Collectanea Mathematica (electronic version): http://www.imub.ub.es/collect

Collect. Math. **44** (1993), 129–134 © 1994 Universitat de Barcelona

Every nonreflexive Banach lattice has the packing constant equal to 1/2

H. Hudzik

Institute of Mathematics, A.Mickiewicz University, Matejki 48/49 Poznań, 60-769 Poland

Abstract

Kottman [9] has proved that any P-convex Banach space X is reflexive. In the case when X is a Banach lattice our result says more. It says that any Banach lattice X with $\Lambda(X) < 1/2$ is reflexive. This result generalizes the results of Berezhnoi [2] who proved that $\Lambda(\Lambda(\varphi)) = \Lambda(M(\varphi)) = 1/2$ for nonreflexive Lorentz space $\Lambda(\varphi)$ and Marcinkiewicz space $M(\varphi)$. It is proved also that for any Banach lattice X such that its subspace X_a of order continuous elements is nontrivial we have $\Lambda(X) = \Lambda(X_a)$. It is noted also that Orlicz sequence space l^{Φ} is reflexive iff $\Lambda(l^{\Phi}) < 1/2$.

In the sequel $\mathbb{N}, \mathbb{R}, \mathbb{R}_+$ denote respectively the sets of natural numbers, of reals and of nonnegative reals. If X is a real Banach space, S(X) and B(X) denote its unit sphere and unit ball, respectively. The packing constant of X is defined by the formula (see [15] and [16]):

$$\Lambda(X) = \sup \Big\{ r > 0 : \exists (x_n)_{n=1}^{\infty} \text{ in } X \text{ s.t. } \|x_n\| \le 1 - r, \text{ and } \|x_m - x_n\| \ge 2r \text{ if } m \ne n \Big\}.$$

Kottman [9] has proved that for any infinite dimensional Banach space X, we have $\Lambda(X) = D(X)/(2 + D(X)),$

¹⁹⁹¹ Mathematics Subject Classification. Primary 46B20, 52A45; Secondary 46B30, 46E30. Keywords: Banach lattice, packing constant, *P*-convexity, reflexivity, Orlicz sequence space.

Hudzik

where

$$D(X) = \sup\left\{\inf_{m \neq n} \|x_m - x_n\| \colon (x_n)_{n=1}^{\infty} \text{ contained in } S(X)\right\}$$

Recall that a Banach space X is said to be P-convex (see [10]) if P(n, X) < 1/2 for some $n \in \mathbb{N}, n \ge 2$, where

$$P(n,X) = \sup\left\{r > 0: \exists (x_i)_{i=1}^n \text{ s.t. } \|x_i\| \le 1 - r \text{ and } \|x_i - x_j\| \ge 2r \text{ for } i \ne j\right\}.$$

Kottman [10] has proved that any P-convex Banach space is reflexive.

A map $\Phi: \mathbb{R} \to \mathbb{R}_+$ is said to be an Orlicz function if $\Phi(0) = 0$, Φ is even, convex, and $\Phi(u) \to +\infty$. By l^0 we denote the space of all real sequences. Given any Orlicz function Φ define on l^0 a convex functional $I_{\Phi}(x\lambda) \leq 1$ by

$$I_{\Phi}(x) = \sum_{i=1}^{\infty} \Phi(x(i)) \qquad \left(\forall x = (x(i))_{i=1}^{\infty} \in l^{\circ} \right).$$

The Orlicz sequence space l^{Φ} is then defined to be the set of these x in l^{0} for which $I_{\Phi}(\lambda x) < +\infty$ for some $\lambda > 0$ depending on x. The space l^{Φ} equipped with the Luxemburg norm

$$||x||_{\Phi} = \inf \left\{ \lambda > 0: I_{\Phi}(x/\lambda) \le 1 \right\} \quad \left(\forall x \in l^{\Phi} \right)$$

is a Banach space (see [9], [11], [12], [13] and [14]).

Recall that an Orlicz function Φ satisfies the Δ_2 -condition at 0 if there exist K > 0 and $u_0 > 0$ such that $0 < \Phi(u_0) < +\infty$ and $\Phi(2u) \leq K\Phi(u)$ whenever $|u| \leq u_0$.

Let X, Y be Banach spaces. We say that X contains an isomorphic (almost isometric) copy of Y if for some (for every) $\varepsilon > 0$ there exists a linear operator $P: Y \to X$ such that the inequality

(*)
$$||y||_Y \le ||Py||_X \le (1+\varepsilon)||y||_Y$$

holds for every $y \in Y$.

For the theory of Banach lattices see [1], [4] and [9]. We start with the following result.

Proposition 1

Let X and Y be Banach spaces and assume that X contains an almost isometric copy of Y. Then $\Lambda(X) \ge \Lambda(Y)$.

130

Proof. Let $\varepsilon > 0$ be arbitrary and take an arbitrary sequence (y_n) in S(Y). Let P be a linear operator from Y into X satisfying condition (*). Define the sequence $x_n = Py_n/||Py_n||_X$ in X. In virtue of (*), we have

$$(1) ||x_m - x_n||_X \leq \frac{1}{||Py_m||_X} ||Py_m - Py_n||_X + ||Py_n||_X \left| \frac{1}{||Py_m||_X} - \frac{1}{||Py_n||_X} \right| \leq (1 + \varepsilon) ||y_m - y_n||_Y + (1 + \varepsilon) \left| \frac{1}{||Py_m||_X} - \frac{1}{||Py_n||_X} \right| \leq (1 + \varepsilon) ||y_m - y_n||_Y + \varepsilon.$$

On the other hand,

(2)
$$\left\| \frac{y_m}{\|Py_m\|_X} - \frac{y_n}{\|Py_n\|_X} \right\|_Y \le \left\| P\left(\frac{y_m}{\|Py_m\|_X}\right) - P\left(\frac{y_n}{\|Py_n\|_X}\right) \right\|_X$$

and

(3)
$$\left| \frac{1}{\|Py_m\|_X} - \frac{1}{\|Py_n\|_X} \right| \le 1 - \frac{1}{1+\varepsilon} = \frac{\varepsilon}{1+\varepsilon} < \varepsilon.$$

Applying (3), we get

(4)
$$\left\| \frac{y_m}{\|Py_m\|_X} - \frac{y_n}{\|Py_n\|_X} \right\|_Y \ge \left\| \frac{y_m - y_n}{\|Py_m\|_X} \right\|_Y - \left| \frac{1}{\|Py_m\|_X} - \frac{1}{\|Py_n\|_X} \right|_X > \frac{1}{1+\varepsilon} \|y_m - y_n\|_Y - \varepsilon.$$

Combining (2) and (4), we obtain

(5)
$$\|x_m - x_n\|_X \geq \frac{1}{1+\varepsilon} \|y_m - y_n\|_Y - \varepsilon.$$

Inequalities (1) and (5) imply our result. \Box

Theorem 1

Every nonreflexive Banach lattice X has the packing constant equal to 1/2.

Hudzik

Proof. By the assumption, X contains an isomorphic copy of c_0 or l^1 (see [1], [4] and [9]). So, by the James theorem (see [8]) X contains an almost isometric copy of c_0 or l^1 , respectively. By Proposition 1, we get $\Lambda(X) \ge \Lambda(c_0)$ or $\Lambda(X) \ge \Lambda(l^1)$, respectively. However, $\Lambda(c_0) = \Lambda(l^1) = 1/2$ (see [7], [16] and [17]), whence it follows that $\Lambda(X) \ge 1/2$. Since, the inequality $\Lambda(X) \le 1/2$ is always true, we get $\Lambda(X) = 1/2$. \Box

Remark 1. Since $\Lambda(X) \leq P(n, X)$ for any $n \in \mathbb{N}(n \geq 2)$, Theorem 1 gives stronger result for Banach lattices than Kottman theorem which says that any *P*-convex Banach space is reflexive.

Remark 2. There exists a reflexive Banach lattice X with $\Lambda(X) = 1/2$.

In fact, define X to be the Hilbertian direct sum $\bigoplus l^{p_i}$, where $1 < p_i \searrow 1$. Every l^{p_i} , i = 1, 2..., is isometrically embedded into X, so we get for any $i \in \mathbb{N}$:

$$\Lambda(X) \ge \Lambda(l^{p_i}) = 1/(2 + 2^{1-1/p_i}) \nearrow 1/2$$

(for the inside equality see [16] and [17]). Since we always have $\Lambda(X) \leq 1/2$, it follows that $\Lambda(X) = 1/2$. Clearly, X is a Banach lattice and as the Hilbertian direct sum of reflexive Banach lattices $l^{p_i}(1 < p_i < +\infty)$, X is reflexive.

Theorem 2

Let X be an arbitrary Banach lattice and X_a be its subspace of order continuous elements. If $X_a \neq \{0\}$, then $\Lambda(X_a) = \Lambda(X)$.

Proof. Assume first that X has an order continuous norm, i.e. $X_a = X$. Then the equality is obvious. Assume now that $X_a \neq X$ and $X_a \neq \{0\}$. Then X_a contains an isomorphic copy of c_0 (see [1], [4] and [9]), and so, by the James theorem (see [7]), X_a contains almost isometric copy of c_0 . Hence, $\Lambda(X) \geq \Lambda(X_a) = 1/2$, and consequently $\Lambda(X) = \Lambda(X_a) = 1/2$. \Box

Yining Ye, He Miaohong and Ryszard Płuciennik [18] have proved that Orlicz function space L^{Φ} as well as Orlicz sequence space l^{Φ} equipped with the Luxemburg norm is *P*-convex iff it is reflexive, i.e. both Φ and Φ^* (the complementary function to Φ in the sense of Young) satisfy the suitable Δ_2 -condition (i.e. the Δ_2 -condition at zero in the sequence case). We will prove now an analogous result for l^{Φ} in terms of $\Lambda(l^{\Phi})$.

Theorem 3

An Orlicz sequence space l^{Φ} is reflexive if and only if $\Lambda(l^{\Phi}) < 1/2$.

133

Proof. If $\Lambda(l^{\Phi}) < 1/2$ then l^{Φ} is reflexive by Theorem 1. Assume that l^{Φ} is reflexive, i.e. Φ and Φ^* satisfy the Δ_2 -condition at zero. Then (see [15] and [17]),

(6)
$$D(l^{\Phi}) = \sup_{x \in S(l^{\Phi})} \left\{ c_x > 0: I_{\Phi}(x/c_x) = \frac{1}{2} \right\}$$

To get this formula only the Δ_2 -condition at zero for Φ is important. Since Φ^* also satisfies the Δ_2 -condition at zero, we have for a > 0 such that $\Phi(a) = 1$:

(7)
$$\exists p > 1 \ \forall \lambda \in (0,1) \ \forall |u| \le a: \ \Phi(\lambda u) \le \lambda^p \Phi(u).$$

Hence, taking into account that, in view of the Δ_2 -condition at zero for Φ , the equality $I_{\Phi}(x) = 1$ holds for any $x \in S(l^{\Phi})$, we get for any $x \in S(l^{\Phi})$:

$$I_{\Phi}\left(\frac{x}{2^{1/p}}\right) \le \frac{1}{2}I_{\Phi}(x) = \frac{1}{2}.$$

Hence, it follows that $c_x \leq 2^{1/p}$ for any $x \in S(l^{\Phi})$. Therefore, $D(l^{\Phi}) \leq 2^{1/p}$, and consequently $\Lambda(l^{\Phi}) \leq 1/(2+2^{1-1/p}) < 1/2$. \Box

References

- 1. C.D. Aliprantis and O. Burkinshaw, Positive Operators, Pure and Applied Math., Academic Press, Inc. 1985.
- 2. E.I. Berezhnoi, Packing constant of the unit ball of Lorentz and Marcinkiewicz spaces, *Qualitative and Approximate Methods for the Investigation of Operator Equations*, Yaroslavl 1984, 24–28.
- 3. Ch.C. Cleaver, Packing spheres in Orlicz spaces, Pacific J. Math. 65 (2) (1976), 325-335.
- 4. J. Diestel, *Sequences and Series in Banach Spaces*, Lecture Notes in Math., Springer-Verlag 1984.
- 5. H. Hudzik, Uniformly non- $l_n^{(1)}$ Orlicz spaces with Luxemburg norm, *Studia Math.* **81** (3) (1985), 271–284.
- 6. H. Hudzik and T. Landes, Packing constant in Orlicz spaces equipped with the Luxemburg norm, to appear in *Bolletino della Unione Matematica Italiana*.
- H. Hudzik, Congxin Wu and Yining Ye, Packing constant in Musielak-Orlicz sequence spaces equipped with the Luxemburg norm, to appear in *Revista Matemática de la Universidad Complutense de Madrid* 7(1) (1994).
- 8. R.C. James, Uniformly non-square Banach spaces, Annals of Math. 80 (1964), 542-550.
- 9. L. V. Kantorovič and G.P. Akilov, Functional Analysis, Moscow 1977 (in Russian).
- 10. C.A. Kottman, Packing and reflexivity in Banach spaces, *Trans. Amer. Math. Soc.* **150** (1970), 565–576.

Hudzik

- 11. M.A. Krasnoselskii and Ya. B. Rutickii, *Convex functions and Orlicz spaces*, P. Noordhoof Ltd., Groningen 1961.
- 12. W.A.J. Luxemburg, Banach Function Spaces, Thesis, Delft 1955.
- 13. J. Musielak, Orlicz Spaces and Modular Spaces, *Lecture Notes in Math.* **1034**, Springer-Verlag 1983.
- 14. M.M. Rao and Z.D. Ren, *Theory of Orlicz spaces*, Marcel Dekker Inc. New York-Basel-Hong Kong 1991.
- 15. T. Wang and Y. Liu, Packing constant of a type of sequence spaces, *Comment. Math. (Prace Mat.)* **30** (1) (1990), 197–203.
- 16. J.H. Wells and L.R. Williams, *Embedding and Extension Problems in Analysis*, Lecture Notes in Math., Springer-Verlag 1975.
- 17. Yining Ye, Packing spheres in Orlicz sequence spaces, *Chinese Ann. Math.* **4A** (4) (1983), 487–493.
- 18. Yining Ye, He Miaohong and Ryszard Pluciennik, *P*-convexity and reflexivity of Orlicz spaces, *Comment. Math. (Prace Mat.)* **31** (1991), 203–216.