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Abstract

The aim of this paper is to study the relationships between the concepts of local
near uniform smoothness and the properties H and H∗.

1. Introduction

The aim of this paper is to study relationships between the concepts of local near uni-
form smoothness and the properties H and H∗. These notions play very significant
role in some recent trends of the geometric theory of Banach spaces. These trends
depend upon the study of classical notions of the geometry of Banach spaces from
the view point of compactness conditions (cf. [1,2,7,10,11,16,17,18,19], for example).

Let us mention that such an approach in the geometric theory of Banach spaces
was initiated by the papers of Huff [11], Partington [17] and Goebel and Sȩkowski
[10]. In these papers the authors introduced an interesting generalization of the clas-
sical Clarkson’s notion of uniform convexity in Banach spaces [5]. The generalization
of such a type was realized with help of the notion of a measure of noncompactness.

After the papers [10,11,17] there have appeared a lot of papers (cf. the papers
cited before) devoted to the study of other notions and properties of Banach spaces
which can be formulated with help of compactness conditions. The fairly recent
state of this theory is presented in the papers [2,3], for instance.
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The investigations of this paper are continuation of the study from the paper
[1], where the concept of local near uniform smoothness was introduced and some
properties of this concept were derived.

2. Notation, definitions and auxiliary facts

Let E be a given real Banach space with the norm denoted by ‖ · ‖E or ‖ · ‖ and the
zero element θ. The dual space of E will be denoted by E∗ and the second dual by
E∗∗.

Let B(x, r) denote the closed ball in E centered at x and with radius r. More-
over, we write B = BE = B(θ, 1), B∗ = BE∗ , B∗∗ = BE∗∗ . The symbol S = SE

stands for the unit sphere in E while S∗ = SE∗ , S∗∗ = SE∗∗ .
The canonical embedding from E into E∗∗ is denoted by κ.
For a bounded and nonempty subset X of E by the symbol α(X) we will denote

the Kuratowski measure of noncompactness of X:

α(X) = inf
[
ε > 0:X can be covered by a finite family

of sets having diameters smaller than ε
]
.

For the properties of the function α we refer to [4].
In what follows assume that f ∈ S∗ is arbitrary fixed. For ε ∈ [0, 1] denote by

F (f, ε) the slice defined in the following way

F (f, ε) = {x ∈ B: f(x) ≥ 1 − ε} .

Similarly, for x ∈ S we define the slice F ∗(x, ε) in the space E∗ as

F ∗(x, ε) = {f ∈ B∗: f(x) ≥ 1 − ε}.

Now we recall two definitions which are important for our purposes (cf. [1,16]).

Definition 1. We say that a Banach space E is referred to as locally nearly
uniformly convex (LNUC) if lim

ε→0
α(F (f, ε)) = 0 for every f ∈ S∗.

In other words, E is LNUC if for any f ∈ S∗ and ε > 0 there exists δ > 0 such
that

α
(
F (f, δ)

)
≤ ε.

It is worthwhile to mention that E is LNUC if any only if the norm ‖ · ‖E has
the so-called drop property [16, 18].
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Definition 2. A Banach space E is called locally nearly uniformly smooth (LNUS)
if for any x ∈ S and ε > 0 there exists δ > 0 such that

α
(
F ∗(x, δ)

)
≤ ε.

Thus, E is LNUS if and only if lim
ε→0

α(F ∗(x, ε)) = 0 for every x ∈ S.
The basic relationship between the concepts of LNUC and LNUS spaces was

established in [1]. It is contained in the theorem given below.

Theorem 1

A Banach space is LNUC if and only if E∗ is LNUS.

Observe that in the light of Corollary 2 from [3], the proof of this theorem given
in [1] is entirely correct. Thus Remark formulated in [2] is not true.

3. Main results

The following two definitions will be essential for our further considerations.

Definition 3 [6,8]. We say that the norm ‖ · ‖ in a Banach space E has property
H (this property is also known as the Kadec-Klee property or the Radon-Riesz
property) whenever for any sequence (xn) in E converging weakly to some x ∈ E

with lim
n→∞

‖xn‖ = ‖x‖ we have that (xn) converges to x in norm.

The dual property to H is formulated in the next definition which is taken
from [1].

Definition 4. We say that the norm ‖ · ‖ in a Banach space E has property
H∗ whenever for any sequence (fn) ⊂ E∗ converging weakly star to f ∈ E∗ with
‖fn‖E∗ → ‖f‖E∗ we have that (fn) converges to f in the norm of E∗ (i.e. ‖fn −
f‖E∗ → 0).

The fundamental result obtained in [1] asserts that under the assumption of
reflexivity of a space E we have that E is LNUS if and only if the norm ‖ · ‖ in E

has the property H∗.
Analyzing the proof of this result given in [1] it has been observed that the

implication “if the norm in E has property H∗ then E is LNUS” is true without
the assumption on reflexivity of E. Unfortunately, this observation was suggested
by the false theorem given in the books [13, 15]. That “theorem” says that the unit
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ball B∗ in the space E∗ is weakly star sequentially compact (cf. [13], p.3 and [15],
p. 8). Obviously, such an assertion is generally not true [9]. The first author would
like to thank professor L. Vesely for indicating this error [20].

Now let us notice that the proof given in [1] is correct under an additional
assumption. More precisely, we have the following result being improved version of
Corollary 1 from [1].

Theorem 2

Let E be a Banach space with the norm having H∗ property and such that the

ball B∗ in E∗ is weakly star sequentially compact. Then E is LNUS.

Let us point out some classes of spaces having the dual ball weakly star sequen-
tially compact.

Recall [9] that the Banach space E is said to be weakly compactly generated

(WCG) whenever there exists a weakly compact set K ⊂ E such that the linear
span of K is dense in E.

For example, all separable or reflexive Banach spaces are WCG [9].
It can be shown [9] that if E is WCG Banach space then B∗ is weakly star

sequentially compact. Thus the spaces c0, c and l1 have the dual ball weakly star
sequentially compact. On the other hand the space l∞ has no longer this property
[9].

In order to illustrate our considerations let us pay attention to the below given
examples.

Example 1: It was shown in [2] that the space c0 is NUS so it is obviously LNUS.
On the other hand, using the same argumentation as in [2] we can easily seen that
c is not LNUS.

This means, in the light of Theorem 2, that c does not have property H∗. Hence
we can infer that c0 does not have property H∗.

Indeed, suppose the contrary. Then, for any sequence (fn) ⊂ S(c0)∗ = Sl1 and
for f ∈ Sl1 such that (fn) is weakly star convergent to f i.e.

fn(x) → f(x) as n → ∞ (1)

for any x ∈ c0, we have that fn → f in the norm of l1.
Now, let us assume that

fn(x) → f(x) as n → ∞ (2)

for every x ∈ c. Since (2) implies (1) this yields that fn → f in the norm of l1. This
means that c has the property H∗.

Thus we get a contradiction.
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Example 2: It is well known that the space l1 has property H.
But on the other hand this space does not have property H∗. Indeed, let us

consider the sequence (fn) ⊂ S(l1)∗ = Sl∞ such that

fn = (1, 1, . . . , 1, 0, 1, 1, . . .) (0 on n-th place).

Further, let f = (1, 1, . . .) ∈ Sl∞ . Taking an arbitrary x = (x1, x2, . . .) ∈ l1 we have

fn(x) = −xn +
∞∑
k=1

xk,

f(x) =
∞∑
k=1

xk.

Thus fn(x) − f(x) = −xn → 0 as n → ∞. Hence we infer that (fn) is weakly star
convergent to f . On the other hand we have ‖fn − f‖ = 1(n = 1, 2, . . .) in the norm
of l∞. It allows us to deduce that l1 has not property H∗.

In what follows let us observe that the assertion being partially converse to that
from Theorem 2 is no longer true. More precisely, if we assume that E is LNUS
Banach space with B∗ being weakly star sequentially compact then the norm ‖ · ‖E
is not in general H∗.

In fact, let us take the space c0. Then in virtue of Example 1 we see that the
norm in c0 has not property H∗ although this space is LNUS and B(c0)∗ = Bl1 is
weakly star sequentially compact.

Thus the assumption on reflexivity in the result quoted immediately after Def-
inition 4, is essential.

Now let us recall [1] that if we assume that the norm in E∗ has property H∗ then
the norm in E has property H. The converse assertion is true under the additional
assumption on reflexivity, for example [1].

In the sequel we are going to study some further connections between the prop-
erties H and H∗.
We start with the following theorem.

Theorem 3
If the norm in E has property H∗ then the norm in E∗ has property H.

Proof. Take a sequence (fn) ⊂ S∗ and f ∈ S∗ such that fn → f weakly. Then
fn → f weakly star what, in view of our assumption, allows us to conclude that
fn → f in the norm of E∗. �

Observe that the converse theorem is not true. In fact, putting E = c0 we see
(cf. Example 1) that the norm in E∗ has property H but the norm in E has not
property H∗.

Nevertheless, we can prove that at least partially converse assertions to that
from Theorem 3 are valid.
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Theorem 4

Let E be a Grothendieck space such that the norm in E∗ has property H. Then

the norm in E has property H∗.

Let us recall [9] that a Banach space E is called a Grothendieck space whenever
the weak star and weak convergence of sequences in E∗ are the same.

Proof. Let us take an arbitrary sequence (fn) ⊂ S∗ and f ∈ S∗ such that fn → f

weakly star. Then, by the assumption, the sequence (fn) converges weakly to f .
Since the norm in E∗ has property H we can infer that (fn) converges to f in norm
and the proof is complete. �

Because every reflexive Banach space is Grothendieck, thus as an immediate
consequence of the above result we derive the following theorem.

Theorem 5

Assume that E is a reflexive Banach space and that the norm in E∗ has property

H. Then the norm in E has property H∗.

Our next results give the criterion for the existence of a predual space.

Theorem 6

Assume that E is LNUS space. Then E has a predual space if and only if E is

reflexive.

Proof. Assume that E has a predual space F, F ∗ = E. Then, by Theorem 1 we have
that F is LNUC. Hence, by a result from [16] we deduce that F is a reflexive space.
The converse implication is obvious. �

As an immediate consequence of the above theorem we obtain the following
corollary.

Corollary 1

The spaces l1 and l∞ are not LNUS.

Observe now that from Theorem 1 and 2 we can obtain the following criterion
for the space E to be LNUC.

Theorem 7

E is LNUC if and only if the norm in E∗ has property H∗ and the ball B∗∗ is

weakly star sequentially compact in E∗∗.
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Further on we shall use the result due to Klee [12]. We express this result in
the terminology accepted before.

Lemma 1

Let E be a Banach space with a norm ‖ · ‖ such that E∗ is separable. Then

there exists a norm ‖ · ‖1 equivalent to the norm ‖ · ‖ which has the property H∗.

We have mentioned before that every separable Banach space has the prop-
erty that B∗ is weakly star sequentially compact. Keeping in mind this result and
Theorem 2 we can derive the following theorem.

Theorem 8

Let E be a Banach space with a norm ‖ · ‖. Assume that E∗ is separable. Then

there is a norm ‖ · ‖1 equivalent to the norm ‖ · ‖ such that the space (E, ‖ · ‖1) is

LNUS.

4. Remarks concerning product spaces

In this section we are going to discuss briefly the properties introduced before in the
so-called lp product of a sequence of Banach spaces.

Assume that (Ei, ‖ ‖i) (i = 1, 2, . . .) is a sequence of Banach spaces. Fix a
number p ∈ (1,∞) and consider the set lp(Ei) = lp(E1, E2, . . .) consisting of all
sequences x = (x1), xi ∈ Ei for i = 1, 2, . . ., such that

∞∑
i=1

‖xi‖pi < ∞.

It is well-known that lp(Ei) forms a Banach space with respect to the norm

‖x‖p = ‖(xi)‖p =

( ∞∑
i=1

‖xi‖pi

) 1
p

.

In the paper [14] it is shown that if the space E has property H then the
product space lp(E,E, . . .) has also this property. It is not difficult to see that the
same argumentation may be used to show that the space lp(Ei) = lp(E1, E2, . . .) has
property H whenever every space Ei has this property.

Further, let us notice that with the help of a similar reasoning we can prove the
following theorem.
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Theorem 9

Assume that the norm ‖ ‖i in the space Ei has the property H∗ for all i =
1, 2, . . . Then the space lp(Ei) has also the property H∗.

Moreover, we can infer also the following assertion.

Theorem 10

Let (Ei) be a sequence of Banach spaces such that the ball B∗
i in E∗

i is weakly

star sequentially compact for any i = 1, 2, . . . Then the ball B∗
p in the space (lp(Ei))∗

is weakly star sequentially compact.

Proof. Let us take an arbitrary sequence (xn) ⊂ B∗
p . Since (lp(Ei))∗ = lq(E∗

i ),
where 1

p + 1
q = 1 (cf. [14]), we obtain that B∗

p = Blq(E∗
i
) i.e. B∗

p is the unit ball in
the space lq(E∗

i ).
Next, let us represent any term xn of our sequence in the form

xn = (xn
1 , x

n
2 , x

n
3 , . . .) = (xn

k ) (k = 1, 2, . . .) .

Observe that for any fixed k the sequence (xn
k ) = (x1

k, x
2
k, x

3
k, . . .) is contained in the

ball B∗
k . By the assumption we infer that there exists a subsequence of the sequence

(xn
k ) which is weakly star convergent to an element xk ∈ E∗

k . Hence, applying the
standard diagonal procedure we can select a subsequence (xjn) of the sequence (xn)
having the following property:

If we denote

xxjn
= (xjn

1 , xjn
2 , xjn

3 , . . .) = (xjn
k ) (k = 1, 2, . . .)

and if we fix arbitrarily k ∈ N then the sequence (xjn
k ) (n = 1, 2, . . .) is a subsequence

of (xn
k ) which is weakly star convergent to the element xk ∈ B∗

k .
On the other hand we have that (xjn) is contained in the ball B∗

p = Blq(E∗
i
). Hence,

applying a result from [14] we can deduce that the subsequence (xjn) is weakly
star convergent to the element x = (x1, x2, x3, . . .). In view of the weak star lower-
semicontinuity of the norm [8] we infer that x ∈ B∗

p .
Thus the proof is complete. �

In what follows let us observe that taking into account Theorems 2, 9 and 10
we can derive the following corollary.
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Corollary 2

Assume that (Ei, ‖ ‖i) is a sequence of Banach spaces such that ‖ ‖i has prop-

erty H∗ and the ball BE∗
i

is weakly star sequentially compact (for all i = 1, 2, . . .).
Then the product space lp(Ei) (1 < p < ∞) is LNUS.

Let us recall that the conclusion of the above corollary was obtained in [3]
under the assumption that Ei is reflexive and LNUS for i = 1, 2, . . .. But then we
infer (in view of the result from [1] quoted before) that the norm ‖ ‖i has property
H∗ (i = 1, 2, . . .). Moreover, reflexivity of Ei implies that the ball BE∗

i
is weakly

star sequentially compact.
Thus we conclude that the result from [3] is a particular case of Corollary 2.
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