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Every nonreflexive Banach lattice has the
packing constant equal to 1/2
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Abstract

Kottman [9] has proved that any P -convex Banach space X is reflexive. In the
case when X is a Banach lattice our result says more. It says that any Banach
lattice X with Λ(X) < 1/2 is reflexive. This result generalizes the results of
Berezhnoi [2] who proved that Λ(Λ(ϕ)) = Λ(M(ϕ)) = 1/2 for nonreflexive
Lorentz space Λ(ϕ) and Marcinkiewicz space M(ϕ). It is proved also that for
any Banach lattice X such that its subspace Xa of order continuous elements
is nontrivial we have Λ(X) = Λ(Xa). It is noted also that Orlicz sequence
space lΦ is reflexive iff Λ(lΦ) < 1/2.

In the sequel N,R,R+ denote respectively the sets of natural numbers, of reals
and of nonnegative reals. If X is a real Banach space, S(X) and B(X) denote its
unit sphere and unit ball, respectively. The packing constant of X is defined by the
formula (see [15] and [16]):

Λ(X) = sup
{
r > 0:∃(xn)∞n=1 in X s.t. ‖xn‖ ≤ 1−r, and ‖xm−xn‖ ≥ 2r if m �= n

}
.

Kottman [9] has proved that for any infinite dimensional Banach space X, we have

Λ(X) = D(X)/(2 + D(X)),
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where

D(X) = sup
{

inf
m�=n

‖xm − xn‖: (xn)∞n=1 contained in S(X)
}
.

Recall that a Banach space X is said to be P -convex (see [10]) if P (n,X) < 1/2 for
some n ∈ N, n ≥ 2 , where

P (n,X) = sup
{
r > 0:∃(xi)ni=1 s.t. ‖xi‖ ≤ 1 − r and ‖xi − xj‖ ≥ 2r for i �= j

}
.

Kottman [10] has proved that any P -convex Banach space is reflexive.
A map Φ: R → R+ is said to be an Orlicz function if Φ(0) = 0,Φ is even, convex,

and Φ(u) → +∞. By l
0

we denote the space of all real sequences. Given any Orlicz
function Φ define on l

0
a convex functional IΦ(xλ) ≤ 1 by

IΦ(x) =
∞∑
i=1

Φ(x(i))
(
∀x = (x(i))∞i=1 ∈ l

0)
.

The Orlicz sequence space lΦ is then defined to be the set of these x in l
0

for
which IΦ(λx) < +∞ for some λ > 0 depending on x. The space lΦ equipped with
the Luxemburg norm

‖x‖Φ = inf
{
λ > 0: IΦ(x/λ) ≤ 1

} (
∀x ∈ lΦ

)

is a Banach space (see [9], [11], [12], [13] and [14]).
Recall that an Orlicz function Φ satisfies the ∆2-condition at 0 if there exist

K > 0 and u0 > 0 such that 0 < Φ(u0) < +∞ and Φ(2u) ≤ KΦ(u) whenever
|u| ≤ u0.

Let X,Y be Banach spaces. We say that X contains an isomorphic (almost
isometric) copy of Y if for some (for every) ε > 0 there exists a linear operator
P :Y → X such that the inequality

(∗) ‖y‖Y ≤ ‖Py‖X ≤ (1 + ε)‖y‖Y

holds for every y ∈ Y .
For the theory of Banach lattices see [1], [4] and [9]. We start with the following

result.

Proposition 1

Let X and Y be Banach spaces and assume that X contains an almost isometric

copy of Y . Then Λ(X) ≥ Λ(Y ).
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Proof. Let ε > 0 be arbitrary and take an arbitrary sequence (yn) in S(Y ). Let P

be a linear operator from Y into X satisfying condition (∗). Define the sequence
xn = Pyn/‖Pyn‖X in X. In virtue of (∗), we have

‖xm − xn‖X ≤ 1
‖Pym‖X

‖Pym − Pyn‖X(1)

+ ‖Pyn‖X
∣∣∣ 1
‖Pym‖X

− 1
‖Pyn‖X

∣∣∣
≤ (1 + ε)‖ym − yn‖Y + (1 + ε)

∣∣∣ 1
‖Pym‖X

− 1
‖Pyn‖X

∣∣∣
≤ (1 + ε)‖ym − yn‖Y + ε.

On the other hand,

(2)
∥∥∥ ym
‖Pym‖X

− yn
‖Pyn‖X

∥∥∥
Y
≤

∥∥∥P
(

ym
‖Pym‖X

)
− P

(
yn

‖Pyn‖X

) ∥∥∥
X

and

(3)
∣∣∣ 1
‖Pym‖X

− 1
‖Pyn‖X

∣∣∣ ≤ 1 − 1
1 + ε

=
ε

1 + ε
< ε.

Applying (3), we get

∥∥∥ ym
‖Pym‖X

− yn
‖Pyn‖X

∥∥∥
Y

≥
∥∥∥ ym − yn

‖Pym‖X

∥∥∥
Y
−

∣∣∣ 1
‖Pym‖X

− 1
‖Pyn‖X

∣∣∣(4)

>
1

1 + ε
‖ym − yn‖Y − ε .

Combining (2) and (4), we obtain

(5) ‖xm − xn‖X ≥ 1
1 + ε

‖ym − yn‖Y − ε.

Inequalities (1) and (5) imply our result. �

Theorem 1

Every nonreflexive Banach lattice X has the packing constant equal to 1/2.
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Proof. By the assumption, X contains an isomorphic copy of c0 or l
1

(see [1], [4]
and [9]). So, by the James theorem (see [8]) X contains an almost isometric copy
of c0 or l

1
, respectively. By Proposition 1, we get Λ(X) ≥ Λ(c0) or Λ(X) ≥ Λ(l

1
),

respectively. However, Λ(c0) = Λ(l
1
) = 1/2 (see [7], [16] and [17]), whence it

follows that Λ(X) ≥ 1/2. Since, the inequality Λ(X) ≤ 1/2 is always true, we get
Λ(X) = 1/2. �

Remark 1. Since Λ(X) ≤ P (n,X) for any n ∈ N(n ≥ 2), Theorem 1 gives stronger
result for Banach lattices than Kottman theorem which says that any P -convex
Banach space is reflexive.

Remark 2. There exists a reflexive Banach lattice X with Λ(X) = 1/2.

In fact, define X to be the Hilbertian direct sum
⊕

l
pi , where 1 < pi ↘ 1.

Every l
pi
, i = 1, 2 . . . , is isometrically embedded into X, so we get for any i ∈ N:

Λ(X) ≥ Λ(l
pi ) = 1/(2 + 21−1/pi) ↗ 1/2

(for the inside equality see [16] and [17]). Since we always have Λ(X) ≤ 1/2, it
follows that Λ(X) = 1/2. Clearly, X is a Banach lattice and as the Hilbertian direct
sum of reflexive Banach lattices l

pi (1 < pi < +∞), X is reflexive.

Theorem 2

Let X be an arbitrary Banach lattice and Xa be its subspace of order continuous

elements. If Xa �= {0}, then Λ(Xa) = Λ(X).

Proof. Assume first that X has an order continuous norm, i.e. Xa = X. Then the
equality is obvious. Assume now that Xa �= X and Xa �= {0}. Then Xa contains
an isomorphic copy of c0 (see [1], [4] and [9]), and so, by the James theorem (see
[7]), Xa contains almost isometric copy of c0. Hence, Λ(X) ≥ Λ(Xa) = 1/2, and
consequently Λ(X) = Λ(Xa) = 1/2. �

Yining Ye, He Miaohong and Ryszard PHluciennik [18] have proved that Orlicz
function space LΦ as well as Orlicz sequence space lΦ equipped with the Luxemburg
norm is P -convex iff it is reflexive, i.e. both Φ and Φ∗ (the complementary function
to Φ in the sense of Young) satisfy the suitable ∆2-condition (i.e. the ∆2-condition
at zero in the sequence case). We will prove now an analogous result for lΦ in terms
of Λ(lΦ).

Theorem 3

An Orlicz sequence space lΦ is reflexive if and only if Λ(lΦ) < 1/2.
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Proof. If Λ(lΦ) < 1/2 then lΦ is reflexive by Theorem 1. Assume that lΦ is reflexive,
i.e. Φ and Φ∗ satisfy the ∆2-condition at zero. Then (see [15] and [17]),

(6) D(lΦ) = sup
x∈S(lΦ)

{
cx > 0: IΦ(x/cx) =

1
2

}
.

To get this formula only the ∆2-condition at zero for Φ is important. Since Φ∗ also
satisfies the ∆2-condition at zero, we have for a > 0 such that Φ(a) = 1:

(7) ∃p > 1 ∀λ ∈ (0, 1) ∀|u| ≤ a: Φ(λu) ≤ λpΦ(u).

Hence, taking into account that, in view of the ∆2-condition at zero for Φ, the
equality IΦ(x) = 1 holds for any x ∈ S(lΦ), we get for any x ∈ S(lΦ):

IΦ

( x

21/p

)
≤ 1

2
IΦ(x) =

1
2
.

Hence, it follows that cx ≤ 21/p for any x ∈ S(lΦ). Therefore, D(lΦ) ≤ 21/p, and
consequently Λ(lΦ) ≤ 1/(2 + 21−1/p) < 1/2. �
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