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ABSTRACT
Grassmannians of higher order appeared for the first time in a paper of A. Szybiak
([3]) in the context of the Cartan method of moving frame. In the present paper
we consider a special case of higher order Grassmannian—the projective space
of second order. We introduce the projective group of second order acting on
this space, derive its Maurer-Cartan equations and show that our generalized
projective space is a homogeneous space of this group.

0. Introduction

Grassmannians of higher order appeared for the first time in a paper of A. Szybiak
([3]) in the context of the Cartan method of moving frame (cf. also [2]). Unfortu-
nately, the action of a group on the Stiefel manifold of higher order given in the
paper does not factorise to the Grassmann space contrary to the author’s claim.
This means that the given presentation of the Grassmannian of higher order as a
homogeneous space is not correct.

In the present paper we consider a special case of higher order Grassmannian—
the projective space of second order. We introduce the projective group of second
order which acts on this space, next we derive its Maurer-Cartan equations and show
that our generalized projective space is a homogeneous space of this group.

In the same manner one can introduce a homogeneous structure on an arbitrary
Grassmann manifold of higher order.
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In a forthcoming paper we introduce and examine a theory of G-structures
modelled on the projective spaces of second order.

1. The projective space of second order

Let V3 (R"1) = Regj(R',R**1)y, where Regj(R', R"*1)y denotes the set of all
regular jets of second order of mappings R! — R™*! with the source and target
at 0. The manifold V3! (R"*1) is called a Stiefel manifold of 1-frames of second order
on R"*1 at 0. Note that the Stiefel manifold of 1-frames of first order is an ordinary
Stiefel manifold (cf. [3]). If f: Rl — R ¢+ (fO®t),..., f*(¥), f(0) =0,
is a regular mapping then the jet j2 f has the coordinates

;A . df .
x—%(o% y—ﬁ(O), i=0,...,n.

Let L} denote the group Regg(Rl, R1)g of all regular jets of second order of mappings
R! — R! with the source and target at 0 and consider a regular map g : R — R,

g(0) = 0. Then a = fli—f(()), b= %(O) are the coordinates of the jet jég. The group

multiplication in L1 is the jet composition
Jdg - dsk = g(gok).
Hence, for j2g = (a,b), jok = (c,d) we have

(a,b) - (¢,d) = (ac,bc® + ad),
(a,b)"t = (é’_a_b?’) .

The group L3 acts from the right on V' (R"+1)
Vy (R™) x Ly — V5 (R"™),
(d8.f. 739) ¥ G3(fog).
This action becomes in coordinates

((xo,xl, oyt Y™, (a, b))

— (2%, 2'a, ..., 2"a,y%a® + 2°b, y'a® + 2'b, ..., y"a® + 2"D).

DEFINITION 1.1. A projective space of second order Pjis the set of orbits
Vo (R"H1) /L3
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We want to equip P with an atlas (U;, ®;), i« = 1,...,n, and, hence, with a
manifold structure. Let

U, = {(1’07,@17,..,xn7y0’y17_“7yn) c P2n ot 7&0}
and define mapping ®; : U; — R?" by
@i(xo,xl,...,x”,yo,yl,...,y”)

x_O .’1?_1 .’IJ_Z Pk yoxz _ xoyz yixi _ .’L'iyi ynxz _ xnyz
xi,xi,...,xi,...,xi, (iL")?’ Sy (1‘1)3 ,...,7(xi)3 .

Hence we get a structure of smooth manifold on FPJ'.

Let Lyt = Reg%(R”“,R”H)O be a manifold of all regular jets of mappings
R — R™*! with the source and target at 0. The manifold L5 %!, similarly to
L3, is a Lie group. Let us consider a left act ion of the group L5+ x L} on Stiefel
manifold of second order Vit (R™*1). If j2g € Ly, j2f € L} and jgh € V3 (R™H1),
then the formula

((789.381), d5h) = s (goho f7)
defines a left action of the group L3+ x L} on V! (R**1).

In coordinates, if j3f = (a,b), j2h = (2% 2%, ..., 2™ 4%yt ... ,y"), jig =

(aﬁ,a%), then

(((aé—, aék), (a, b)), (a;o,:cl, LR TER TR ,y"))

1, .1, 1 . b .
- Jj =t .8k i,k Y ik
— <aajac ,a2ak5x "+ a2aky agakm )
We are going to show that the action of L x L} on V,} (R™*1) factorises to an
action on Py = V3 (R"*1)/Li. Let us consider two points lying in the same orbit,

for example (z°,zt,... 2™, 4% y',...,y") and

((x07x17 ce 7xnay0>y17 e .’yn)’ (0476))

= (2o, zta,.. . 2",y + 208,y e + 218, ..y e + 2" B).

Then
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and

(a5l (@), (2, 2lar, . o 2" y00® + 28y 0 + 26, ... y"a® +275))
«

o 1 . Oéb :
i i s .k i k_ 2 k i,k
— (gajw], _a2 aksx x4+ a2_ak(y o +x ﬂ) — _a3 akx ) .

Now, we should find an element (8,v) € Li such that

L g b o boiw b iy
((aajld,a—zaksx x +gak?/ 3kt )»(577))

o ;. oo 1 . ab .
k k2 k k
= (—a?xf,—a ap x’x” + —aQaz(y a”+z"f) — 3 apx >

It suffices to take 6 = é and v = -2y — Lo Ttis easy to check that the group

a’a? aas @
LT x L} acts transitively on V' (R™*1). Thus, we have proved

Theorem 1.1

The group Lg“ x Li acts transitively on projective space of second order Py.

We now introduce the non-homogeneous coordinates on FP3'. Let us consider a

1

point (2% 2%, ..., 2", y° !, ..., y") with o' # 0. Then its non-homogeneous coordi-

nates are defined by

. . . x €T
X0= 2% X = X = X =
X X
YO _ y0$Z _ xOyz Yi—l - yz—lxz o xz—lyz
(@) () ’
i1 i1 4 . .
Yi+l _ yH— b — Q’JH_ yz Yn _ ynxz _ xnyz
(x)? Y ()

We can express the action of the group Lg“ x L} on the projective space of second
order P3' in the non-homogeneous coordinates.

Let us consider a point (2°,...,27,9% ... y") with 2° # 0. The image of this
point under the element ((aé-, aék), (a,b)) € Ly x L} is the point
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Let us assume that %a?a:j # 0. Then

1.i,..0 1.4 ,.n i iaxt iz
20T + ...+ papTt agtayie ...+

140,0 1,0 40 0z? 0z”
002" + ...+ ayT ayg +aio .-+ anTo

i i vl i vn i—i—in +a_an
a0+a1X —i—anX _a8 ag ag

ad +adX1 ... +adX" 1+Z_§X1"‘+Z_%Yn

At ATX 4 AL X
14+ A X...+4,Xn"°

. i 0 . i
where we put A* = %,Ai = %, Al = %, for 4,7 > 1. Passing to the second group
0 0 0
of coordinates we get
(Falpria® + Haly! + Laial) tada! — ajat (Hala?a® + Laly’ + Lafad)
(2apat)’
_ alpa? —a%a)) XIXFXT alad(X'Y7 — XIYY)
(ag + afX7)? (ag + afX7)?
i 0 0 i . . . . ) ) . .
(Gt 2 — ot S XIXRX 4 ATAAYT — ATAYT 4 AJAA(XTYT — XTYY)

(1+ A;29)3 ’

where A = a% and 4, j,t > 1. Introduce the following notation:

0

B agj Bz a’%)O B CL80
i = = =
T (ag)? (ag)?” " (ag)®”

0 % i
B, = J B — J Bt = J
RCHN CER AR

for i,7,t > 1. Then

L i ik 1 pig g b i i\ 1,00t it (1 0 gk 0 1 20,5 0 b 20,5
(GQajk:n "+ 2z 45y + az 45T )aat:v a;x (a;,ajk:v "+ 2z 45 Y + 2z @5 )
1,0.4)\3
(aat‘r)

- [Bi — BA' + (B'A; — BA}) X7 +2(B! — B;A) X7 + (B}, — B A)X'X/
+ 2(B{A; — BiA) X' X7 + (Bj Ay — BjrA) XXX + A'A;AYY
— LAY+ ALAAXYT - XYY (14 4;X9) 70
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DEFINITION 1.2. The coordinates on the generalized projective group LS'H x L}
given by

i 0 i
Ai = a_guAl - a_67A; = a_évA: iou
ap ag Qg agp
0 i 0
B, = Aij Bl = %0 p_ %0
(ag)? (ag)? (ag)?
ag; Ay a

B = S =
B O AN

will be called the non-homogeneous coordinates on this group.

Consider the isotropy subgroup of the point (0, ...,0). This group is described
by the equations
A'=0, B'—BA'=0.

Corollary 1.1

The isotropy group is given by the equations A® = B* = (. The dimension of the
2
generalized projective group L;H x L} is equal to W
5n°+3n+4
2

, the dimension of

the isotropy group is equal to
of second order P2 is 2n.

, and the dimension of the projective space

2. Maurer—Cartan equations of generalized projective group

We proceed to find the Maurer-Cartan equations of projective group of second order
for forms w?, wé,wj, w, Bij, B, B, 5;7 Bj, ;k, which coincide jn the neptral element of
the group with the differentials dA°*, dA%,dA;, dA, dByj,dB", dB,dB}, dB;, dBj. Let
a,B,7v=0,1,...,n. We put
o - -1
(wg’wgw) = (ag,agw) : (dag,da%‘,y).
Some standard calculations lead to
—a —Qa ~a 7.6 ~Q
(0§, @8,) = (agday, —aga

6 ~e 3.0 ~a 6 ~o0 g € ~o ] O
erlgdaf — agag,alda’, + agdag.,) .

Thus,

—wfADE,) o B,7=0,1,...,n.
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The definition of local coordinate system on the generalized projective group implies

that , ,
datad — dadal

dA' = =99 00
(ag)*
i 0 0,
JAi — dajag + daga
! (ag)?

Thus, at the identity of the projective group

i &0 0
w; + 6;0q,w; = W;

Y R e R S
w' =dA" = dag = wj, Wi = E

J

and, similarly,
_ 0 gi_ i _ -0
w = —wg, §" = W, B = Wy ;
_ 0 g _ i _ 0 i i
B = w007ﬂjk = wjlwﬂtj = wt_jaﬁj = Wo; -

Using the above notation the following theorem is true.

Theorem 2.1

Let (wi,w;-,wj;w, Bi,ﬁj,ﬁ,ﬁ;k, Bkj,ﬁji-), 1,5,k =1,...,n, be the left invariant
forms on the projective group of second order L;‘H x L3 which coincide with
dAi,dAé,dAj,dA,dBtj,dBi,dB,dB;,dBj,dB;k at the identity. Then the Maurer-
Cartan equations of Lg“ x L} are given by

dw® = —wi Aw*,
(a) dw; = —wi/\wf—wi/\wj+6§wk Aw”,
dw' = —wy, /\w;“.

(dB = w A B—28; Nw'—w; A B,
dBi = BL Aw—Bi, Awt—wi A Br—wi A BE—B Awi,— B A wh,
ABjx =—Bf Nwj =B, A= Nwn =Bl Awl+Bi; Aw—w' A Bjr—wi A By,
(0)  dBr; =B Nwi—PBrj A wj+Brj Aw—DBu Awh—wi A Bij»
df' = B Nw—20; ANw' =" A B—w; A B,
dfj = Bj Nw—PBj ANw' =B Nwj—F Awh—wi A B,

\dw = w; A w".
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Part (a) of the above Maurer-Cartan equations coincides exactly with the equa-
tions given in [1] for the classical projective space. Thus, our space essentially
generalizes the ordinary projective space. In a forthcoming paper we will examine
the G-structures modelled on this space.
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