\left(\int_{a}^{b} |u(x)|^{q} w_{0}(x) dx\right)^{1/q} \leq C \left(\int_{a}^{b} |u^{(k)}(x)|^{p} w_{k}(x) dx\right)^{1/p},$$
(1)

more precisely, with conditions on the parameters p > 1, q > 0 and on the weight functions w_0, w_k (measurable and positive almost everywhere) which ensure that (1) holds for all functions u from a certain class K with a constant C > 0 independent of u.

Here $-\infty \leq a < b \leq \infty$ and $k \in \mathbb{N}$ and we will consider classes K of functions u = u(x) defined on (a, b) whose derivatives of order k - 1 are absolutely continuous and which satisfy the "boundary conditions"

$$u^{(i)}(a) = 0 \quad \text{for} \quad i \in M_0 , u^{(j)}(b) = 0 \quad \text{for} \quad j \in M_1$$
(2)

where M_0, M_1 are subsets of the set $M = \{0, 1, ..., k-1\}$; we will suppose that the number of conditions in (2) is exactly k. This class will be denoted by

$$AC^{(k-1)}(a,b;M_0,M_1).$$
 (3)

The conditions (2) are reasonable since they allow to exclude functions like polynomials of order $\leq k-1$ for which the right hand side in (1) is zero while the left hand side is positive.

KUFNER

Let us start with some remarks.

(i) We will concentrate on the case

$$k > 1 \tag{4}$$

since for k = 1 the problem is completely solved: see, e.g., the book Opic, Kufner [4], Chapter 1. Some particular results concerning the case k = 2, k = 3and - for a special choice of the sets M_0, M_1 - also higher values of k can be found in the paper Kufner, Wannebo [3].

(ii) For $(a,b) = (0,\infty), k \in \mathbb{N}$ arbitrary and $M_0 = M, M_1 = \emptyset$ or $M_0 = \{0, 1, \ldots, m-1\}, M_1 = M \setminus M_0, 0 < m < k$, the problem is also solved: see Stepanov [5] or Kufner, Heinig [2], respectively. These results cover all reasonable cases when the interval (a, b) is infinite. Therefore, we will concentrate on the case of a finite interval (a, b). Without loss of generality it can be assumed that

$$(a,b) = (0,1). \tag{5}$$

In the sequel, we will make substantial use of some functions and constants. For $r \neq 1$, we will denote

$$r' = \frac{r}{r-1}$$
, i.e. $\frac{1}{r} + \frac{1}{r'} = 1$

Further, let us denote for i = 1, 2

$$W_{0i}(t) = w_0(t)t^{\alpha_i q}(1-t)^{\beta_i q},$$

$$W_{ki}(t) = w_k^{1-p'}(t)t^{\gamma_i p'}(1-t)^{\delta_i p'},$$
(6)

where $w_0(t), w_k(t)$ are the weight functions appearing in (1) and $\alpha_i, \beta_i, \gamma_i, \delta_i$ (*i* = 1, 2) are certain nonnegative integers, and let us introduce functions

$$B_1(x) = \left(\int_x^1 W_{01}(t)dt\right)^{1/q} \left(\int_0^x W_{k1}(t)dt\right)^{1/p'},\tag{7}$$

$$B_2(x) = \left(\int_0^x W_{02}(t)dt\right)^{1/q} \left(\int_x^1 W_{k2}(t)dt\right)^{1/p'}$$
(8)

and constants

$$A_{1} = \left[\int_{0}^{1} \left(\int_{x}^{1} W_{01}(t)dt\right)^{r/q} \left(\int_{0}^{x} W_{k1}(t)dt\right)^{r/q'} W_{k1}(x)dx\right]^{1/r}, \qquad (9)$$

$$A_{2} = \left[\int_{0}^{1} \left(\int_{0}^{x} W_{02}(t)dt\right)^{r/q} \left(\int_{x}^{1} W_{k2}(t)dt\right)^{r/q'} W_{k2}(x)dx\right]^{1/r}, \quad (10)$$

where

$$\frac{1}{r} = \frac{1}{q} - \frac{1}{p} \,. \tag{11}$$

We suppose that all expressions appearing in formulas (7) - (10) are well defined. Of course, it also depends on the values $\alpha_i, \beta_i, \gamma_i, \delta_i$ which have not yet been determined. Later, we will show how these integers can be determined by the sets M_0 and M_1 which appear in the conditions (2).

If we suppose for a moment that these integers are known, then the main result can be formulated as follows:

Proposition 1

Let M_0, M_1 be two nonempty subsets of the set $\{0, 1, \ldots, k-1\}$ containing together k elements. Let $\alpha_i, \beta_i, \gamma_i, \delta_i$, i = 1, 2, be nonnegative integers corresponding to the pair M_0, M_1 . Let $w_0(t), w_k(t)$ be weight functions defined on (0, 1) and let

$$1$$

Then the (HARDY) inequality

$$\left(\int_{0}^{1} |u(t)|^{q} w_{0}(t) dt\right)^{1/q} \leq C \left(\int_{0}^{1} |u^{(k)}(t)|^{p} w_{k}(t) dt\right)^{1/p}$$
(12)

holds for every function $u \in AC^{(k-1)}(0,1)$ satisfying the conditions

$$u^{(i)}(0) = 0$$
 for $i \in M_0$, (13)
 $u^{(j)}(1) = 0$ for $j \in M_1$

if and only if

$$\sup_{0 < x < 1} B_i(x) = B_i < \infty, \quad i = 1, 2$$
(14)

in the case $p \leq q$, and

$$A_i < \infty, \quad i = 1, 2 \tag{15}$$

in the case p > q, where $B_i(x)$ and A_i are given by formulas (7) - (11).

Kufner

Determination of the integers $\alpha_1, \ldots, \delta_2$.

Let us consider a very simple boundary value problem

$$u^{(k)} = f \quad \text{in} \quad (0,1), \tag{16}$$
$$u^{(i)}(0) = 0 \quad \text{for} \quad i \in M_0,$$
$$u^{(j)}(1) = 0 \quad \text{for} \quad j \in M_1$$

where f does not change the sign in (0,1) and M_0, M_1 are the subsets of $M = \{0, 1, ..., k-1\}$ mentioned in Proposition 1.

Suppose that the solution u can be expressed uniquely in the form

$$u(x) = \int_0^x K_1(x,t)f(t)dt + \int_x^1 K_2(x,t)f(t)dt.$$
 (17)

The kernels $K_1(x,t), K_2(x,t)$ are then polynomials. We will write

$$K_i(x,t) \approx x^{\alpha_i} (1-x)^{\beta_i} t^{\gamma_i} (1-t)^{\delta_i}$$
(18)

if there exist positive constants c_1, c_2 such that the estimates

$$c_1 \le \frac{K_i(x,t)}{x^{\alpha_i}(1-x)^{\beta_i}t^{\gamma_i}(1-t)^{\delta_i}} \le c_2$$

hold for 0 < t < x < 1 (i = 1) and 0 < x < t < 1 (i = 2), respectively.

Now, we will show under what conditions (18) is fulfilled. For this purpose, let us split the set $M = \{0, 1, \ldots, k-1\}$ into s successive groups G_1, G_2, \ldots, G_s $(s \ge 2)$ according to the following scheme:

$$G_{1} = \{0, 1, \dots, m-1\} \quad (k_{1} \text{ elements}, \quad k_{1} = m),$$
(19)

$$G_{2} = \{m, m+1, \dots, n-1\} \quad (k_{2} \text{ elements}, \quad k_{2} = n-m),$$

$$G_{3} = \{n, n+1, \dots, r-1\} \quad (k_{3} \text{ elements}, \quad k_{3} = r-n),$$

$$\vdots$$

$$G_{s} = \{h, h+1, \dots, k-1\} \quad (k_{s} \text{ elements}, \quad k_{s} = k-h),$$

(i.e. G_i has k_i elements, $k_i > 0$, i = 1, 2, ..., s, and $k_1 + k_2 + ... + k_s = k$), and suppose that the sets M_0 and M_1 appearing in the boundary conditions in (16) are defined as follows:

$$M_0 = G_1 \cup G_2 \cup \ldots \cup G_{s-1}, \quad M_1 = G_2 \cup G_4 \cup \ldots \cup G_s \text{ for } s \text{ even.}$$
(20)

$$M_0 = G_1 \cup G_2 \cup \ldots \cup G_s, \quad M_1 = G_2 \cup G_4 \cup \ldots \cup G_{s-1} \text{ for } s \text{ odd.}$$
(21)

Then we have

Proposition 2

If the set $M = \{0, 1, ..., k - 1\}$ is splitted into s groups according to (19), the sets M_0 and M_1 are defined by (20) and (21) and the solution u to the boundary value problem (16) can be expressed in the form (17), then

$$K_{1}(x,t) \approx x^{k_{1}-1}t^{k_{2}}, \quad K_{2}(x,t) \approx x^{k_{1}}t^{k_{2}-1} \text{ for } s = 2,$$

$$K_{i}(x,t) \approx x^{k_{1}}(1-t)^{k_{s}}, \quad i = 1, 2, \text{ for } s \text{ odd},$$

$$K_{i}(x,t) \approx x^{k_{1}}t^{k_{s}}, \quad i = 1, 2, \text{ for } s > 2 \text{ even.}$$

$$(22)$$

Remarks. (i) The proof of Proposition 2 is elementary but cumbersome. It is based on the fact that the solution u to the boundary value problem (16) can be expressed in the form

$$u(x) = c_o \int_0^x (x - t_1)^{k_1 - 1} \int_{t_1}^1 (t_2 - t_1)^{k_2 - 1} \int_0^{t_2} (t_2 - t_3)^{k_3 - 1} \dots$$
$$\dots F(t_{s-1}) dt_{s-1} \dots dt_2 dt_1$$

where $c_0 = [(k_1 - 1)!(k_2 - 1)!\dots(k_s - 1)!]^{-1}$ and $F(t_{s-1})$ is either

$$\int_{t_{s-1}}^{1} (t_s - t_{s-1})^{k_s - 1} f(t_s) dt_s \quad \text{for } s \text{ even}$$

or

$$\int_0^{t_{s-1}} (t_{s-1} - t_s)^{k_s - 1} f(t_s) dt_s \quad \text{for } s \text{ odd } .$$

For s = 2, it can be found in the paper [3], for s > 2 in the preprint [1].

(ii) In (20), (21) we have always assumed that the first group G_1 belongs to M_0 so that we start with the boundary condition $u(0) = 0, 0 \in M_0$. If we suppose that $0 \in M_1$, i.e. that the boundary condition u(1) = 0 appears in (16), and have

$$M_0 = G_2 \cup G_4 \cup \dots, \quad M_1 = G_1 \cup G_3 \cup \dots,$$

then we simply exchange the role of the sets M_0 and M_1 , i.e. of the endpoints x = 0and x = 1, and a corresponding assertion holds again, if we replace in (22) x by 1 - x and t by 1 - t.

(iii) In the foregoing cases, we have assumed that

$$M_0 \cup M_1 = M$$
, i.e. $M_0 \cap M_1 = \emptyset$.

If the sets M_0 and M_1 again have together k elements, but have a nonempty intersection, then the method described above cannot be used. Nonetheless, many examples allow to expect that - provided there is a unique representation of the solution u of (16) in the form (17) - the kernels $K_i(x,t)$ again behave according to (18). Therefore, let us formulate the following conjecture:

- Suppose that $M_0 \cap M_1 \neq \emptyset$.
- (a) Define M_1 by

$$\widetilde{M}_1 = M \setminus M_0.$$

Then the pair M_0, \widetilde{M}_1 satisfies the conditions of either Proposition 2 (if $G_1 \subset M_0$) or of part (ii) of this Remark (if $G_1 \subset \widetilde{M}_1$), and consequently, the kernels $K_i^{(a)}(x,t)$ corresponding to the pair M_0, \widetilde{M}_1 satisfy (18): There are positive integers $\alpha_i(a), \beta_i(a), \gamma_i(a), \delta_i(a)$ such that

$$K_i^{(a)}(x,t) \approx x^{\alpha_i(a)} (1-x)^{\beta_i(a)} t^{\gamma_i(a)} (1-t)^{\delta_i(a)}, \quad i=1,2.$$

(b) Define \widetilde{M}_0 by

$$\widetilde{M}_0 = M \setminus M_1.$$

Then the pair \widetilde{M}_0, M_1 again satisfies the conditions which allow to state that for the corresponding kernels $K_i^{(b)}(x,t)$ we have

$$K_i^{(b)}(x,t) \approx x^{\alpha_i(b)}(1-x)^{\beta_i(b)}t^{\gamma_i(b)}(1-t)^{\delta_i(b)}, \quad i=1,2.$$

(c) For the kernels $K_i(x,t)$ corresponding to the initial pair M_0, M_1 we have (18) with

$$\alpha_i = \alpha_i(a), \beta_i = \beta_i(b), \gamma_i = \gamma_i(a), \delta_i = \delta_i(b)$$

Idea of the proof of Proposition 1

We consider the Hardy inequality (12) on the class $AC^{(k-1)}(0, 1; M_0, M_1)$, i.e., for functions u satisfying (13). Therefore, let us consider the boundary value problem (16) and denote by T the operator defined by formula (17):

$$(Tf)(x) = \int_0^x K_1(x,t)f(t)dt + \int_x^1 K_2(x,t)f(t)dt$$

Since the function u = Tf satisfies conditions (13) and $u^{(k)} = f$, we can instead of the inequality (12) investigate the inequality

$$\left(\int_{0}^{1} |(Tf)(x)|^{q} w_{0}(x) dx\right)^{1/q} \leq C \left(\int_{0}^{1} f^{p}(x) w_{k}(x) dx\right)^{1/p}$$
(23)

for functions $f \ge 0$.

Now, it can be shown that the validity of (23) for $f \ge 0$ is equivalent to the validity of the inequalities

$$\left(\int_0^1 |(J_i f)(x)|^q w_0(x) dx\right)^{1/q} \le C_i \left(\int_0^1 f^p(x) w_k(x) dx\right)^{1/p}, \quad i = 1, 2,$$
(24)

where

$$(J_1f)(x) = \int_0^x K_1(x,t)f(t)dt, \quad (J_2f)(x) = \int_x^1 K_2(x,t)f(t)dt.$$

But due to (18), the inequalities (24) are equivalent to the inequalities

$$\left(\int_{0}^{1} \left[x^{\alpha_{1}}(1-x)^{\beta_{1}}\int_{0}^{x}t^{\gamma_{1}}(1-t)^{\delta_{1}}f(t)dt\right]^{q}w_{0}(x)dx\right)^{1/q}$$
$$\leq \widetilde{C}_{1}\left(\int_{0}^{1}f^{p}(x)w_{k}(x)dx\right)^{1/p}$$

and

$$\left(\int_{0}^{1} \left[x^{\alpha_{2}}(1-x)^{\beta_{2}}\int_{x}^{1}t^{\gamma_{2}}(1-t)^{\delta_{2}}f(t)dt\right]^{q}w_{0}(x)dx\right)^{1/q} \\ \leq \widetilde{C}_{2}\left(\int_{0}^{1}f^{p}(x)w_{k}(x)dx\right)^{1/p}$$

respectively, and these last two inequalities can be easily rewritten into the form

$$\left(\int_0^1 |(Hg)(x)|^q w(x) dx\right)^{1/q} \le \widetilde{C} \left(\int_0^1 g^p(x) v(x) dx\right)^{1/p},\tag{25}$$

where H is the Hardy operator,

$$(Hg)(x) = \int_0^x g(t)dt$$
 or $(Hg)(x) = \int_x^1 g(t)dt$.

Finally, necessary and sufficient conditions for the validity of (25) (see, e.g., [4]) lead to the conditions (14) (if $p \leq q$) or (15) (if p > q).

Consequently, the integers $\alpha_1, \ldots, \delta_2$ which appear in (6) can be determined from the behavior of the kernels $K_1(x, t), K_2(x, t)$ described by (18). \Box

Kufner

References

- 1. A. Kufner, *Higher order Hardy inequalities*, Preprint No. **672**, Universität Heidelberg, Sonderforschungsbereich 123, 1992.
- 2. A. Kufner, H.P. Heinig, Hardy's inequality for higher order derivatives, *Trudy Mat. Inst. Steklov* **192** (1990), 105–113, (Russian).
- 3. A. Kufner, A. Wannebo, Some remarks on the Hardy inequality for higher order derivatives. In: *General Inequalities VI. International Series of Numerical Mathematics* **103**. Birkhäuser Verlag, Basel 1992, 33–48.
- 4. B. Opic, A. Kufner, Hardy-type inequalities, *Pitman Research Notes in Mathematics Series* **219**. Longman Scientific and Technical, Harlow 1990.
- 5. V.D. Stepanov, *Two-weighted estimates for Riemann-Liouville integrals*. Preprint No. **39**, Math. Inst. Czech. Acad. Sci., Prague 1988.