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Abstract

In this paper, we study the dual space and reiteration theorems for the real method
of interpolation for infinite families of Banach spaces introduced in [2]. We also
give examples of interpolation spaces constructed with this method.

1. Introduction

In [2], we studied a new method of real interpolation for families of Banach spaces.
This method recovers the previous real methods of Sparr, Fernández and Cobos-
Peetre (see [10], [7] and [5]). The notion of interpolation family was introduced by
the St. Louis group in [6] and it is in this setting in which the K and J functionals
were defined (see [2]).

This paper is a natural continuation of the previous one. Here, we generalize
the definition of the K and J functional in the sense of the appendix of [2]. This
generalization turns out to be very useful not only for the identification of concrete
examples of interpolation spaces and for the identification of dual spaces as we
shall see in this paper, but also to study compactness (see [4]), weakly compactness
(see [3]) and uniform convexity (see [9]).
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The paper is organized as follows. In section 2 we, very briefly, recall the
definitions and notations necessary for the sequel and introduce the interpolation
spaces we shall work with. Section 3 is devoted to the relation of these spaces with
the complex method. This is a continuation of section 5 in [2] where this relation
was carefully studied for the original K and J functionals. In section 4 we give
several examples, some of those already studied in [2]. In section 5 we study duality
theorems and section 6 is devoted to reiteration results. Throughout this paper,

∑′

indicates a finite sum, the symbol f ∼ g is used to indicate the existence of two
positive constants a, b such that af(·) ≤ g(·) ≤ bf(·) and ≡ indicates equivalence of
norms.

2. K− and J− functionals for families

Let D denote the unit disc {z ∈ C : |z| < 1} and Γ its boundary. We say that
A =

{
A(γ) : γ ∈ Γ; A, U

}
is a complex interpolation family (i.f.) on Γ with U as

the containing Banach space and A as the log–intersection space, in the sense of [6],
if:

(a) the complex Banach spaces A(γ) are continuously embedded in U (‖·‖γ will
be the norm on A(γ) and ‖ · ‖U the norm on U),

(b) for every a ∈ ∩γ∈ΓA(γ), γ ∈ Γ −→ ‖a‖γ is a measurable function on Γ,
(c) A =

{
a ∈ A(γ) a.e. γ ∈ Γ :

∫
Γ

log+ ‖a‖γ dγ < +∞
}
, and there exists a

measurable function P on Γ such that∫
Γ

log+ P (γ) dγ < +∞ and ‖a‖U ≤ P (γ)‖a‖γ , a.e. γ ( a ∈ A )·

Let
L =

{
α : Γ −→ R

+ : measurable, log α ∈ L1(Γ)
}
,

and let

G =
{
b =

∑ ′
bjχEj : bj ∈ A and Ej pairwise disjoint measurable sets in Γ

}
,

where χE denotes the characteristic function of E. We shall write a(·) ∈ G whenever
a(·) is a Bochner integrable function in U , such that a(γ) ∈ A(γ) a.e. γ ∈ Γ and such
that a(·) can be a.e. approximated in the A(·)–norm by functions an(·) belonging
to G.
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Definition 2.1. Let α ∈ L.
(a) For each a ∈ U and 1 ≤ q ≤ ∞, we define the Kq–functional with respect to the
i.f. A by

Kq(α, a) = inf
{( ∫

Γ

(
α(γ)‖a(γ)‖γ

)q
dγ

)1/q}
,

where the infimum extends over all representations a =
∫
Γ
a(γ) dγ (convergence in

U), with a(·) ∈ G.
(b) For each a ∈ A and 1 ≤ q ≤ ∞, we also define the Jq–functional by

Jq(α, a) =
(∫

Γ

(
α(γ)‖a‖γ

)q
dγ

)1/q

·

For α ∈ L and z ∈ D, we write

α(z) = exp
( ∫

Γ

logα(γ)Pz(γ) dγ
)
,

where Pz is the Poisson kernel and, for a ∈ A,

ϕa(z) = exp
( ∫

Γ

log ‖a‖A(γ)Pz(γ) dγ
)
·

Finally, α̃ or ϕ̃a mean that we are using the Herglotz kernel instead of the Poisson
kernel in the previous formulas.

Definition 2.2. Let S ⊂ L and 0 < p ≤ ∞. Let A =
{
A(γ) : γ ∈ Γ; A, U

}
be

an i.f.
(a) The space [A]Sz0,p,q consists of all a ∈ U for which(

Kq(α, a)
α(z0)

)
α∈S

∈ lp(S),

endowed with the quasi-seminorm

‖a‖[A]Sz0,p,q
=

( ∑
α∈S

(Kq(α, a)
α(z0)

)p)1/p

·

When q = 1, we simply write [A]Sz0,p.
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(b) The space (A)Sz0,p,q is the set of all elements a ∈ U such that there exists
{u(α)}α∈S in A satisfying a =

∑
α∈S u(α) (in the U–norm) and

(∑
α

(
Jq(α, u(α))

α(z0)

)p)1/p

< +∞·

This space will be endowed with the quasi-seminorm

‖a‖(A)Sz0,p,q
= inf

{ (∑
α

(
Jq(α, u(α))

α(z0)

)p)1/p }

where the infimum extends to all possible representations of a. When q = +∞, we
write (A)Sz0,p.

We observe that although in the classical cases of Sparr, Fernández and Cobos-
Peetre (see §3) these spaces do not depend on q, in general they are not equivalent
for different q′s. A trivial example of this is to take S = {1} and the family A(γ) =(
C, w(γ)

)
where w ∈ Lq0(Γ) but w /∈ Lq1(Γ). In this case, (A)Sz0,p,q0 =

(
C, ‖w‖q0

)
while (A)Sz0,p,q1 = {0}. In §3 we shall see another non trivial example of this fact.
Also, it is known (see [3], [4]) that for the K–method the weakly compactness and
the compactness properties are preserved by interpolation for every q > 1 but not
in the case q = 1. Same for the J–method and q = +∞.

Although no restrictions are needed on S for the definition of these spaces, they
are necessary to have good properties of these spaces and, hence, one can easily see
modifying in a slight way the arguments given in [2] that the natural conditions we
need on S to have that the spaces [A]Sz0,p,q and (A)Sz0,p,q are Banach spaces with
the intermediate property (A ⊂ [A]Sz0,p,q ⊂ U , A ⊂ (A)Sz0,p,q ⊂ U) and the usual
embedding (A)Sz0,p ⊂ [A]Sz0,p are the following:
(i) For every α ∈ S there exists a constant Cα such that P (γ) ≤ Cαα(γ) a.e. γ ∈ Γ,
where P is the function in the definition of i.f.
(ii) For every z0 ∈ D, there exists a compact set K ⊂ D such that

(1)
∑
α∈S

infz∈K α(z)
α(z0)

< +∞·

(iii) S is a multiplicative group; that is, for every α, β ∈ S, αβ ∈ S, 1 ∈ S and
α−1 ∈ S.

However, we want to insist on the fact that we do not need all that conditions
together to prove many of the results in the paper (see also [2]) but it is a good
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way of simplifying the theory and be sure we have all what we need at any moment.
Therefore, unless we specify the contrary, we shall assume, in the sequel, that the
set S satisfies conditions (i), (ii) and (iii).

Once we have the intermediate property, we would like to also get the density
condition of A in the interpolated spaces. However, this density property does not
hold even in the case of a finite family of three spaces (see [10]). For this reason, we
introduce a new K-functional,

K̃q(α, a) = inf
{( ∫

Γ

(
α(γ)‖a(γ)‖γ

)q
dγ

)1/q

: a(·) ∈ G,
∫

Γ

a(γ) dγ = a

}
,

for a ∈ A, and a new space {A}Sz0,p,q defined as the completion of A with respect to
the norm

‖a‖{A}S
z0,p,q

=

(∑
α∈S

(
K̃q(α, a)
α(z0)

)p)1/p

·

For q = 1, we write {A}Sz0,p.
It is worth to mention the relation between this space and the space A{z0} in

the complex interpolation method for families in the same way that [A]Sz0,p can be
related to A[z0] (see [6] and [2]). We see in the following counterexample that the
new space does not coincide in general with [A]Sz0,p and, similarly to what happens
in the complex method, this new space will not always be embedded in U .

Counterexample 2.3. Let A = {A(γ) = Aj : γ ∈ Γj , j = 0, 1, 2} where

A0 =
{
λ = (λn)n : ‖λ‖A0 =

∑
n∈Z

|λn|min(1, 2−n) < +∞
}
,

A1 =
{
λ = (λn)n : ‖λ‖A1 =

∑
n∈Z

|λn|min(1, 2n) < +∞
}
,

A2 =
{
λ = (λn)n : ‖λ‖A2 =

∑
n∈Z

|λn| < +∞
}

as in Appendix 1 of [6]. Then, we get that for the set S = {1},

‖a‖[A]Sz0,p
= K(1, a) = inf

{ 2∑
j=0

‖aj‖Aj : a =
2∑
j=0

aj

}

‖a‖{A}S
z0,p

= K̃(1, a) = inf
{ 2∑
j=0

‖aj‖Aj : a =
2∑
j=0

aj , aj ∈ ∩2
j=0Aj

}
and, as in Remark A1.1, (iii) of [6], there exists a sequence (βk)k such that, as
k → ∞, ‖βk‖[A]Sz0,p

→ 0, while ‖βk‖{A}S
z0,p

≥ 1/6 for each k. �
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For A = {A(γ);A,U} and B = {B(γ);B,V} two i.f., we say that T : A −→ B
is an interpolation operator if T : U −→ V is bounded and T : A(γ) −→ B(γ)
with norm ‖T‖A(γ)→B(γ) ≤ M(γ) ∈ L. Then, the following theorem was essentially
proved in [2].

Theorem 2.4
Let A and B be two i.f. and let T : A −→ B be an interpolation operator with

norm ‖T‖A(γ)→B(γ) ≤ M(γ) ∈ L. Then
(a) if ‖M‖∞ < +∞, we get that, for every S ⊂ L,

T : [A]Sz0,p,q −→ [B]Sz0,p,q, T : {A}Sz0,p,q −→ {B}Sz0,p,q and T : (A)Sz0,p,q −→ (B)Sz0,p,q
are bounded with norm less than or equal to ‖M‖∞.
(b) If MS = {Mα : α ∈ S} ⊂ S, then they are bounded with norm less than or
equal to M(z0) (that is, with convexity).
(c) In fact, one can easily check, using the hypothesis (iii) on S that the norm of
any of these three operators can be bounded by

inf
β∈S

‖Mβ‖∞
β(z0)

·

Obviously, we have the following chain of embeddings:

(A)Sz0,p,∞ ⊂ · · · (A)Sz0,p,q ⊂ · · · (A)Sz0,p,1 ,

[A]Sz0,p,∞ ⊂ · · · [A]Sz0,p,q ⊂ · · · [A]Sz0,p,1 ,

and with respect to the embedding (A)Sz0,p ⊂ [A]Sz0,p we have the following result:

Proposition 2.5
Under the hypotheses assumed on S we get:

(a) If p ≥ 1, then (A)Sz0,p,∞ is embedded in [A]Sz0,p,1; and if∑
n

(
ess inf αn(γ)

αn(z0)

)p
< +∞ ,

then the same holds for p < 1.
(b) Let p ≥ 1. Then, (A)Sz0,p,1 is embedded in [A]Sz0,p,∞; and if∑

n

(
infz∈K αn(z)

αn(z0)

)p
< +∞ ,

then the same result holds for p < 1.
(c) Under the same hypotheses of (a) and assuming that {A}Sz0,p,1 is embedded in
U , we get that (A)Sz0,p,∞ is embedded in {A}Sz0,p,1.
(d) Under the same hypotheses of (b) and assuming that {A}Sz0,p,∞ is embedded in
U , we get that (A)Sz0,p,1 is embedded in {A}Sz0,p,∞ .
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Proof.

(a) See [2].
(b) We get, using Szegö Theorem, (see also [2], 2.6) that, if a =

∑
β∈S aβ , aβ ∈ A

and C(z) = ‖Pz‖∞, then

K∞(α, a) ≤
∑
β∈S

K∞(α, aβ) ≤
∑
β∈S

α(zβ)ϕaβ (zβ)

=
∑
β∈S

(αβ−1)(zβ)β(zβ)ϕaβ (zβ) ≤
∑
β∈S

C(zβ)(αβ−1)(zβ)J1(β, aβ),

for every {zβ}β ⊂ D, and hence, choosing {zβ} ⊂ K such that (αβ−1)(zβ) =
infz∈K(αβ−1)(z), we obtain

K∞(α, a) ≤ C
∑
β

J1(β, aβ) inf
z∈K

(αβ−1)(z)

and we proceed as in (a); that is, if p ≥ 1

‖a‖[A]Sz0,p,∞
=

(∑
α∈S

(
K∞(α, a)
α(z0)

)p)1/p

≤ C

∑
α

(∑
β

J1(β, aβ)
β(z0)

ess infz∈K(αβ−1)(z)
(αβ−1)(z0)

)p
1/p

≤ C ′

∑
α

∑
β

(
J1(β, aβ)
β(z0)

)p ess infz∈K(αβ−1)(z)
(αβ−1)(z0)

1/p

≤ C ′′‖a‖(A)Sz0,p,1
+ ε ·

If p < 1 we just need to do the obvious changes in the second inequality.
(c) and (d): To see this, we only have to notice that if a =

∑
n aαn and we call

aN =
∑N

n=−N aαn , then, as in the proof of (b), one can easily see that (aN )N is a
Cauchy sequence in {A}Sz0,p and therefore converges to an element b ∈ {A}Sz0,p. But,
if {A}Sz0,p is embedded in U we get that necessarily b = a. �

The following proposition will be very useful for the examples.
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Proposition 2.6

Let A = (A0, A1) be an i.f. corresponding to the partition of Γ, {Γ0,Γ1}; that

is, A(γ) = Aj , for every γ ∈ Γj . Let α ∈ L such that ess infγ∈Γj α(γ) �= 0 for j = 0, 1
and define

α
(q)
j =

( ∫
Γj

α(γ)−q
′
dγ

)−1/q′

·

Then, for every a ∈ A0 ∩A1,

Kq(α, a) ∼ inf
{
α

(q)
0 ‖a0‖A0 + α

(q)
1 ‖a1‖A1 : a = a0 + a1

}
,

and if A0∩A1 is dense in Aj for j = 0, 1, then the same holds for every a ∈ A0 +A1.

Proof. First, we observe that

α
(q)
j = inf

{( ∫
Γj

(α(γ)ϕ(γ))q dγ
)1/q

:
∫

Γj

ϕ(γ) dγ = 1
}
·

Now, let a = a0 + a1 with aj ∈ Aj and let us consider a(γ) = a0ϕ0(γ) + a1ϕ1(γ)
where ϕj are arbitrary measurable functions such that

(*) supp ϕj ⊂ Γj and
∫

Γj

ϕj(γ) dγ = 1·

Then
∫
Γ
a(γ) dγ = a and

Kq(α, a) ≤ inf
{( 1∑

j=0

∫
Γj

(
‖aj‖Ajα(γ)|ϕj(γ)|

)q
dγ

)1/q

: ϕj satisfies (*)
}

≤
(
‖a0‖qA0

(α(q)
0 )q + ‖a1‖qA1

(α(q)
1 )q

)1/q

∼ α
(q)
0 ‖a0‖A0 + α

(q)
1 ‖a1‖A1 ·

Conversely, given ε > 0, if a =
∫
Γ
a(γ) dγ with( ∫

Γ0

(α(γ)‖a(γ)‖0)
q
dγ +

∫
Γ1

(α(γ)‖a(γ)‖1)
q
dγ

)1/q

≤ Kq(α, a) + ε ,

we get, defining aj =
∫
Γj
a(γ)dγ ∈ Aj , that a = a0 + a1 and

α
(q)
0 ‖a0‖A0 + α

(q)
1 ‖a1‖A1

≤
1∑
j=0

inf
{( ∫

Γj

(α(γ)ϕj(γ))q dγ
)1/q

:
∫

Γj

ϕ(γ) dγ = 1
} ∫

Γj

‖a(γ)‖A(γ)dγ ·
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Taking ϕj(γ) = ‖a(γ)‖A(γ)χΓj (γ)
(∫

Γj
‖a(γ)‖A(γ)dγ

)−1

we get that the last term is
less than or equal to

1∑
j=0

( ∫
Γj

(
α(γ)‖a(γ)‖A(γ)

)q
dγ

)1/q

∼
( ∫

Γ

(
α(γ)‖a(γ)‖A(γ)

)q
dγ

)1/q

,

≤ Kq(α, a) + ε

and, thus, letting ε go to zero and taking the appropriate infimum we get the result. �

3. Examples

In this section we shall give some examples of interpolation spaces with the method
introduced above. Some of these examples were already studied in [2]; however, we
shall be here more precise about the q parameter. In the next examples, we assume
that the intersection space ∩jAj is dense in every Aj .

(I) Let A = (A0, A1); that is, A(γ) = Aj for γ ∈ Γj , j = 0, 1 with {Γ0, Γ1} a
partition of Γ. Then if we take

S =

{
αn(γ) =

{
1 if γ ∈ Γ0

2n if γ ∈ Γ1
, n ∈ Z

}

we get that, [A]Sz0,p,q ≡ (A0, A1)|Γ1|z0 ,p since by Proposition 2.6

Kq(αn, a) ∼ K(2n, a)

with K(2n, a) the classical K–functional.

(II) If A = (A0, A1, · · · , Am); that is, A(γ) = Aj for γ ∈ Γj , j = 0, · · · ,m,
{Γ0, · · · ,Γm} a partition of Γ and we consider

S =

{
αn(γ) =

{
1 if γ ∈ Γ0

2nj if γ ∈ Γj , j = 1, · · · ,m , n = (n1, · · · , nm) ∈ Z
m

}
,

then
[A]Sz0,p,q ≡ (A0, A1, · · · , AN )(|Γj |z0 ,j=1,···,N),p

(Sparr K–space, see [10]). Analogously for the J–method.
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(III) If A = (A0, A1, A2, A3); that is, A(γ) = Aj when γ ∈ Γj , j = 0, · · · , 3 and we
consider

S =

{
αn(γ) =


1 if γ ∈ Γ0

2n if γ ∈ Γ1

2k if γ ∈ Γ2

2n2k if γ ∈ Γ3

, n = (n, k) ∈ Z
2

}

then [A]Sz0,p,q ≡ (A0, A1, A2, A3)(θ1,θ2),p;K where θ1 = |Γ1∪Γ3|z0 and θ2 = |Γ2∪Γ3|z0
(Fernández K–space, see [7]). Analogously for the J–method.

(IV) If A = (A1, · · · , Am) and we take

S =

{
αn,k(γ) =

{
(aj)n(bj)k : γ ∈ Γj , j = 1, · · · ,m

}
, (n, k) ∈ Z

2

}
with aj = 2xj and bj = 2yj and (xj , yj) the vertices of a polygon in the affine
plane R

2, then [A]Sz0,p,q = (A1, · · · , Am)(α,β),p;K where (α, β) =
∑m

j=1 |Γj |z0(xj , yj)
(Cobos-Peetre interpolation spaces, see [5]). Analogously for the J–method.

(V) Let 1 ≤ q ≤ ∞ and let A = {A(γ); γ ∈ Γ} be an i.f. with A(γ) = Lq(w(γ, ·))
where Lq(w) =

{
f ; fw ∈ Lq

}
and w(γ, ·) is a family of weights on a measure space

M such that, w(γ, x) ∈ L a.e. x. Then(
Kq(α, f)

)q
= inf

{ ∫
Γ

(
α(γ) ‖F (γ)‖Lq(w(γ,·))

)q
dγ;

∫
Γ

F (γ) = f

}
= inf

{ ∫
M

∫
Γ

(
α(γ) |F (γ, x)|w(γ, x)

)q
dγ dx;

∫
Γ

F (γ, x) dγ = f(x)
}

=
∫
M

|f(x)|q
(

inf

{∫
Γ

(
α(γ) |ϕ(γ, x)|w(γ, x)

)q
dγ;

∫
Γ

ϕ(γ, x) dγ = 1

})
dx

=
∫
M

|f(x)|q
( ∫

Γ

(
α(γ)w(γ, x)

)−q′
dγ

)−q/q′

dx,

and hence, if we write

Wq(α, x) =
( ∫

Γ

(
α(γ)w(γ, x)

)−q′
dγ

)−1/q′

,

we get Kq(α, f) = ‖f‖Lq(Wq(α,·)) and thus, if we define

Wq(S, z0) =

( ∑
α∈S

(Wq(α, x)
α(z0)

)q)1/q

,

one can easily see that, for every S and every z0 ∈ D, [A]Sz0,q,q = Lq(Wq(S, z0)).
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(VI) In this example we get a weighted Lorentz space as an interpolation of L1

and L∞. However, our set S will not satisfy, in general conditions (i), (ii) and
(iii). Let A = (L1, L∞). Then, it is well known that, for the classical K–functional
K(t, f) =

∫ t
0
f∗(s) ds where f∗ is the rearrangement decreasing function of f . Now,

let w be a weight such that for some 0 < λ < 1,
∫ 2n+1

2n w ≤ 2np(1−λ). Then, if
we take Γ1 such that |Γ1|z0 = λ, we can find αn such that infγ∈Γ0 αn(γ) = 1,

infγ∈Γ1 αn(γ) = 2n and αn(z0) = 2n
( ∫ 2n+1

2n w
)−1/p. Therefore, if S = {αn}n∈Z, we

get by 2.6,

[A]Sz0,p,1 =

{
f ∈ L1 + L∞;

( ∑
n∈Z

(
K(2n; f)

2n

)p ∫ 2n+1

2n

w

)1/p

< +∞
}

∼
{
f ∈ L1 + L∞;

(∫ ∞

0

(
1
x

∫ x

0

f∗(t) dt
)p

w(x) dx

)1/p

< +∞
}
·

Thus, if w is in the class of Ariño and Muckenhoupt Bp, then [A]Sz0,p,1 ≡ Λp(w) is a
weighted Lorentz space.

(VII) Let (A0, A1) = (L1, L∞) . By Proposition 2.6, if we take (Γ ≡ [0, 2])

α(γ) =

{
1 if γ ∈ [0, 1]

γ if γ ∈ [1, 2]
,

and S = {αn, n ∈ Z}, then one can easily check that

K1(αn, a) =

{ ‖a‖L1+L∞ if n > 0

K(2n, a) if n ≤ 0
,

and

K∞(αn, a) =

{ ‖a‖L1+L∞ if n > 0

K(|n|2n, a) if n ≤ 0
,

where K(2n, a) and K(|n|2n, a) are the usual K–functional for a couple of Banach
spaces.

Hence, there exists 0 < θ < 1 such that

[A]Sz0,∞,∞ =
{
f ∈ L1 + L∞;

(
|n|2n(1−θ)f∗∗(|n|2n)

)
n≤0

∈ l∞
}

and
[A]Sz0,∞,1 =

{
f ∈ L1 + L∞;

(
2n(1−θ)f∗∗(2n)

)
n≤0

∈ l∞
}
.

These spaces are obviously not equivalent since, for example a function f such
that f∗(s) = sθ−1 satisfies that f ∈ [A]Sz0,∞,1 but f /∈ [A]Sz0,∞,∞ .



64 Carro

4. Relation with the complex method for families

In this section, we shall use the notation of [6]. Let us recall that for an i.f. A, the
St. Louis group defines the following function spaces:

G(A(·),Γ) =
{
g(z) =

∑ ′
ϕjaj : ϕj ∈ H∞(D), aj ∈ A, ‖g‖G(A(·),Γ) < +∞

}
where ‖g‖G(A(·),Γ) = ess supγ∈Γ ‖g(γ)‖A(γ) and F(A(·),Γ) is the completion of
G(A(·),Γ) with respect to the norm ‖ · ‖G . However, as is shown in [6], one can
substitute the above norm by ‖g‖ =

( ∫
Γ
‖g(γ)‖pγ dγ

)1/p for every p ≥ 1 and the
interpolated spaces A{z0} and A[z0] remains unchanged. In this paper, we shall
denote the norm with index p by ‖ · ‖Gp and the corresponding spaces by Gp(A(·),Γ)
and Fp(A(·),Γ).

In [2], we see that the usual embeddings known for the classic method

(A0, A1)θ,1 ⊂ [A0, A1]θ ⊂ (A0, A1)θ,∞ ,

(see [1]) are now given by

(A)Sz0,1,∞ ⊂ A[z0] ⊂ [A]Sz0,∞,1 ·

Now, the previous relationship can be improved in the following way.

Proposition 4.1

Let z0 ∈ D and 1 ≤ q ≤ ∞. Then the following embeddings hold.

(a) (A)Sz0,1,q is embedded in A[z0].
(b) A[z0] is embedded in [A]Sz0,∞,q

(c) If, for every a ∈ A, the function ‖a‖γ ∈ Lp(Γ) for some p > q. Then, for every

a ∈ A, ‖a‖{A}S
z0,∞,q

≤ C‖a‖A{z0}.

Proof. The proof of (a) and (b) is similar to that in [2].
We shall only prove (c). We observe that, given g ∈ Gq(A(·),Γ) such that

g(z0) = a, we have that g =
∑

j ϕjaj with ϕj ∈ H∞(D) and aj ∈ A for all j. Set
gα = α̃(z0)g/α̃, with α̃(z0) = α(z0). Then, we can consider simple functions smj
such that ∫

Γ

(∣∣smj (γ) − α̃(z0)ϕj(γ)
α̃(γ)

Pz0(γ)
∣∣ max

(
1, α(γ)

))(p/q)′

dγ
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converges to zero as m tends to infinity and such that
∫
Γ
smj (γ) dγ = ϕj(z0). If we

define gm =
∑

j s
m
j aj we get that gm ∈ G,

∫
Γ
gm(γ) dγ = a and∫

Γ

(
α(γ)‖gm(γ) − gα(γ)Pz0(γ)‖γ

)q
dγ

m→∞−→ 0 ·

Thus, given ε > 0, there exist m ∈ N and constant C > 0 such that

K̃q(α, a) ≤
( ∫

Γ

(
α(γ)‖gm(γ)‖γ

)q
dγ

)1/q

≤ ε+ C

( ∫
Γ

(
α(z0)‖g(γ)‖γ

)q
dγ

)1/q

≤ ε+ Cα(z0)‖g‖Gq ·

Therefore, ‖a‖{A}S
z0,∞,q

≤ C‖a‖A{z0} for every a ∈ A. �

Analogously, we could define a space V closely related to (A)Sz0,p,q as the com-
pletion of A with respect to the norm

‖a‖p = inf

{ (∑
α

(Jq(α, aα)
α(z0)

)p)1/p

:
∑ ′

aα = a

}
·

Then, for every a ∈ A, ‖a‖A{z0} ≤ ‖a‖1. We only need to consider a =
∑′

an

and, hence, the function G(z) =
∑ ′ α̃n(z)

α̃n(z0)
an is already in Gq(A(·),Γ) and the proof

follows as in (a).
However, if V is as before and assume that V is embedded in U , then one

can easily show that this new space coincides with (A)Sz0,p,q, whenever (A)Sz0,p,q is a
Banach space contained in U .

5. Duality

In this section, we characterize the dual of the spaces {A}Sz0,p,1, [A]Sz0,p,1 and (A)Sz0,p,q
for all 1 ≤ p, q < +∞. The dual spaces of {A}Sz0,p,1 and [A]Sz0,p,1 are constructed in
a similar way to the construction of the dual space of A{z0} and A[z0] (see [6]).

Although a slight modification in the proof of the results for the first two
cases would give us some information about the dual of the spaces {A}Sz0,p,q and
[A]Sz0,p,q for 1 < q < +∞, we are unable to give a complete characterization of
them. The reason is quite simple: for an infinite family of functions hj , the fact that
supj ‖hj‖q′ < +∞ does not imply supj |hj | ∈ Lq

′
(except for the case q = 1).

We will only consider the K1–functional in the following theorems and we simply
write K.

Let E(α) =
{
a ∈ U : K(α, a) < ∞

}
. Then E(α) is a locally convex vector

space endowed with the seminorm K(α, ·) .
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Theorem 5.1

A linear functional l belongs to the dual space of E(α) if and only if the two

following conditions hold.

(i) There exists a constant C > 0 such that, for every a ∈ A, |(l, a)| ≤ Cα(γ)‖a‖γ ,
a.e. γ ∈ Γ.

(ii) Let us define for a(·) ∈ G and
(
an(·)

)
n
∈ G such that a(·) = limn an(·) in the

usual way, the function < l, a > (·) by

< l, a > (γ) := lim
n

(
l, an(γ)

)
·

Then
∫
Γ
< l, a > (γ)dγ = 0 whenever

∫
Γ
a(γ)dγ = 0.

Moreover, ‖l‖E(α)∗ = inf
{
C : C satisfies (i)

}
.

Proof. First, we prove that A is dense in E(α): let a ∈ E(α) and let a(·) ∈ G such
that a =

∫
Γ
a(γ) dγ and ‖a(·)‖· ∈ L1(α). Let

(
an(·)

)
n
∈ G converging to a(·) in the

usual way and set an =
∫
Γ
an(γ) dγ ∈ A. Then

K(α, a− an) ≤
∫

Γ

α(γ)‖an(γ) − a(γ)‖γ dγ ,

and this last expression goes to zero when n goes to infinity.
Let us prove the necessary condition. Let l ∈ E(α)∗ and a ∈ A. Let us define

for ϕ ∈ L1(Γ) ∩ L1(Γ;αϕa)

< La, ϕ >= (l, a)
∫

Γ

ϕ(γ) dγ ·

Then, La is a linear operator such that

| < La, ϕ > | ≤ ‖l‖E(α)∗

∫
Γ

α(γ)‖a‖γ |ϕ(γ)| dγ ·

Therefore, by the Hahn-Banach Theorem, La can be extended to a linear operator
in L1(Γ;αϕa). Thus, there exists a measurable function on Γ, ha, such that
(a) |ha(γ)| ≤ ‖l‖E(α)∗α(γ)‖a‖γ a.e. γ ∈ Γ,
(b) < La, ϕ >=

∫
Γ
ha(γ)ϕ(γ) dγ, for every ϕ ∈ L1(Γ;αϕa).

Since α(·) and ϕa(·) belong to L, we can deduce (as in [6] for the dual space of
A[z0]) that if < h(γ), a >= ha(γ), then, for every a, b ∈ A,

< h(γ), a+ b >=< h(γ), a > + < h(γ), b >, a.e. γ ∈ Γ;
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that is, the above equality holds for every γ ∈ Γ \ E, where |E| = 0 but E depends
on a and b.

We have that, for every ϕ ∈ L1(Γ) ∩ L1(Γ;αϕa),

(l, a)
∫

Γ

ϕ(γ)dγ =
∫

Γ

< h(γ), a > ϕ(γ)dγ,

and this condition implies h(γ) = constant a.e. γ ∈ Γ and hence h = l. Obviously
l satisfies (i) by condition (a). To see that it also satisfies (ii) we observe that by
condition (i) ∣∣∣∣(l, an(γ) − am(γ)

)∣∣∣∣ ≤ Cα(γ)‖an(γ) − am(γ)‖γ ,

a.e. γ ∈ Γ, and thus, the function < l, a > (that depends on the sequence (an)n) is
well defined. Then, if

∫
Γ
a(γ)dγ = 0 for a(·) ∈ G and ‖a(·)‖· ∈ L1(α), we get that if

an =
∫
Γ
an(γ) dγ then,

0 = lim
n→∞

l(an) = lim
n→∞

∫
Γ

(
l, an(γ)

)
dγ =

∫
Γ

< l, a > (γ)dγ ,

by dominated convergence. Conversely, let l be satisfying the hypotheses. Let
a =

∫
Γ
a(γ)dγ with a(·) ∈ G and ‖a(·)‖· ∈ L1(α).

By (ii) l can be extended to E(α) by (l, a) =
∫
Γ
< l, a > (γ) dγ. Now, by

condition (i) we have that, a.e. γ ∈ Γ,

| < l, a > (γ)| = lim
n

∣∣∣(l, an(γ)
)∣∣∣ ≤ C lim

n
‖an(γ)‖γα(γ) = C‖a(γ)‖γα(γ),

and hence,

|(l, a)| ≤
∫

Γ

| < l, a > (γ)| dγ ≤ C

∫
Γ

α(γ)‖a(γ)‖γ dγ;

that is, |(l, a)| ≤ CK(α, a) and l ∈ (E(α))∗ with ‖l‖(E(α))∗ ≤ C. �

Remark 5.2. If we define Ẽ(α) as the completion of A with respect to the seminorm
K̃(α, ·), the dual space is characterized only by condition (i).

Our next goal is to characterize the dual space of [A]Sz0,p for 1 ≤ p < +∞. We
shall use the following general fact: if (Ei)i∈I is a collection of locally convex spaces,
then for 1 ≤ p < +∞, we have that if lp(Ei) =

{
(ai)i ⊂ (Ei)i : (‖ai‖Ei

)i ∈ lp
}

,

then (lp(Ei))∗ = lp
′
(E∗

i ).
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Theorem 5.3

A linear functional l belongs to the dual space of [A]Sz0,p if and only if, for every

α ∈ S, there exists lα ∈
(
E(α)

)∗
such that

(i) (l, a) =
∑

α∈S
∫
Γ
< lα, aα > (γ) dγ, with ‖aα(·)‖· ∈ L1(α), aα ∈ G and a =∫

Γ
aα(γ) dγ, and

(ii) there exists a constant C > 0 such that(∑
α∈S

(
α(z0)‖lα‖(

E(α)
)∗

)p′)1/p′

≤ C ·

Moreover, ‖l‖([A]Sz0,p)∗ = inf
{
C > 0 : C satisfies (ii)

}
·

Proof. Let l ∈ ([A]Sz0,p)
∗. Since

[A]Sz0,p =
{
a ∈ U :

(
‖a‖E(α,z0)

)
α
∈ lp(S)

}
,

where E(α, z0) = α(z0)−1E(α), we can consider the space [A]Sz0,p as a subspace of
the space lp ((E(z0, α)α∈S) (identifying a ≡ (a)α∈S) and then, l can be extended
to a linear operator L over this space. That is, for every α ∈ S, there exists
l̃α ∈ (E(α, z0))∗ = α(z0)E(α)∗ such that

< L, (aα)α >=
∑
α∈S

∫
Γ

< l̃α, aα > (γ)α(z0) dγ ,

with aα =
∫
Γ
aα(γ) dγ, aα ∈ G, and

(∗∗)

(∑
α∈S

‖l̃α‖p
′(
E(α)

)∗

)1/p′

< +∞·

Then,

(l, a) =< L, (a)α∈S >=
∑
α∈S

∫
Γ

< l̃α, aα > (γ)
α(z0)

dγ =
∑
α∈S

∫
Γ

< lα, aα > (γ) dγ ,

with lα = l̃α
α(z0)

and a =
∫
Γ
aα(γ) dγ. Obviously, lα satisfies (ii) by (**).

Reciprocally, by the properties of lα ∈
(
E(α)

)∗, l is well defined by (i) and the
fact that l ∈ ([A]Sz0,p)

∗ is trivial. �
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Remark 5.4. By conditions (i) and (ii) of the previous theorem, we have that if
a ∈ A, then we can take aα(·) of the form aϕα(·) with

∫
Γ
ϕα(γ) dγ = 1 and then we

get (l, a) =
∑

α(lα, a); that is, we can identify, at least formally, l =
∑

α lα. Now,
since ‖lα‖(

E(α)
)∗ = J∞(α−1, hα), we get that

(∑
α∈S

(
J∞(α−1, lα)
α−1(z0)

)p′)1/p′

< +∞ ,

and then, we can embed the dual space of [A]Sz0,p into the space (A∗)S
−1

z0,p′ where
A∗ = {A∗(γ) : γ ∈ Γ} and S−1 = {α−1 : α ∈ S}. However this embedding is just
formally since, as is well–known the family A∗ need not be an i.f.

Using the same argument as in the previous theorem, one can also see that the
following result holds.

Theorem 5.5

A linear functional l belongs to the dual space of {A}Sz0,p if and only if, for every

α ∈ S, there exists lα ∈
(
Ẽ(α)

)∗
such that

(i) for every a ∈ A, (l, a) =
∑

α∈S
∫
Γ

(
lα, aα(γ)

)
dγ with ‖aα(·)‖· ∈ L1(α), aα(·) ∈ G

and a =
∫
Γ
aα(γ) dγ,

(ii) there exists a constant C > 0 such that

(∑
α∈S

(
‖lα‖(

Ẽ(α)
)∗α(z0)

)p′)1/p′

≤ C ·

Moreover, ‖l‖({A}S
z0,p)∗ = inf

{
C > 0 : C satisfies (ii)

}
·

The following theorem will give us a characterization of the dual space of
(A)Sz0,p,q.

Let us define Jq(α) = {a ∈ A : Jq(α, a) < +∞} and assume that Jq(α) is not
trivial. Then, if ˜Jq(α) is the completion of Jq(α) with respect to the norm Jq(α, ·),
we get the following result.
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Theorem 5.6

Let 1 ≤ q < +∞. Then l ∈
( ˜Jq(α)

)∗
if and only if, for every a ∈ Jq(α), there

exists a measurable function < h(·), a > on Γ such that, for every a, b ∈ Jq(α) and

every λ, µ ∈ C, < h(γ), a+ b >=< h(γ), a > + < h(γ), b >, a.e. γ ∈ Γ and

(i) there exists a positive constant C so that, for every a ∈ Jq(α), the function

Ha(γ) = | < h(γ), a > |/(α(γ)‖a‖γ) ∈ Lq
′
(Γ)

and ‖Ha‖q′ ≤ C, and

(ii) for every a ∈ Jq(α), (l, a) =
∫
Γ
< h(γ), a > dγ.

Moreover, ‖l‖(
J̃q(α)

)∗ = inf
{
C : C satisfies (i)

}
.

Proof. The sufficient condition is obviously true by Hölder’s inequality.
To prove the necessary condition, let Lq(A(·)α(·)) be the set of all measurable

functions f : Γ −→ U such that
(a) f(γ) ∈ A(γ) a.e. γ ∈ Γ and,
(b) ‖f(γ)‖γ ∈ Lq(α(·)),
endowed with the norm ‖f‖Lq(A(·)α(·)) =

(∫
Γ
‖f(γ)‖qγα(γ)qdγ

)1/q.
Then, we can identify Jq(α) as a subspace of Lq(A(·)α(·)) by

Jq(α) −→ Lq(A(·)α(·))
a −→ [γ ∈ Γ → a] ·

Hence, if l ∈
( ˜Jq(α)

)∗
, l can be extended to a functional L on Lq(A(·)α(·)) such

that

L(f) ≤ ‖l‖(
J̃q(α)

)∗

(∫
Γ

‖f(γ)‖qγα(γ)qdγ
)1/q

·

In particular, if we fix a ∈ Jq(α), L defines a continuous functional on the space

Λ(a) =
{
ϕ measurable :

(∫
Γ

|ϕ(γ)|qαq(γ)‖a‖qγdγ
)1/q

< +∞
}

= Lq(αϕa) ,

and therefore, there exists a measurable function ha ∈ Lq
′
(α−1ϕ−1

a ) such that

L(ϕa) =
∫

Γ

ϕ(γ)ha(γ)dγ,

for every ϕ ∈ Λ(a) and ‖ha‖Lq′ (α−1ϕ−1
a ) ≤ ‖l‖(

J̃q(α)

)∗ .



Real interpolation for families of Banach spaces (II) 71

Now, as α and ϕa ∈ L we can deduce, by standard arguments that, for every
λ, β ∈ C and every a, b ∈ Jq(α), we get hλa+βb(γ) = λha(γ) + βhb(γ) a.e. γ ∈ Γ.
Thus, if < h(γ), a >= ha(γ) a.e. γ ∈ Γ and every a ∈ Jq(α), we get that, for every
a ∈ Jq(α),

(l, a) = L(a) =
∫

Γ

< h(γ), a > dγ,

and condition (i) holds easily. �

Using this result, we get the following one.

Theorem 5.7

Let 1 ≤ p, q < +∞. A linear functional l ∈
(
(A)Sz0,p,q

)∗
if and only if, for every

α ∈ S, and every a ∈ Jq(α), there exists a function < hα(·), a > satisfying:

(i) for every a ∈ (A)Sz0,p,q, (l, a) =
∑

α∈S
∫
Γ
< hα(γ), aα > dγ, where a =

∑
α aα in

the U–norm and aα ∈ Jq(α), and

(ii)
(
α(z0) supaα∈Jq(α) ‖ < hα(·), aα > /(α(·)‖aα‖·) ‖q′

)
α∈S

∈ lp
′
(S).

Moreover,

‖l‖((A)Sz0,p,q)
∗ = inf

{( ∑
α∈S

(
α(z0) sup

aα∈Jq(α)

‖ < hα(·), aα > /(α(·)‖aα‖·) ‖q′
)p)1/p}

,

where the infimum extends over all representations of a =
∑

α aα.

Proof. The sufficient condition is obvious. Let l ∈
(
(A)Sz0,p,q

)∗. Since, we can
identify (A)Sz0,p,q with the quotient space lp

(
Jq(α)α(z0)−1

)
modulo the set N of all

sequences (aα)α such that aα ∈ Jq(α) and
∑

α aα = 0, we get that l can be seen
as an element of lp

′(
(Jq(α)∗α(z0)

)
vanishing on N . That is, there exists a sequence

(hα)α satisfying conditions (ii) such that l can be identified with such a sequence by

(l, a) =
∑
α∈S

∫
Γ

< hα(γ), aα > dγ,

for a =
∑

α aα. �
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6. Reiteration

It is well–known that, for the case of a compatible pair of Banach spaces, the classic
interpolated spaces (A0, A1)Kθ,p and (A0, A1)Jθ,p coincide algebraically and topologi-
cally. However, for n > 2 only the inclusion

(A1, · · · , An)Jθ,p ⊂ (A1, · · · , An)Kθ,p ,

is valid in general, for the methods of Sparr, Fernández and Cobos-Peetre.

Definition 6.1. An i.f. of Banach spaces A =
{
A(γ) : γ ∈ Γ; A, U

}
is said to

satisfy the equivalence property with respect to the method S, if [A]Sz0,p,q ≡ (A)Sz0,p,q
for every z0 ∈ D and every p and q.

It turns out that when one wants to study the question whether a method of
interpolation is stable under reiteration, a good condition to get a positive answer
is to have the equivalence property. Without it, only some inclusions can be proved
(see, for example, [10]).

In our reiteration theorems, we have to impose a “density condition” completely
analogous to the one imposed in the reiteration theorem for families of Banach spaces
in the complex method (see Theorem 5.2, [6]). Moreover, we are also forced to work
with the method {A}Sz0,p instead of [A]Sz0,p (see Remark 5.3, [6]).

One may also ask whether reiteration works when we deal with two different
kind of methods of interpolation, whenever they can be “composed”. In particular,
we can mix our method with the complex interpolation method for families of the
St. Louis group (see Theorems 6.5, 6.6 and 6.7).

Finally, we deal with i.f. of the type A = {A(γ) = (A0, A1)α(γ),p(γ) : γ ∈ Γ},
A =

{
A(γ) = [A0, A1]α(γ) : γ ∈ Γ

}
, A =

{
A(γ) = (A1, · · · , AN )α(γ),p(γ) : γ ∈ Γ

}
,

etc. This families are very useful to obtain the interpolated spaces for families of
Lp, Hp, Sobolev spaces, ...

Theorem 6.2

Let Ω be a simply connected domain contained in D such that Σ = ∂ Ω is a

closed rectifiable Jordan curve and Σ ⊂ D. For every σ ∈ Σ, let us consider the

space B(σ) = {A}Sσ,p(σ),q with q ≥ 1 and p(σ) ≥ 1 a measurable function on Σ. Let

dσ be the normalized measure on Σ. Assume that A is dense in

AΣ =
{
a ∈ B(σ), a.e. σ ∈ Σ :

∫
Σ

log+ ‖a‖B(σ)dσ < +∞
}
,
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in the following sense: A ⊂ AΣ and, for every b ∈ AΣ, there exists a sequence

(an)n ⊂ A such that

(2) lim
n→∞

∫
Σ

‖an − b‖qσdσ = 0,

where ‖a‖σ = ‖a‖B(σ). Also, assume that there exists a Banach space V containing

B(σ) and a function P measurable on Σ whose logarithm is integrable and, for every

a ∈ AΣ, ‖a‖V ≤ P (σ)‖a‖σ. Then,

(a) B =
{
B(σ) : σ ∈ Σ; AΣ, V

}
is an i.f.,

(b) there exists a constant C > 0 such that, for every a ∈ A and z0 ∈ Ω,

‖a‖{A}S
z0,p,q

≤ C‖a‖
{B}

S|Σ
z0,p,q

,

where S|Σ =
{
α(σ) = exp

(∫
Γ

logα(γ)Pσ(γ) dγ
)

: α ∈ S
}

, and, if there exists a

compact set K in Ω such that condition (1) holds, then A is dense in AΣ with

respect to the norm {B}S|Σ
z0,p,q.

Remark 6.3. If we have that the spaces {A}Sz0,p,q and {B}S|Σ
z0,p,q are embedded in a

common containing space W, then condition (1) in (b) implies{
{A}Sσ,p(σ),q

}S|Σ

z0,p,q

⊂ {A}Sz0,p,q·

Proof.

(a) We have that, for every b ∈ AΣ, the function

σ ∈ Σ −→ ‖b‖σ =

∑
α

(
K̃q(α, b)
α(σ)

)p(σ)
1/p(σ)

,

is measurable on Σ. The other conditions for the family to be an i.f. are imposed
by hypotheses.
(b) Let a ∈ A. Since A ⊂ AΣ, we have that given ε > 0 and α ∈ S|Σ, there exists
aα(·) ∈ GΣ (the space G for the i.f. B), such that a =

∫
Σ
aα(σ) dσ and( ∫

Σ

(
α(σ)‖aα(σ)‖σ

)q
dσ

)1/q

≤ K̃Σ,q(α, a) + ε ,

where K̃Σ,q is the K̃q–functional corresponding to the i.f. B.
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Let us write

aα(σ) =
N∑
n=1

anχEn(σ) ,

with an ∈ AΣ, for every n ∈ {1, · · · , N}. Now by (2), given ε > 0 and an ∈ AΣ,
there exists bn ∈ A such that

( ∫
Σ

(‖an − bn‖σ)q dσ
)1/q

≤ ε

2N‖α‖Σ
,

for every n ∈ {1, · · · , N}, with ‖α‖Σ = supσ∈Σ α(σ).
Consider b(σ) =

∑N
n=1(χEn(σ) − |En|)bn + a. Then b(·) ∈ GΣ with b(σ) ∈ A

and a =
∫
Σ
b(σ)dσ. Moreover, since

b(σ) =
N∑
n=1

(χEn(σ) − |En|)(bn − an) + aα(σ) ,

we get

( ∫
Σ

(α(σ)‖b(σ)‖σ)q dσ
)1/q

≤
( ∫

Σ

(α(σ)‖aα(σ)‖σ)q dσ
)1/q

+ 2‖α‖Σ

N∑
n=1

( ∫
Σ

(‖bn − an‖σ)q dσ
)1/q

≤
( ∫

Σ

(α(σ)‖aα(σ)‖σ)q dσ
)1/q

+ ε ≤ K̃Σ,q(α, a) + 2ε ·

Hence, we can assume a =
∫
Σ
b(σ)dσ with b(·) ∈ GΣ and b(σ) ∈ A.

Now, b(σ) can be written as
∑

n cnχAn
, with An pairwise disjoint and cn ∈ A.

Given cn, let σ0 ∈ Σ be such that, for every σ ∈ Σ, α(σ0)‖cn‖σ0 ≤ (1+ε)α(σ)‖cn‖σ.
Then, for ε > 0, set Fn ∈ G so that

∫
Γ
Fn(γ)dγ = cn and

( ∫
Γ

(
α(γ)‖Fn(γ)‖γ

)q
dγ

)1/q

≤ (1 + ε)α(σ0)‖cn‖σ0 ·

Let us consider F (σ, γ) =
∑

n Fn(γ)χAn(σ). We have that a =
∫
Γ

(∫
Σ
F (σ, γ)dσ

)
dγ
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and
∫
Σ
F (σ, ·) dσ ∈ G. Therefore,

K̃q(α, a) ≤
(∫

Γ

(
α(γ)

∥∥∥∥∫
Σ

F (σ, γ)dσ
∥∥∥∥
γ

)q

dγ

)1/q

≤
( ∫

Γ

(∫
Σ

α(γ)‖F (σ, γ)‖γdσ
)q

dγ

)1/q

≤
∫

Σ

(∫
Γ

(∑
n

‖Fn(γ)‖γχAn(σ)α(γ)

)q

dγ

)1/q

dσ

=
∑
n

∫
Σ

χAn(σ)
(∫

Γ

(
‖Fn(γ)‖γα(γ)

)q
dγ

)1/q

dσ

≤ (1 + ε)2
∑
n

∫
An

α(σ)‖cn‖σ dσ = (1 + ε)2
∫

Σ

α(σ)‖b(σ)‖σ dσ

≤ (1 + ε)2
( ∫

Σ

(α(σ)‖b(σ)‖σ )q dσ
)1/q

≤ (1 + ε)2
(
K̃Σ,q(α, a) + 2ε

)
·

Thus, since α(z0) = αΣ(z0) = exp
(∫

Σ
logα(σ)µz0(σ) dσ

)
with µz0 the harmonic

measure with respect to Ω and z0, and letting ε go to zero, we get

K̃q(α, a)
α(z0)

≤ K̃Σ,q(α, a)
αΣ(z0)

·

That is, for every α ∈ A, ‖a‖{A}S
z0,p,q

≤ ‖a‖{B}S|Σ
z0,p,q

.

We need to show now that, under condition (1), A is dense in AΣ with respect
to the norm {B}S|Σz0,p,q. Now, given a ∈ AΣ and ε > 0, let us consider b ∈ A such
that

(∫
Σ
‖a− b‖qσdσ

)1/q ≤ ε. Then, given K ⊂ Ω satisfying the hypothesis, there
exists C > 0 such that

‖a− b‖
{B}

S|Σ
z0,p,q

=

(∑
α∈S

(K̃Σ,q(α, a− b)
α(z0)

)p)1/p

≤ C

(∑
α∈S

(
infz∈K(α(z))

α(z0)

)p)1/p (∫
Σ

‖a− b‖qσdσ
)1/q

≤ C ′ε · �

Theorem 6.4

Let Ω be a simply connected domain contained in D such that Σ = ∂ Ω is a

closed rectifiable Jordan curve and Σ ⊂ D. For every σ ∈ Σ, let us consider the
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space B(σ) = (A)Sσ,p(σ),q with q ≥ 1 and p(σ) ≥ 1 a measurable function on Σ. Let

us assume that A ⊂ B(σ) a.e. σ ∈ Σ and that B =
{
B(σ) : σ ∈ Σ

}
is an i.f. Then,

(A)Sz0,p,q is embedded in the space (B)S|Σ
z0,p,q, for every z0 ∈ Ω.

Proof. Let a ∈ (A)Sz0,p,q. Then given ε > 0, a =
∑

α∈S aα, with (aα)α in A and(∑
α

(
Jq(α, aα)
α(z0)

)p)1/p

≤ (1 + ε)‖a‖(A)Sz0,p,q
·

Now, since aα ∈ A ∩B(σ), a.e. σ ∈ Σ, we get

JΣ,q(α|Σ, aα) =
(∫

Σ

(
α(σ)‖aα‖σ

)q
dσ

)1/q

≤
(∫

Σ

(
α(σ)

Jq(α, aα)
α(σ)

)q
dσ

)1/q

= Jq(α, aα) ·

Therefore,

‖a‖
(B)

S|Σ
z0,p,q

≤
(∑

α

(
JΣ,q(α|Σ, aα)

αΣ(z0)

)p)1/p

≤ (1 + ε)‖a‖(A)Sz0,p,q
. �

The following theorem will be related to the reiteration between the real and
complex (in this order) methods. We get as an application the corresponding
reiteration result of Hernández-Soria (see [8]).

Let B{z0} and B[z0] be the interpolated spaces of {B(σ) : σ ∈ Σ} with the
complex method (see [6]).

Theorem 6.5
If we are under the hypotheses of the reiteration Theorem 6.2 with B(σ) =

{A}Sσ,p,q and there exists a positive constant M such that

(3) sup
σ∈Σ

( ∑
α

(
infz∈Ω α(z)

α(σ)

)p )1/p

≤ M,

then, if z0 ∈ Ω,
(a) there exists a constant C > 0 such that, for every a ∈ A,

‖a‖{A}S
z0,p,q

≤ C‖a‖B{z0} ,

A is dense in AΣ with respect to the norm B{z0}, and
(b) B[z0] is embedded in [A]Sz0,p,q.
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Proof.

(a) We already know that B =
{
B(σ) : σ ∈ Σ

}
is an i.f. Since A ⊂ AΣ, we have

that, for every a ∈ A and every ε > 0, there exists a function G(z) =
∑

j ajϕj(z) ∈
G1(B(·),Σ) such that G(z0) = a and

∫
Σ
‖G(σ)‖σ dσ ≤ (1 + ε)‖a‖B{z0} (see [6]).

Let us consider, for every j ∈ {1, · · · , N}, elements bj ∈ A such that( ∫
Σ

‖aj − bj‖qσdσ
)1/q

≤ ε

2N‖ϕj‖∞
·

Set G̃(σ) =
∑N

j=1

(
ϕj(σ)−ϕj(z0)

)
bj +a. Then,

∫
Σ
G̃(σ)µz0(σ) dσ = a, G̃(σ) ∈

A and since G̃ can be written as

G̃(σ) =
N∑
j=1

(
ϕj(σ) − ϕj(z0)

)
(bj − aj) +G(σ) ,

we get that ∫
Σ

‖G̃(σ) −G(σ)‖σ dσ ≤
N∑
j=1

2‖ϕj‖∞
∫

Σ

‖aj − bj‖σ dσ ≤ ε ·

Now, by (3), supσ∈Σ ‖bj‖σ = Cj < +∞ for every j ∈ {1, · · · , N} and, hence,
we can consider, for each j, a simple function sj such that

∫
Σ
α̃(z0)
α̃(σ) sj(σ)µz0(σ) dσ =

ϕj(z0) and ∫
Σ

|sj(σ) − ϕj(σ)| dσ ≤ ε

NCj
·

Set

F (σ) =
N∑
j=1

(
sj(σ) − ϕj(z0)

)
bj + a ·

We have that F is a simple function such that F (σ) ∈ A,
∫
Σ
‖F (σ)− G̃(σ)‖σ dσ ≤ ε

and

a =
∫

Σ

α̃(z0)
α̃(σ)

F (σ)µz0(σ) dσ ·

Assume F =
∑′

anχEn
, with an ∈ A and En measurable pairwise disjoint sets.

Let (Cα)α be a sequence of positive numbers such that
∑

α

(
Cα

∫
Σ

µz0 (σ)

α(σ) dσ
)p

< 1

and let an(·) ∈ G be such that an =
∫
Γ
an(γ) dγ, and( ∫

Γ

(
α(γ)‖an(γ)‖γ

)q
dγ

)1/q

≤ K̃q(α, an) + εCα ·
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Then

a =
∫

Σ

α̃(z0)
α̃(σ)

F (σ)µz0(σ)dσ =
∑
n

∫
En

α̃(z0)
α̃(σ)

µz0(σ)
(∫

Γ

an(γ)dγ
)
dσ

=
∫

Γ

(∑
n

an(γ)
∫
En

α̃(z0)
α̃(σ)

µz0(σ)dσ

)
dγ,

and

K̃q(α, a) ≤
∑
n

∫
En

α(z0)
α(σ)

(
K̃q(α, an) + εCα

)
µz0(σ)dσ

≤
∫

Σ

α(z0)
α(σ)

K̃q(α, F (σ))µz0(σ)dσ + εCα

∫
Σ

α(z0)
α(σ)

µz0(σ)dσ ·

That is,

K̃q(α, a)
α(z0)

≤
∫

Σ

K̃q(α, F (σ))
α(σ)

µz0(σ)dσ + εCα

∫
Σ

1
α(σ)

µz0(σ)dσ ,

and thus,(∑
α∈S

(
K̃q(α, a)
α(z0)

)p)1/p

≤
∫

Σ

(∑
α∈S

(
K̃q(α, F (σ))

α(σ)

)p)1/p

µz0(σ)dσ + ε

(∑
α∈S

(
Cα

∫
Σ

µz0(σ)
α(σ)

dσ

)p)1/p

≤ C

∫
Σ

‖F (σ)‖σ dσ + ε ≤ C

(
ε+

∫
Σ

‖G̃(σ)‖σdσ
)

+ ε

≤ C
(
2ε+

∫
Σ

‖G(σ)‖σ dσ
)

+ ε

≤ C
(
2ε+ (1 + ε)‖a‖B{z0}

)
+ ε ·

Letting ε go to zero we are done.
The density of A in AΣ is trivial by (2), since

‖a− b‖B{z0} ≤ exp
(∫

Σ

log ‖a− b‖B(σ)µz0(σ)dσ
)

≤ C

∫
Σ

‖a− b‖σdσ ≤ Cε ·

(b) The proof of this part is completely analogous to (a). Let a = F (z0) for some
F ∈ F1(B(·),Σ). Let (GN )N be in G1(B(·),Σ) such that GN converges to F . Then,
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as in (a), we can assume GN to be a simple function and, hence, F is a suitable
function for the definition of [A]Sz0,p. Following the computations in (a) one can show
that

‖GN (z0) −GM (z0)‖[A]Sz0,p
≤ C‖GN −GM‖G1 ,

and thus, GN (z0) converges to an element b in [A]Sz0,p and obviously b = a. �

Theorem 6.6
Under the hypotheses of Theorem 6.2 with B(σ) = (A)Sσ,p(σ),q, p(σ) < +∞ a.e.

σ ∈ Σ and p = p(z0), where 1
p(z) =

∫
Σ

1
p(σ)µz(σ) dσ, we have that,

(a) if B{z0} is embedded in U , (A)Sz0,p,q ⊂ B{z0}, and
(b) (A)Sz0,p,q ⊂ B[z0]·

Proof.
(a) Given ε > 0, let a ∈ (A)Sz0,p,q be such that ‖a‖(A)Sz0,p,q

= 1 and let a =
∑

n an

be such that
( ∑

n

(
Jq(αn, an)/αn(z0)

)p)1/p

≤ (1 + ε), with {αn}n ⊂ S.

Let aN =
∑N

n=−N an ∈ A. We have that (aN )N is a Cauchy sequence in
(A)Sz0,p,q. Let us consider, for z ∈ Ω,

GN (z) =
N∑

n=−N

α̃n(z)
αn(z0)

(
Jq(αn, an)
αn(z0)

)p(z0) ˜( 1
p(z) )−1

an ,

where ˜(1/p(z)) is the analytic extension of 1/p(z) =
∫
Σ

1/p(σ) µz(σ)dσ such that˜(1/p(z0)) = 1/p(z0). Then GN ∈ G1(B(·),Σ), GN (z0) = aN and, given ε > 0 there
exist N and M such that

‖aN − aM‖B{z0} ≤ ‖GN −GM‖G1 =
∫

Σ

‖GN (σ) −GM (σ)‖B(σ)dσ

≤
∫

Σ

 ∑
N≤|n|≤M

(
αn(σ)
αn(z0)

)p(σ) (
Jq(αn, an)
αn(z0)

)p(z0)−p(σ) (
Jq(αn, an)
αn(σ)

)p(σ)
1/p(σ)

dσ

=
∫

Σ

 ∑
N≤|n|≤M

(
Jq(αn, an)
αn(z0)

)p(z0)1/p(σ)

dσ ≤ ε ·

That is, (aN )N is a Cauchy sequence in B{z0} and, therefore, since we are
assuming that B{z0} is embedded in U , we have that aN converges to a in B{z0}
and, hence, a ∈ B{z0} and ‖a‖B{z0} ≤ ‖a‖(A)Sz0,p

.
(b) The proof of this part is completely analogous to (a). �

Now, we deal with reiteration with the complex method first and then real.
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Theorem 6.7

Under the hypotheses of the Theorem 6.2 with B(σ) = A{σ}, we have that

(a) B = {B(σ) : σ ∈ Σ, AΣ,V} is an i.f.,

(b) if we assume that, for every a ∈ A , the function γ → ‖a‖γ is in Lp, for some

p > q, then, for every a ∈ A,

‖a‖{A}S
z0,p,q

≤ C‖a‖
{B}

S|Σ
z0,p,q

,

(c) if U = V, then (A)Sz0,p,q is embedded in (B)S|Σ
z0,p,q.

Remark 6.8. If we have that the spaces {A}Sz0,p,q and {B}S|Σ
z0,p,q are embedded in

a common containing space W and if there exists a compact set K ⊂ Ω satisfying
(3), then A is dense in

{
A{σ}

}S|Σ
z0,p,q

and therefore, (b) implies

{
A{σ}

}S|Σ
z0,p,q

⊂ {A}Sz0,p,q ·

Proof. The proof of (a) can be found in [6].
(b) Let a ∈ A. Since A ⊂ AΣ we have that given ε > 0 and α ∈ S|Σ, there exists
aα(·) ∈ GΣ (the space G for the i.f. B), such that a =

∫
Σ
aα(σ) dσ and

( ∫
Σ

(
α(σ)‖aα(σ)‖σ

)q
dσ

)1/q

≤ K̃Σ,q(α, a) + ε,

where K̃Σ,q is the K̃q–functional corresponding to the i.f. B.
Let us write

aα(σ) =
N∑
n=1

anχEn(σ) ,

with an ∈ AΣ, for every n ∈ {1, · · · , N}. Now, we can assume (as we did in Theorem
6.2) that aα(σ) ∈ A.

Given an, let σ0 ∈ Σ be such that α(σ0)‖an‖σ0 ≤ (1 + ε)α(σ)‖an‖σ, for
every σ ∈ Σ. Then, for ε > 0, set Fn ∈ G(A(·),Γ) so that Fn(σ0) = an and
‖Fn‖G ≤ (1 + ε)‖an‖σ0 . Let us consider the function F̃n(·) = Fn(·)α(σ0)/α̃(·). We
can assume (see the proof of Theorem 4.1) that F̃n(·)Pσ0(·) ∈ G. Let us consider
F (σ, γ) =

∑
n F̃n(γ)χAn

(σ). We have that a =
∫
Γ

(∫
Σ
F (σ, γ)dσ

)
Pσ0(γ)dγ and∫

Σ
F (σ, ·)Pσ0(·)dσ ∈ G. The proof now follows as in Theorem 6.2 (b).
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(c) Let a =
∑

n an and ε > 0 such that

(∑
n

(
Jq(αn, an)
αn(z0)

)p)1/p

≤ (1 + ε)‖a‖(A)Sz0,p,q
·

Then, since ‖a‖σ ≤ Jq(α, a)/α(σ) for every a ∈ A and every α ∈ S, we get

‖a‖
(B)

S|Σ
z0,p,q

≤
(∑

n

(
JΣ,q(αn, an)

αn(z0)

)p)1/p

=

∑
n


( ∫

Σ

(
αn(σ)‖an‖σ)qdσ

)1/q

αn(z0)


p

1/p

≤
(∑

n

(
Jq(αn, an)
αn(z0)

)p)1/p

≤ (1 + ε)‖a‖(A)Sz0,p,q
· �

Reiteration for a compatible pair of Banach spaces

Theorem 6.9

Let (A0, A1) be a compatible pair of Banach spaces. Let 0 ≤ α(·) ≤ 1 and

p(·) ≥ 1 be two measurable functions on Γ. Let us define, for each γ ∈ Γ, the

space A(γ) = (A0, A1)α(γ),p(γ). Set S = {αn(·) = 2nα(·) : n ∈ Z}. Then, for every

1 ≤ p < +∞ and q ≥ 1,

[A]Sz0,p,q ≡ (A0, A1)α(z0),p ≡ (A)Sz0,p,q ,

where α(z0) =
∫
Γ
α(γ)Pz0(γ)dγ.

Proof. Let us start with the first embedding. Let a ∈ [A]Sz0,p,q. Given ε > 0, we
have that, for every n ∈ Z, there exists an(·) such that a =

∫
Γ
an(γ)dγ, an(·) ∈ G,

an(γ) ∈ (A0, A1)α(γ),p(γ) and∫
Γ

2nα(γ)‖an(γ)‖γdγ ≤ K̃q(αn, an) + ε ,
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for every n ∈ Z. We now observe that we can always assume that a ∈ A and that
an ∈ G. Hence, for each n ∈ Z, let ajn(·) : Γ −→ Aj be a simple function (j = 0, 1) so
that an(γ) = a0

n(γ) + a1
n(γ) and ‖a0

n(γ)‖A0 + 2n‖a1
n(γ)‖A1 ≤ (1 + ε)2nα(γ)‖an(γ)‖γ .

Let us define ajn =
∫
Γ
ajn(γ)dγ ∈ Aj . Hence, a0

n + a1
n =

∫
Γ
an(γ)dγ = a and

K(2n, a) ≤ ‖a0
n‖A0 + 2n‖a1

n‖A1 ≤ (1 + ε)
∫

Γ

2nα(γ)‖an(γ)‖γdγ

≤ (1 + ε)
(
K̃q(αn, a) + ε

)
·

Dividing by 2nα(z0) and taking the lp–norm, we get ‖a‖(A0,A1)α(z0),p
≤ ‖a‖{A}S

z0,p,1
.

To see the embedding with the J–method, let a ∈ (A0, A1)α(z0),p. Using the
equivalence of this space with the corresponding space for the J–method, we get
that, given ε > 0, a =

∑
n an in the (A0 +A1)–norm with (an)n in A0 ∩A1 and

(∑
n

(
max(‖an‖0, 2n‖an‖1)

2nα(z0)

)p)1/p

≤ (1 + ε)‖a‖(A0,A1)α(z0),p
·

Now, an ∈ A and

Jq(2nα(·), an) =
(∫

Γ

(
2nα(γ)‖an‖γ

)q
dγ

)1/q

≤
(∫

Γ

(
2nα(γ) max(‖an‖0, 2n‖an‖1)

2nα(γ)

)q
dγ

)1/q

≤ max(‖an‖0, 2n‖an‖1) = J(2n, an) ·

Hence, a ∈ (A)Sz0,p,q and ‖a‖(A)Sz0,p,q
≤ ‖a‖(A0,A1)α(z0),p

. Therefore,

(A0, A1)α(z0),p ⊂ (A)Sz0,p,q ⊂ [A]Sz0,p,q ⊂ (A0, A1)α(z0),p ,

and, therefore, all the equivalences are proved. �

By Corollary 4.12 in [2], we get the following result.

Corollary 6.10

If S′ contains the set S = {αn(·) = 2nα(·) : n ∈ Z}, we have that, for every

q ≥ 1,

[A]S
′

z0,p,q ≡ (A0, A1)α(z0),p ≡ (A)S
′

z0,p,q ·
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Using the relationship between the real and complex methods, one can also
prove the following:

Corollary 6.11

If A(γ) = [A0, A1]α(γ), a.e γ ∈ Γ and S as in Theorem 6.9, then

[A]Sz0,p,q ≡ (A0, A1)α(z0),p ≡ (A)Sz0,p,q ·

Using the same kind of proof as in the case of a compatible pair, we can get
similar results in the case of Sparr, Fernández and Cobos-Peetre. However, since for
these methods the equivalence between the K and J–methods does not hold, we can
only get the corresponding embeddings, unless the family satisfies the equivalence
property.
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