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Abstract

In this paper we obtain a characterization of the positive absolutely summing
operators on the space Lp(µ, X) with 1≤ p < ∞ and X a Banach lattice,
which is analogous with that given by Ch. Swartz in [8] for absolutely summing
operators on the space of continuous vector valued functions.

Throughout in this paper X will denote a Banach lattice , X+ = {x ∈ X | x ≥ 0}
and B is a Banach space. Also, if Y is a normed space and y1,..., yn ∈ Y we write
l1

(
yi | i = 1, n

)
=

∑n
i=1 ‖yi‖ and w1

(
yi | i = 1, n

)
= sup‖y∗‖≤1

∑ | y∗(yi) |.
Recall that U ∈ L(X,B) is called a positive absolutely summing operator,

if there is a constant C > 0 such that for all elements x1,...,xn in X+ we have:
l1(Uxi | i = 1, n) ≤ Cw1(xi | i = 1, n) and the positive absolutely summing norm of
U is ‖U‖as+ = inf C. Observe that

‖U‖as+ = sup {l1(Uxi | i = 1, n) | x1, ..., xn ∈ X+ n ≥ 1,

with w1(xi | i = 1, n) ≤ 1
}
,

and l1(Uxi | i = 1, n) ≤ ‖U‖as+w1(xi | i = 1, n), for all x1, ..., xn ∈ X+ .

We denote by As+(X,B) the space of all positive absolutely summing operators
from X into the B. In the sequel we use the following useful relation: w1(x1 | i =
1, n) = ‖∑n

i=1 xi‖, for all x1, ..., xn ∈ X+, see [7].
Given 1 ≤ p < ∞ we shall always write q for such a number that 1/p +

1/q = 1. Let (S,Σ, µ) be a finite measure space and 1 ≤ p < ∞. We shall denote
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by Lp(µ,X) the space of all X-valued measurable functions f such that: ‖f‖p =
(
∫
S
‖f‖pdµ)1/p < ∞, which is a Banach lattice in a natural way, namely f ≥ 0 means

that, f(s) ≥ 0, for µ-almost all s ∈ S. Also recall that, if Y is a Banach space, a
finitely additive vector measure G : Σ → Y , is said to have bounded q-variation if

| G |q (S) = sup

{∑
E∈π

‖G(E)‖q
µ(E)q−1

}
< ∞ , (1 < q < ∞) ,

where the sup is taken over all finite partitions of S and

| G |∞ (S) = sup
{‖G(E)‖

µ(E)
| E ∈ Σ

}
< ∞ , (q = ∞) .

We shall denote by V q(µ, Y ) the space of such measures with norm given by
q-variation (see [6] for details). For U ∈ L

(
Lp(µ,X), B

)
, 1 ≤ p < ∞ , we de-

note by G : Σ → L(X,B) , G(E)x = U(χEx) , E ∈ Σ , x ∈ X, the representing
measure of U . Now we prove the following theorem.

Theorem 1

As+(Lp(µ,X), B) = As+
(
Lp(µ), As+(X,B)

)
= V q(µ,As+(X,B)) .

Proof. O. Blasco proved in [3] that As+(Lp(µ), Z) = V q(µ,Z) for each normed space
Z. Hence we have the equality: As+

(
Lp(µ,As+(X,B)

)
= V q

(
µ,As+(X,B)

)
. For

the equality As+
(
Lp(µ,X), B

)
= V q

(
µ,As+(X,B)

)
, let U ∈ As+

(
Lp(µ,X), B)

)
,

E ∈ Σ, x1,..., xn ∈ X+ . We have:

l1
(
G(E)xi | i = 1, n

)
= l1

(
U(χExi) | i = 1, n

)
≤ ‖U‖as+w1

(
χExi | i = 1, n

)
= ‖U‖as+

∥∥∥ n∑
i=1

χExi

∥∥∥ = ‖U‖as+
[
µ(E)

]1/p∥∥∥ n∑
i=1

xi

∥∥∥
= ‖U‖as+

[
µ(E)

]1/p
w1

(
xi | i = 1, n

)
i.e. G(E) ∈ As+(X,Y ) and ‖G(E)‖as+ ≤ [µ(E)]1/p‖U‖as+, for each E ∈ Σ.

If p = 1 the above inequality shows that: G ∈ V q(µ,As+(X,B)) and | G |∞
(S) ≤ ‖U‖as+ .

If p > 1, let {E1, ..., En} ⊂ Σ be a partition of S, αi = [µ(Ei)]−q/p, βi =
‖G(Ei)‖q−1

as+ and ε > 0.
From the definition of the positive absolutely norm it follows that there exist

(xij)j∈σi ⊂ X+ , σi finite ⊂ N so that:

‖G(Ei)αiβi‖as+ − ε/n < l1(G(Ei)αiβixij | j ∈ σi) ,
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with w1(xij | j ∈ σi) ≤ 1, for each i = 1, n. From here we obtain:

n∑
i=1

‖G(Ei)‖as+ αiβi − ε < l1
(
U(χEi

αiβixij) | j ∈ σi, i = 1, n
)

≤ ‖U‖as+w1

(
χEi

αiβixij | j ∈ σi,i = 1, n
)

= ‖U‖as+
∥∥∥ n∑

i=1

∑
j∈σi

χEi
αiβixij

∥∥∥
= ‖U‖as+

( n∑
i=1

αp
i β

p
i µ(Ei)

∥∥∥ ∑
j∈σi

xij

∥∥∥p
)1/p

As:
∥∥∑

j∈σi
xij

∥∥ = w1(xij | j ∈ σi) ≤ 1, for each i = 1, n we obtain:

n∑
i=1

‖G(Ei)‖as+ αiβi − ε < ‖U‖as+
(

n∑
i=1

αp
i β

p
i µ(Ei)

)1/p

from where, ε > 0 being arbitrary,

n∑
i=1

‖G(Ei)‖as+ αiβi ≤ ‖U‖as+
(

n∑
i=1

αp
i β

p
i µ(Ei)

)1/p

.

Using the definition of αi, βi and 1/p+ 1/q = 1 the above relation give:

n∑
i=1

‖G(Ei)‖qas+
µ(Ei)q−1

≤ ‖U‖as+
(

n∑
i=1

‖G(Ei)‖qas+
µ(Ei)q−1

)1/p

from where: (
n∑

i=1

‖G(Ei)‖qas+
µ(Ei)q−1

)1/q

≤ ‖U‖as+ ,

i.e. G ∈ V q
(
µ,As+(X,B)

)
and |G|q (S) ≤ ‖U‖as+ .

Conversely if G ∈ V q
(
µ,As+(X,B)

)
, then U ∈ As+

(
Lp(µ,X), B)

)
. For f ∈

Lp(µ,X), f ≥ 0 and ε > 0 there exist a simple function g that takes its values in
the range of f , hence g ≥ 0, such that ‖f − g‖p < ε (see [5] the proof of Theo-
rem 2 p. 45 and the Pettis measurability Theorem [5] p. 42). This shows that it
suffices to prove that the restriction of U to the subspace of all simple functions
from Lp(µ,X) is a positive absolutely summing operator. Let f1, ..., fn ≥ 0 simple
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functions. Then there exist a partition {E1,...,Ek} ⊂ Σ and xij ≥ 0 such that
fi =

∑k
j=1 χEjxij for each i = 1, n. Then:

l1(Ufi | i = 1, n) = l1


 k∑

j=1

G(Ej)xij | i = 1, n


 ≤

k∑
j=1

l1
(
G(Ej)xij | i = 1, n

)

≤
k∑

j=1

‖G(Ej)‖as+ w1(xij | i = 1, n)

because G takes its values in As+(X,B) . Using the Holder inequality we obtain:

l1(Ufi | i = 1, n) ≤


 k∑

j=i

‖G(Ej)‖qas+
µ(Ej)q−1




1/q 
 k∑

j=1

µ(Ej)
[
w1(xij | i = 1, n)

]p
1/p

≤ |G|q (S)


 k∑

j=1

µ(Ej)‖
n∑

i=1

xij‖p



1/p

= |G|q (S)
∥∥∥∥

n∑
i=1

fi

∥∥∥∥
= |G|q (S)w1

(
fi | i = 1, n

)
i.e. U is positive absolutely summing and ‖U‖as+ ≤ |G|q (S) and the Theorem is
proved. �

We are indebted to the referee for the next Corollary which is a version of Fubini
Theorem.

Corollary 2

V p
(
[0, 1]2, B

)
= V p

(
[0, 1], V p([0, 1], B)

)
.

Proof. Using the Theorem 1 and the well known fact that Lq

(
[0, 1]2

)
= Lq

(
[0, 1],

Lq[0, 1]
)

we have the equalities:

V p
(
[0, 1]2, B

)
= As+

(
Lq([0, 1]2), B

)
= As+

(
Lq([0, 1], Lq[0, 1]), B

)
= As+

(
Lq([0, 1], As+(Lq[0, 1], B)

)
= V p

(
[0, 1], V p([0, 1], B)

)
. �
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