Collect. Math. 48, 3 (1997), 315-319

(c) 1997 Universitat de Barcelona

On the positive absolutely summing operators on the space $L_p(\mu, X)$

Dumitru Popa

University of Constanta, Department of Mathematics, Boulevard Mamaia, Romania

Received December 20, 1995. Revised March 19, 1996

Abstract

In this paper we obtain a characterization of the positive absolutely summing operators on the space $L_p(\mu, X)$ with $1 \le p < \infty$ and X a Banach lattice, which is analogous with that given by Ch. Swartz in [8] for absolutely summing operators on the space of continuous vector valued functions.

Throughout in this paper X will denote a Banach lattice, $X_+ = \{x \in X \mid x \geq 0\}$ and B is a Banach space. Also, if Y is a normed space and $y_1, ..., y_n \in Y$ we write $l_1(y_i \mid i = 1, n) = \sum_{i=1}^n ||y_i||$ and $w_1(y_i \mid i = 1, n) = \sup_{||y^*|| \leq 1} \sum |y^*(y_i)|$.

Recall that $U \in L(X,B)$ is called a positive absolutely summing operator, if there is a constant C>0 such that for all elements $x_1,...,x_n$ in X_+ we have: $l_1(Ux_i \mid i=1,n) \leq Cw_1(x_i \mid i=1,n)$ and the positive absolutely summing norm of U is $||U||_{as+} = \inf C$. Observe that

$$||U||_{as+} = \sup \{l_1(Ux_i \mid i = 1, n) \mid x_1, ..., x_n \in X_+ \ n \ge 1,$$
with $w_1(x_i \mid i = 1, n) \le 1\},$

and $l_1(Ux_i \mid i = 1, n) \le ||U||_{as+} w_1(x_i \mid i = 1, n)$, for all $x_1, ..., x_n \in X_+$.

We denote by $As_+(X, B)$ the space of all positive absolutely summing operators from X into the B. In the sequel we use the following useful relation: $w_1(x_1 \mid i = 1, n) = \|\sum_{i=1}^n x_i\|$, for all $x_1, ..., x_n \in X_+$, see [7].

Given $1 \leq p < \infty$ we shall always write q for such a number that 1/p + 1/q = 1. Let (S, Σ, μ) be a finite measure space and $1 \leq p < \infty$. We shall denote

316 Popa

by $L_p(\mu, X)$ the space of all X-valued measurable functions f such that: $||f||_p = (\int_S ||f||^p d\mu)^{1/p} < \infty$, which is a Banach lattice in a natural way, namely $f \ge 0$ means that, $f(s) \ge 0$, for μ -almost all $s \in S$. Also recall that, if Y is a Banach space, a finitely additive vector measure $G: \Sigma \to Y$, is said to have bounded q-variation if

$$|G|_{q}(S) = \sup \left\{ \sum_{E \in \pi} \frac{\|G(E)\|^{q}}{\mu(E)^{q-1}} \right\} < \infty, \ (1 < q < \infty),$$

where the sup is taken over all finite partitions of S and

$$\mid G \mid_{\infty} (S) = \sup \left\{ \frac{\|G(E)\|}{\mu(E)} \mid E \in \Sigma \right\} < \infty, \ (q = \infty).$$

We shall denote by $V^q(\mu, Y)$ the space of such measures with norm given by q-variation (see [6] for details). For $U \in L(L_p(\mu, X), B)$, $1 \leq p < \infty$, we denote by $G: \Sigma \to L(X, B)$, $G(E)x = U(\chi_{E}x)$, $E \in \Sigma$, $x \in X$, the representing measure of U. Now we prove the following theorem.

Theorem 1

$$As_{+}(L_{p}(\mu, X), B) = As_{+}(L_{p}(\mu), As_{+}(X, B)) = V^{q}(\mu, As_{+}(X, B)).$$

Proof. O. Blasco proved in [3] that $As_+(L_p(\mu), Z) = V^q(\mu, Z)$ for each normed space Z. Hence we have the equality: $As_+(L_p(\mu, As_+(X, B))) = V^q(\mu, As_+(X, B))$. For the equality $As_+(L_p(\mu, X), B) = V^q(\mu, As_+(X, B))$, let $U \in As_+(L_p(\mu, X), B)$, $E \in \Sigma$, $x_1, ..., x_n \in X_+$. We have:

$$\begin{split} l_1\big(G(E)x_i \mid i = 1, n\big) &= l_1\big(U(\chi_E x_i) \mid i = 1, n\big) \leq \|U\|_{as+} w_1\big(\chi_E x_i \mid i = 1, n\big) \\ &= \|U\|_{as+} \Big\| \sum_{i=1}^n \chi_E x_i \Big\| = \|U\|_{as+} \big[\mu(E)\big]^{1/p} \Big\| \sum_{i=1}^n x_i \Big\| \\ &= \|U\|_{as+} \big[\mu(E)\big]^{1/p} w_1\big(x_i \mid i = 1, n\big) \end{split}$$

i.e. $G(E) \in As_+(X,Y)$ and $||G(E)||_{as+} \le [\mu(E)]^{1/p} ||U||_{as+}$, for each $E \in \Sigma$.

If p=1 the above inequality shows that: $G \in V^q(\mu, As_+(X, B))$ and $|G|_{\infty}(S) \leq ||U||_{as+}$.

If p>1, let $\{E_1,...,E_n\}\subset \Sigma$ be a partition of S, $\alpha_i=[\mu(E_i)]^{-q/p},$ $\beta_i=\|G(E_i)\|_{as+}^{q-1}$ and $\epsilon>0$.

From the definition of the positive absolutely norm it follows that there exist $(x_{ij})_{j \in \sigma_i} \subset X_+$, σ_i finite $\subset N$ so that:

$$||G(E_i)\alpha_i\beta_i||_{as+} - \epsilon/n < l_1(G(E_i)\alpha_i\beta_ix_{ij} \mid j \in \sigma_i),$$

with $w_1(x_{ij} \mid j \in \sigma_i) \leq 1$, for each i = 1, n. From here we obtain:

$$\sum_{i=1}^{n} \|G(E_{i})\|_{as+} \alpha_{i}\beta_{i} - \epsilon < l_{1} \left(U(\chi_{E_{i}}\alpha_{i}\beta_{i}x_{ij}) \mid j \in \sigma_{i}, i = 1, n \right)$$

$$\leq \|U\|_{as+} w_{1} \left(\chi_{E_{i}}\alpha_{i}\beta_{i}x_{ij} \mid j \in \sigma_{i}, i = 1, n \right)$$

$$= \|U\|_{as+} \left\| \sum_{i=1}^{n} \sum_{j \in \sigma_{i}} \chi_{E_{i}}\alpha_{i}\beta_{i}x_{ij} \right\|$$

$$= \|U\|_{as+} \left(\sum_{i=1}^{n} \alpha_{i}^{p} \beta_{i}^{p} \mu(E_{i}) \right\| \sum_{j \in \sigma_{i}} x_{ij} \right\|^{p} \right)^{1/p}$$

As: $\left\|\sum_{j\in\sigma_i} x_{ij}\right\| = w_1(x_{ij} \mid j\in\sigma_i) \le 1$, for each i=1, n we obtain:

$$\sum_{i=1}^{n} \|G(E_i)\|_{as+} \alpha_i \beta_i - \epsilon < \|U\|_{as+} \left(\sum_{i=1}^{n} \alpha_i^p \beta_i^p \mu(E_i)\right)^{1/p}$$

from where, $\epsilon > 0$ being arbitrary,

$$\sum_{i=1}^{n} \|G(E_i)\|_{as+} \alpha_i \beta_i \le \|U\|_{as+} \left(\sum_{i=1}^{n} \alpha_i^p \beta_i^p \mu(E_i)\right)^{1/p}.$$

Using the definition of α_i , β_i and 1/p + 1/q = 1 the above relation give:

$$\sum_{i=1}^{n} \frac{\|G(E_i)\|_{as+}^q}{\mu(E_i)^{q-1}} \le \|U\|_{as+} \left(\sum_{i=1}^{n} \frac{\|G(E_i)\|_{as+}^q}{\mu(E_i)^{q-1}}\right)^{1/p}$$

from where:

$$\left(\sum_{i=1}^{n} \frac{\|G(E_i)\|_{as+}^{q}}{\mu(E_i)^{q-1}}\right)^{1/q} \le \|U\|_{as+},$$

i.e. $G \in V^q \left(\mu, As_+(X, B)\right)$ and $\left|G\right|_q(S) \le \left\|U\right\|_{as+}$.

Conversely if $G \in V^q(\mu, As_+(X, B))$, then $U \in As_+(L_p(\mu, X), B)$. For $f \in L_p(\mu, X)$, $f \geq 0$ and $\epsilon > 0$ there exist a simple function g that takes its values in the range of f, hence $g \geq 0$, such that $||f - g||_p < \epsilon$ (see [5] the proof of Theorem 2 p. 45 and the Pettis measurability Theorem [5] p. 42). This shows that it suffices to prove that the restriction of U to the subspace of all simple functions from $L_p(\mu, X)$ is a positive absolutely summing operator. Let $f_1, ..., f_n \geq 0$ simple

318 Popa

functions. Then there exist a partition $\{E_1,...,E_k\}\subset \Sigma$ and $x_{ij}\geq 0$ such that $f_i=\sum_{j=1}^k\chi_{E_j}x_{ij}$ for each i=1,n. Then:

$$l_1(Uf_i \mid i = 1, n) = l_1 \left(\sum_{j=1}^k G(E_j) x_{ij} \mid i = 1, n \right) \le \sum_{j=1}^k l_1 \left(G(E_j) x_{ij} \mid i = 1, n \right)$$

$$\le \sum_{j=1}^k \|G(E_j)\|_{as+} w_1(x_{ij} \mid i = 1, n)$$

because G takes its values in $As_+(X,B)$. Using the Holder inequality we obtain:

$$l_{1}(Uf_{i} \mid i = 1, n) \leq \left(\sum_{j=i}^{k} \frac{\|G(E_{j})\|_{as+}^{q}}{\mu(E_{j})^{q-1}}\right)^{1/q} \left(\sum_{j=1}^{k} \mu(E_{j}) \left[w_{1}(x_{ij} \mid i = 1, n)\right]^{p}\right)^{1/p}$$

$$\leq |G|_{q}(S) \left(\sum_{j=1}^{k} \mu(E_{j}) \|\sum_{i=1}^{n} x_{ij}\|^{p}\right)^{1/p} = |G|_{q}(S) \|\sum_{i=1}^{n} f_{i}\|$$

$$= |G|_{q}(S)w_{1}(f_{i} \mid i = 1, n)$$

i.e. U is positive absolutely summing and $\|U\|_{as+} \leq |G|_q(S)$ and the Theorem is proved. \square

We are indebted to the referee for the next Corollary which is a version of Fubini Theorem.

Corollary 2

$$V^p([0,1]^2, B) = V^p([0,1], V^p([0,1], B)).$$

Proof. Using the Theorem 1 and the well known fact that $L_q([0,1]^2) = L_q([0,1], L_q[0,1])$ we have the equalities:

$$V^{p}([0,1]^{2},B) = As_{+}(L_{q}([0,1]^{2}),B) = As_{+}(L_{q}([0,1],L_{q}[0,1]),B)$$
$$= As_{+}(L_{q}([0,1],As_{+}(L_{q}[0,1],B)) = V^{p}([0,1],V^{p}([0,1],B)). \square$$

Acknowledgment. The author is grateful to Prof. Nicolae Popa for the suggesting the analogy of the above result with that of Ch. Swartz.

References

- 1. O. Blasco, A class of operators from a Banach lattice into a Banach space, *Collect. Math.* **37**, 1 (1986), 11–22.
- 2. O. Blasco, Boundary values of vector valued harmonic functions considered as operators, *Studia Math.* **46** (1987), 19–33.
- 3. O. Blasco, Positive p-summing operators on L_p —spaces, *Proc. Amer. Math. Soc.* **100**, 2 (1987), 275–280.
- 4. O. Blasco, Positive p-summing operators, vector measures and products, *Proc. Edinburgh Math. Soc.* **31** (1988), 179–184.
- 5. J. Diestel and J. J. Uhl, Vector measures, A.M.S. 15, 1977.
- 6. N. Dinculeanu, Vector measures, Pergamon Press, New York, 1967.
- 7. H. Schaeffer, Banach lattice and positive operators, Springer Verlag, Berlin, 1974.
- 8. Ch. Swartz, Absolutely summing operators and dominated operators on spaces of vector valued continuous functions, *Trans. Amer. Math. Soc.* **179** (1973), 123–131.