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Abstract

It is proved that every Banach space belonging to a certain class called
the class P possesses the Gelfand-Phillips property. Consequently, so does
every weakly countably determined Banach space, every Banach space with an
M -basis whose dual unit ball is weak∗ angelic and C(K) spaces for Valdivia
compact K .

1. Introduction and Preliminaries

A subset K of Banach space E is said to be limited if, for every weak∗-null sequence
(fn) in the dual space E∗, we have limn→∞ supx∈K |fn(x)| = 0, i.e., (fn) converges
uniformly on K. Every limited subset is bounded and every relatively norm compact
subset is limited. A Banach space E is said to have the Gelfand-Phillips property
if every limited subset of E is relatively compact. Every separable Banach space, in
general, all Banach spaces with weak∗ sequentially compact dual unit balls have the
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Gelfand-Phillips property [3, p. 238]. On the other hand the set {en : 1 ≤ n < ∞}
of unit coordinate vectors is a limited set in l∞ which is not relatively compact.
Some other Banach spaces with the Gelfand-Phillips property are those with Schur
property and the C(K) spaces, where K is both a compact and sequentially compact
Hausdorff space.

Many new results have poured in since mid eighties in a bid to find new classes
of Banach spaces with the Gelfand-Phillips property and to construct new Banach
spaces with this property from those already known to have it. The inheritance of
the property in injective and projective tensor products, in the space of bounded
linear operators, and in Banach spaces with Schauder decompositions from their
constituent spaces was studied in [4, 5, 6]. Furthermore, Gelfand-Phillips property
in C(K) spaces, in vector valued Köthe function spaces and in interpolation spaces,
was studied in [5, 6, 11, 12]. In the present note we show that every Banach space
belonging to the class P, a special class of Banach spaces with PRI to be defined
later, has the Gelfand-Phillips property. As a consequence, it is proved that several
large classes of Banach spaces; for instance, all weakly countably determined Banach
spaces, all Banach spaces with extended M -bases such that their dual unit balls are
weak∗ angelic, all Banach spaces such that the dual spaces with the weak∗-topology
belong to a certain class

∑
and C(K) spaces for Valdivia compact K, have the

Gelfand-Phillips property.
Let E denote a Banach space, E∗ its dual and BE and BE∗ the closed unit balls

of E and E∗, respectively. By dens E we shall denote the cardinality of the smallest
dense subset in E. Let ω denote the first infinite ordinal with cardinality N0 and
ω1 the first ordinal with the cardinality of the continuum. Other symbols used for
ordinals are α, β, λ and µ. We shall call an ordinal number α to be of type C if α is a
limit ordinal such that there is a sequence of ordinals (αn) with αn < α (n = 1, 2, . . .)
and (αn) is cofinal in α, i.e., for each ordinal β < α, there is an integer k > 0 such
that β ≤ αk. Note that besides the denumerable ordinals many non-denumerable
ordinal numbers are also of type C, while ω1 is not of type C.

Let µ be the first ordinal of cardinality dens E. Then, a long sequence
{pα}ω≤α≤µ of linear projections on E is said to be a projectional resolution of the
identity (in short, PRI) of E if it satisfies the following

(1.1) ‖pα‖ = 1 (ω ≤ α ≤ µ) ,

(1.2) pαpβ = pβpα = pβ (ω ≤ β ≤ α ≤ µ) ,

(1.3) dens pα(E) ≤ card α (ω ≤ α ≤ µ) ,

(1.4) pα(E) =
⋃ {

pβ+1(E) : ω ≤ β < α
}

(ω ≤ α ≤ µ) ,

(1.5) pµ is the identity operator on E .
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If a Banach space E has a PRI(pα)ω≤α≤µ, then for each x ∈ E the map
α → pα(x) from [ω, µ] into E is continuous and if β ≤ µ is a limit ordinal then
pβ(x) = limα<β pα(x) for each x ∈ E. Amir and Lindenstrauss [1] constructed a
PRI in every weakly compactly generated Banach space and also showed that its
dual unit ball is weak∗ sequentially compact, whence it has the Gelfand-Phillips
property. Some classes of Banach spaces which are known to have PRI can be
found in [1, 9, 13, 14, 15].

2. Main result

We start with the following lemma about the projections of limited sets in Banach
spaces.

Lemma 2.1

The linear projection of a limited set in a Banach space into a complemented

subspace is a limited set therein.

Proof. Let p be a bounded linear projection on a Banach space E and (gn) ⊂ p∗(E∗)
(note that (p(E))∗ is isomorphic to p∗(E∗)) be a σ(p∗(E∗)), p(E))-null sequence.
Then, limn→∞ gn(p(x)) = 0 (x ∈ E). Now, there is a sequence (fn) ⊂ E∗ such that
gn = p∗(fn)(n = 1, 2, . . .). Then

lim
n→∞

(
p∗ · fn

)
(x) = lim

n→∞
gn

(
p(x)

)
= 0 (x ∈ E) .

Thus, (p∗ · fn) is a σ(E∗, E)-null sequence. Since K is limited, given ε > 0, there is
an integer m0 > 0 such that

sup
x∈K

∣
∣gn(p(x))

∣
∣ = sup

x∈K

∣
∣(p∗ · fn)(x)

∣
∣ < ε (n ≥ m0) .

It follows that (gn) is σ(p∗(E∗), p(E))-null uniformly on p(K). �

Before stating our main result we shall define a particular class of Banach spaces.

Definition 2.2. Let P be the class of Banach spaces such that every E in P admits
a PRI (pα)ω≤α≤µ such that pα(E) (respectively, (pα+1 − pα)(E)) belongs to P for
every α ∈ [ω, µ) .

This class of Banach spaces was defined in [2, p. 286] as the class P where it has
also been shown that these Banach spaces admit equivalent locally uniformly rotund
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norms. Note that Vašák [15] has shown that every weakly countably determined
Banach space has a PRI and the property of being weakly countably determined
is hereditary. Thus all weakly countably determined Banach spaces belong to the
class P.

Now we prove the main result of this note.

Theorem 2.3

Every Banach space belonging to the class P has the Gelfand-Phillips property.

Proof. Let E be a Banach space belonging to the class P and K be a limited set
in E. We shall proceed by transfinite induction on dens E. If dens E = N0 then
E is separable and so, it has the Gelfand-Phillips property, whence K is relatively
compact.

Now let dens E > N0. Let µ be the first ordinal of cardinality dens E. We set
up an induction hypothesis that every Banach space F belonging to the class P and
with dens F < cardµ has the Gelfand-Phillips property.

Since E belongs to the class P, there is a long sequence {pα}ω≤α≤µ of linear
projections on E satisfying conditions (1.1) to (1.5) such that pα(E) (respectively,
(pα+1 − pα)(E)) is also in the class P for each ω ≤ α < µ. To begin with we note
that by the induction hypothesis and by Lemma 2.1, pα(K) and (pα+1−pα)(K) are
relatively compact for each ω ≤ α < µ.

Let (xn) be a sequence in K. If µ is a limit ordinal then we shall discuss the
construction of a cauchy subsequence of (xn) separately in the following two cases.

Case 1. Let µ be not of type C. Since limα<µ pα(xn) = xn(n = 1, 2, . . .), there is a
sequence (αn) of ordinals with ω < αn < µ and αn−1 < αn(n = 1, 2, . . .) such that

(2.2.1)
∥
∥pα(xn) − xn

∥
∥ <

1
n

(
α ≥ αn, n = 1, 2, . . .

)
.

Since µ is not of type C, (αn) can not be cofinal in µ. Thus, there is an ordinal
α0 < µ such that αn ≤ α0(n = 1, 2, . . .), whence by (2.2.1), we have

(2.2.2) pα(xn) = xn

(
α ≥ α0, n = 1, 2, . . .

)
.

Now pα0(K) being relatively compact in pα0(E) and since pα0(xn) ∈ pα0(K)(n =
1, 2, . . .), given an ε > 0, there exist a subsequence (xnk

) of (xn) and an integer
m0 > 0 such that

∥
∥xnk

− xnj

∥
∥ =

∥
∥pα0(xnk

) − pα0(xnj )
∥
∥ < ε

(
k, j ≥ m0

)
.

Thus, (xnk
) is a Cauchy subsequence of (xn).
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Case 2. Let µ be of type C. Choose a sequence (αn) of ordinals with ω < αn < µ

and αn−1 < αn (n = 1, 2, . . .) such that

‖pα(xn) − xn‖ <
1
n

(
α ≥ αn, n = 1, 2, . . .

)
.

If (αn) is not a cofinal sequence in µ, then proceeding as in case 1 we can construct
a Cauchy subsequence (xnk

) of (xn). Finally, let us assume that (αn) is cofinal in
µ. In this case

lim
n→∞

pαn(x) = x (x ∈ E) .

We claim that this convergence is uniform over K. For otherwise, there exists an
ε0 > 0, an integer kn ≥ n and a zn ∈ K for each n, such that

(2.2.3)
∥
∥pαkn

(zn)− zn
∥
∥ ≥ ε0 (n = 1, 2, . . .) .

By Hahn-Banach theorem there are fn ∈ E∗ with ‖fn‖ = 1 (n = 1, 2, . . .) such that

∣
∣fn((pαkn

− I) (zn))
∣
∣ =

∥
∥(pαkn

− I)(zn)
∥
∥ (n = 1, 2, . . .) ,

whence by (2.2.3) it follows that

(2.2.4)
∣
∣((pαkn

−I)∗ ·fn)(zn)
∣
∣ ≥ ε0 (n = 1, 2, . . .) .

Since (αkn
) is a subsequence of (αn) and (fn) ⊂ BE∗ , it is easy to see that ((pαkn

−
I)∗ · fn) is weak∗-null and hence converges uniformly on the limited set K. But (zn)
being a sequence in K we arrive at a contradiction to (2.2.4). Thus, given ε > 0
there is an integer m1 > 0 such that

(2.2.5)
∥
∥pαn(x)− x

∥
∥ <

ε

3
(n ≥ m1, x ∈ K) .

Now by hypothesis pαk
(K) is a relatively compact subset of pαk

(E) for each k.
Since (pα1(xn)) is a sequence in pα1(K) there is a subsequence (x1,n) of (xn) such
that pα1(x1,n) is Cauchy. Again, pα2(x1,n) being a sequence in pα2(K) there is a
subsequence (x2,n) of (x1,n) such that pα2(x2,n) is Cauchy. Continuing in this way,
for each integer k > 0, the sequence (xk−1,n) has a subsequence (xk,n) and an integer
nk > 0 with nk−1 < nk , n0 = 0 and x0,n = xn(n = 1, 2, . . .) satisfying

∥
∥pαk

(xk,m) − pαk
(xk,n)

∥
∥ <

ε

3
(
m,n ≥ nk , k = 1, 2, . . .

)
.
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Since (xj,n) is a subsequence of (xk,n) for j ≥ k , we have

(2.2.6)
∥
∥pαk

(xi,m)−pαk
(xj,n)

∥
∥ <

ε

3
(
i ≥ j ≥ k , m, n ≥ nk , k = 1, 2, . . .) .

Let us construct a subsequence (yk) of (xk) by setting yk = xk,nk
(k = 1, 2, . . .) .

Thus, by (2.2.5) and (2.2.6), it follows that

∥
∥ym − yj

∥
∥ ≤

∥
∥pαm1

(ym) − ym
∥
∥ +

∥
∥pαm1

(yj) − yj
∥
∥

+
∥
∥pαm1

(ym) − pαm1
(yj)

∥
∥ < ε (m ≥ j ≥ m1) .

Hence, (yn) is a Cauchy subsequence of (xn) .

Thus, we find that every sequence in K has a Cauchy subsequence. Hence, K

is relatively compact. This completes the proof. �
Now, we give a few notations in order to enable us to state the following corollary

neatly. Given a set I, let us denote by
∑(I) the topological subspace of R

I formed
by points (xi : i ∈ I) such that {i ∈ I : xi �= 0} is countable. A topological space
X is said to belong to the class

∑
if there is some set I together with a continuous

one-to-one mapping from X into
∑(I). It has been shown by Valdivia [13] that

every Banach space whose dual with the weak∗ topology belongs to the class
∑

, has
a PRI and the dual of every complemented subspace with the weak∗ topology also
belongs to the class

∑
. Thus Banach spaces whose duals with the weak∗ topology

belong to the class
∑

belong to the class P. It has also been shown in [13] that for
a Banach space E with an extended M -basis, E∗ with the weak∗ topology belongs
to the class

∑
if BE∗ is weak∗ angelic. Further, it has been shown in [2, p. 286]

that C(K) spaces for Valdivia compact K also belong to the class P.
The fruits of the above theorem can be seen in the form of the following corollary

which adds some new classes of Banach spaces to the list of those which are already
known to have the Gelfand-Phillips property.

Corollary 2.4

The following Banach spaces have the Gelfand-Phillips property

a) Weakly countably determined Banach spaces.

b) Banach spaces whose dual spaces with the weak∗-topology belong to the class
∑

.

c) Banach spaces with extended M -bases whose dual unit balls are weak∗-angelic.

d) C(K) spaces for Valdivia compact K.
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However, it is not necessary for a Banach space to belong to the class P, or for
that matter to have even a PRI, in order to possess the Gelfand-Phillips property.
Indeed, consider the separable Banach E given by Hagler [10] which does not contain
any copy of l1 such that the dual E∗ is not separable. By an argument given in [9,
Remark 4], assuming the continuum hypothesis, E∗ does not have a PRI. But E∗

being a Schur space has the Gelfand-Phillips property. On the other hand note that
if Γ is a set with card Γ > dens l∞ then the Banach space E = l2(Γ) ⊕2 l∞ has a
PRI; but E does not belong to the class P (see [2, p. 286]). The set K = {0 ⊕ en :
1 ≤ n < ∞} , where en is the n-th unit coordinate vector in l∞, is a limited set
in E which is not relatively compact. Thus, Theorem 2.3 can not be proved for all
Banach spaces with the PRI.

Finally, the authors are thankful to the referee for his valuable suggestions
towards the improvement of the paper.
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