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Abstract

This note deals with the inequality(∫ b

a

|u(x)|qw0(x)dx

)1/q

≤ C
(∫ b

a

|u(k)(x)|pwk(x)dx

)1/p

, (1)

more precisely, with conditions on the parameters p > 1, q > 0 and on the
weight functions w0, wk (measurable and positive almost everywhere) which
ensure that (1) holds for all functions u from a certain classK with a constant
C > 0 independent of u.

Here −∞ ≤ a < b ≤ ∞ and k ∈ N and we will consider classes K of functions
u = u(x) defined on (a, b) whose derivatives of order k− 1 are absolutely continuous
and which satisfy the “boundary conditions”

u(i)(a) = 0 for i ∈M0 ,

u(j)(b) = 0 for j ∈M1

(2)

where M0,M1 are subsets of the set M = {0, 1, . . . , k− 1}; we will suppose that the
number of conditions in (2) is exactly k. This class will be denoted by

AC(k−1)(a, b;M0,M1). (3)

The conditions (2) are reasonable since they allow to exclude functions like polyno-
mials of order ≤ k−1 for which the right hand side in (1) is zero while the left hand
side is positive.
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Let us start with some remarks.
(i) We will concentrate on the case

k > 1 (4)

since for k = 1 the problem is completely solved: see, e.g., the book Opic,
Kufner [4], Chapter 1. Some particular results concerning the case k = 2, k = 3
and - for a special choice of the sets M0,M1 - also higher values of k can be
found in the paper Kufner, Wannebo [3].

(ii) For (a, b) = (0,∞), k ∈ N arbitrary and M0 = M,M1 = ∅ or M0 =
{0, 1, . . . ,m − 1},M1 = M \M0, 0 < m < k, the problem is also solved: see
Stepanov [5] or Kufner, Heinig [2], respectively. These results cover all reason-
able cases when the interval (a, b) is infinite. Therefore, we will concentrate on
the case of a finite interval (a, b). Without loss of generality it can be assumed
that

(a, b) = (0, 1). (5)

In the sequel, we will make substantial use of some functions and constants.
For r �= 1, we will denote

r′ =
r

r − 1
, i.e.

1
r

+
1
r′

= 1 .

Further, let us denote for i = 1, 2

W0i(t) = w0(t)tαiq(1 − t)βiq,

Wki(t) = w1−p′

k (t)tγip
′
(1 − t)δip′

,
(6)

where w0(t), wk(t) are the weight functions appearing in (1) and αi, βi, γi, δi
(i = 1, 2) are certain nonnegative integers, and let us introduce functions

B1(x) =
(∫ 1

x

W01(t)dt
)1/q (∫ x

0

Wk1(t)dt
)1/p′

, (7)

B2(x) =
(∫ x

0

W02(t)dt
)1/q (∫ 1

x

Wk2(t)dt
)1/p′

(8)

and constants

A1 =

[∫ 1

0

(∫ 1

x

W01(t)dt
)r/q (∫ x

0

Wk1(t)dt
)r/q′

Wk1(x)dx

]1/r

, (9)

A2 =

[∫ 1

0

(∫ x

0

W02(t)dt
)r/q (∫ 1

x

Wk2(t)dt
)r/q′

Wk2(x)dx

]1/r

, (10)
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where
1
r

=
1
q
− 1
p
. (11)

We suppose that all expressions appearing in formulas (7) - (10) are well de-
fined. Of course, it also depends on the values αi, βi, γi, δi which have not yet been
determined. Later, we will show how these integers can be determined by the sets
M0 and M1 which appear in the conditions (2).

If we suppose for a moment that these integers are known, then the main result
can be formulated as follows:

Proposition 1

Let M0,M1 be two nonempty subsets of the set {0, 1, . . . , k− 1} containing to-

gether k elements. Let αi, βi, γi, δi, i = 1, 2, be nonnegative integers corresponding

to the pair M0,M1. Let w0(t), wk(t) be weight functions defined on (0, 1) and let

1 < p <∞, 0 < q <∞, q �= 1.

Then the (HARDY) inequality

(∫ 1

0

|u(t)|qw0(t)dt
)1/q

≤ C
(∫ 1

0

|u(k)(t)|pwk(t)dt
)1/p

(12)

holds for every function u ∈ AC(k−1)(0, 1) satisfying the conditions

u(i)(0) = 0 for i ∈M0, (13)

u(j)(1) = 0 for j ∈M1

if and only if

sup
0<x<1

Bi(x) = Bi <∞, i = 1, 2 (14)

in the case p ≤ q , and

Ai <∞, i = 1, 2 (15)

in the case p > q , where Bi(x) and Ai are given by formulas (7) - (11).
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Determination of the integers α1, . . . , δ2 .

Let us consider a very simple boundary value problem

u(k) = f in (0, 1), (16)

u(i)(0) = 0 for i ∈M0,

u(j)(1) = 0 for j ∈M1

where f does not change the sign in (0, 1) and M0,M1 are the subsets of M =
{0, 1, ..., k − 1} mentioned in Proposition 1.

Suppose that the solution u can be expressed uniquely in the form

u(x) =
∫ x

0

K1(x, t)f(t)dt+
∫ 1

x

K2(x, t)f(t)dt. (17)

The kernels K1(x, t),K2(x, t) are then polynomials. We will write

Ki(x, t) ≈ xαi(1 − x)βitγi(1 − t)δi (18)

if there exist positive constants c1, c2 such that the estimates

c1 ≤ Ki(x, t)
xαi(1 − x)βitγi(1 − t)δi ≤ c2

hold for 0 < t < x < 1 (i = 1) and 0 < x < t < 1 (i = 2), respectively.
Now, we will show under what conditions (18) is fulfilled. For this purpose, let

us split the setM = {0, 1, . . . , k−1} into s successive groups G1, G2, . . . , Gs (s ≥ 2)
according to the following scheme:

G1 = {0, 1, . . . ,m− 1} (k1 elements, k1 = m), (19)

G2 = {m,m+ 1, . . . , n− 1} (k2 elements, k2 = n−m),

G3 = {n, n+ 1, . . . , r − 1} (k3 elements, k3 = r − n),
.

.

Gs = {h, h+ 1, . . . , k − 1} (ks elements, ks = k − h),

(i.e. Gi has ki elements, ki > 0, i = 1, 2, . . . , s, and k1 + k2 + . . . + ks = k), and
suppose that the sets M0 and M1 appearing in the boundary conditions in (16) are
defined as follows:

M0 = G1 ∪G2 ∪ . . . ∪Gs−1, M1 = G2 ∪G4 ∪ . . . ∪Gs for s even. (20)

M0 = G1 ∪G2 ∪ . . . ∪Gs, M1 = G2 ∪G4 ∪ . . . ∪Gs−1 for s odd. (21)

Then we have
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Proposition 2

If the set M = {0, 1, . . . , k − 1} is splitted into s groups according to (19), the

sets M0 and M1 are defined by (20) and (21) and the solution u to the boundary

value problem (16) can be expressed in the form (17), then

K1(x, t) ≈ xk1−1tk2 , K2(x, t) ≈ xk1tk2−1 for s = 2, (22)

Ki(x, t) ≈ xk1(1 − t)ks , i = 1, 2, for s odd,

Ki(x, t) ≈ xk1tks , i = 1, 2, for s > 2 even.

Remarks. (i) The proof of Proposition 2 is elementary but cumbersome. It is based
on the fact that the solution u to the boundary value problem (16) can be expressed
in the form

u(x) = co
∫ x

0

(x− t1)k1−1

∫ 1

t1

(t2 − t1)k2−1

∫ t2

0

(t2 − t3)k3−1 . . .

. . . F (ts−1)dts−1 . . . dt2dt1

where c0 = [(k1 − 1)!(k2 − 1)! . . . (ks − 1)!]−1 and F (ts−1) is either∫ 1

ts−1

(ts − ts−1)ks−1f(ts)dts for s even

or ∫ ts−1

0

(ts−1 − ts)ks−1f(ts)dts for s odd .

For s = 2, it can be found in the paper [3], for s > 2 in the preprint [1].
(ii) In (20), (21) we have always assumed that the first group G1 belongs to

M0 so that we start with the boundary condition u(0) = 0, 0 ∈ M0. If we suppose
that 0 ∈M1, i.e. that the boundary condition u(1) = 0 appears in (16), and have

M0 = G2 ∪G4 ∪ . . . , M1 = G1 ∪G3 ∪ . . . ,

then we simply exchange the role of the sets M0 and M1, i.e. of the endpoints x = 0
and x = 1, and a corresponding assertion holds again, if we replace in (22) x by
1 − x and t by 1 − t.

(iii) In the foregoing cases, we have assumed that

M0 ∪M1 =M, i.e. M0 ∩M1 = ∅.
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If the sets M0 and M1 again have together k elements, but have a nonempty in-
tersection, then the method described above cannot be used. Nonetheless, many
examples allow to expect that - provided there is a unique representation of the
solution u of (16) in the form (17) - the kernels Ki(x, t) again behave according to
(18). Therefore, let us formulate the following conjecture:

Suppose that M0 ∩M1 �= ∅.
(a) Define M̃1 by

M̃1 =M \M0.

Then the pair M0, M̃1 satisfies the conditions of either Proposition 2 (if G1 ⊂ M0)
or of part (ii) of this Remark (if G1 ⊂ M̃1), and consequently, the kernels
K

(a)
i (x, t) corresponding to the pair M0, M̃1 satisfy (18): There are positive integers

αi(a), βi(a), γi(a), δi(a) such that

K
(a)
i (x, t) ≈ xαi(a)(1 − x)βi(a)tγi(a)(1 − t)δi(a), i = 1, 2.

(b) Define M̃0 by
M̃0 =M \M1.

Then the pair M̃0,M1 again satisfies the conditions which allow to state that for the
corresponding kernels K(b)

i (x, t) we have

K
(b)
i (x, t) ≈ xαi(b)(1 − x)βi(b)tγi(b)(1 − t)δi(b), i = 1, 2.

(c) For the kernels Ki(x, t) corresponding to the initial pair M0,M1 we have (18)
with

αi = αi(a), βi = βi(b), γi = γi(a), δi = δi(b).

Idea of the proof of Proposition 1

We consider the Hardy inequality (12) on the class AC(k−1)(0, 1;M0,M1), i.e.,
for functions u satisfying (13). Therefore, let us consider the boundary value problem
(16) and denote by T the operator defined by formula (17):

(Tf)(x) =
∫ x

0

K1(x, t)f(t)dt+
∫ 1

x

K2(x, t)f(t)dt.

Since the function u = Tf satisfies conditions (13) and u(k) = f , we can instead of
the inequality (12) investigate the inequality(∫ 1

0

|(Tf)(x)|qw0(x)dx
)1/q

≤ C
(∫ 1

0

fp(x)wk(x)dx
)1/p

(23)

for functions f ≥ 0.
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Now, it can be shown that the validity of (23) for f ≥ 0 is equivalent to the
validity of the inequalities(∫ 1

0

|(Jif)(x)|qw0(x)dx
)1/q

≤ Ci

(∫ 1

0

fp(x)wk(x)dx
)1/p

, i = 1, 2, (24)

where

(J1f)(x) =
∫ x

0

K1(x, t)f(t)dt, (J2f)(x) =
∫ 1

x

K2(x, t)f(t)dt.

But due to (18), the inequalities (24) are equivalent to the inequalities( ∫ 1

0

[
xα1(1 − x)β1

∫ x

0

tγ1(1 − t)δ1f(t)dt
]q
w0(x)dx

)1/q

≤ C̃1

( ∫ 1

0

fp(x)wk(x)dx
)1/p

and ( ∫ 1

0

[
xα2(1 − x)β2

∫ 1

x

tγ2(1 − t)δ2f(t)dt
]q
w0(x)dx

)1/q

≤ C̃2

( ∫ 1

0

fp(x)wk(x)dx
)1/p

respectively, and these last two inequalities can be easily rewritten into the form(∫ 1

0

|(Hg)(x)|qw(x)dx
)1/q

≤ C̃
(∫ 1

0

gp(x)v(x)dx
)1/p

, (25)

where H is the Hardy operator,

(Hg)(x) =
∫ x

0

g(t)dt or (Hg)(x) =
∫ 1

x

g(t)dt .

Finally, necessary and sufficient conditions for the validity of (25) (see, e.g., [4]) lead
to the conditions (14) (if p ≤ q) or (15) (if p > q).

Consequently, the integers α1, . . . , δ2 which appear in (6) can be determined
from the behavior of the kernels K1(x, t),K2(x, t) described by (18). �
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