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ABSTRACT
In this paper, we study the dual space and reiteration theorems for the real method

of interpolation for infinite families of Banach spaces introduced in [2]. We also
give examples of interpolation spaces constructed with this method.

1. Introduction

In [2], we studied a new method of real interpolation for families of Banach spaces.
This method recovers the previous real methods of Sparr, Fernandez and Cobos-
Peetre (see [10], [7] and [5]). The notion of interpolation family was introduced by
the St. Louis group in [6] and it is in this setting in which the K and J functionals
were defined (see [2]).

This paper is a natural continuation of the previous one. Here, we generalize
the definition of the K and J functional in the sense of the appendix of [2]. This
generalization turns out to be very useful not only for the identification of concrete
examples of interpolation spaces and for the identification of dual spaces as we
shall see in this paper, but also to study compactness (see [4]), weakly compactness
(see [3]) and uniform convexity (see [9]).
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The paper is organized as follows. In section 2 we, very briefly, recall the
definitions and notations necessary for the sequel and introduce the interpolation
spaces we shall work with. Section 3 is devoted to the relation of these spaces with
the complex method. This is a continuation of section 5 in [2] where this relation
was carefully studied for the original K and J functionals. In section 4 we give
several examples, some of those already studied in [2]. In section 5 we study duality
theorems and section 6 is devoted to reiteration results. Throughout this paper, Z'
indicates a finite sum, the symbol f ~ ¢ is used to indicate the existence of two
positive constants a, b such that af(-) < g(-) < bf(-) and = indicates equivalence of
norms.

2. K— and J— functionals for families

Let D denote the unit disc {z € C : |z| < 1} and T its boundary. We say that
A= {A(fy) vy el A, Ll} is a complex interpolation family (i.f.) on I'" with ¢/ as
the containing Banach space and A as the log—intersection space, in the sense of [6],
if:

(a) the complex Banach spaces A() are continuously embedded in U (|| - ||, will
be the norm on A(y) and || - ||y the norm on i),

(b) for every a € NyerA(y), v € I' — ||a]|, is a measurable function on T',

(c) A={a€ A(y)ae. v eT: [Llog" |lall, dy < +oc}, and there exists a
measurable function P on I' such that

/10g+ P(y) dy <+oo and |ally < P(y)llally,  ae. v (a€A):
r

Let
L= {a :T — R" : measurable, log a € L' (I‘)},

and let

G = {b = Z ,ijEj :b; € A and E; pairwise disjoint measurable sets in F},

where X denotes the characteristic function of E. We shall write a(-) € G whenever
a(-) is a Bochner integrable function in U, such that a(y) € A() a.e. v € I" and such
that a(-) can be a.e. approximated in the A(-)-norm by functions a,(-) belonging

to G.
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DEFINITION 2.1. Let a € L.
(a) For each a € Y and 1 < g < oo, we define the K,—functional with respect to the

i.f. Aby
Koo =int { ([ (@tlla)1,)" dfy)l/q},

where the infimum extends over all representations a = [, a(y) dy (convergence in
U), with a(-) € G.
(b) For each a € A and 1 < g < 0o, we also define the J,~functional by

nfesa) = ( [ (@elall)" o) "

For a € £ and z € D, we write

() =exp [ togat)P) )

where P, is the Poisson kernel and, for a € A,

pal2) = exp ( [ 1oz llallacy P2 dv)-

Finally, & or ¢, mean that we are using the Herglotz kernel instead of the Poisson
kernel in the previous formulas.

DEFINITION 2.2. Let S C Land 0 < p < oco. Let A= {A(y): y€TI; A, U} be
an i.f.

(a) The space [A]3 . consists of all a € U for which

(o) =7

endowed with the quasi-seminorm

el = ( 3 (% >p> vr

S
20,p"

When ¢ = 1, we simply write [A]
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(b) The space (A)fmnq is the set of all elements a € U such that there exists

{u(a)}aes in A satisfying a = 3 g u(a) (in the ¢/-norm) and

S

«

This space will be endowed with the quasi-seminorm

P\ /P
Jallar, .. —inf{ (Z () ) }

where the infimum extends to all possible representations of a. When ¢ = 400, we
write (A)3 .

We observe that although in the classical cases of Sparr, Fernandez and Cobos-
Peetre (see §3) these spaces do not depend on ¢, in general they are not equivalent

for different ¢’s. A trivial example of this is to take S = {1} and the family A(y) =

(C,w(y)) where w € L%(T) but w ¢ L#(T). In this case, (4)% . = (C, lwllg)
while (4)S . ={0}. In §3 we shall see another non trivial example of this fact.

Also, it is known (see [3], [4]) that for the K-method the weakly compactness and
the compactness properties are preserved by interpolation for every ¢ > 1 but not
in the case ¢ = 1. Same for the J—method and g = + co.

Although no restrictions are needed on S for the definition of these spaces, they
are necessary to have good properties of these spaces and, hence, one can easily see
modifying in a slight way the arguments given in [2] that the natural conditions we
need on S to have that the spaces [A]S and (A)S are Banach spaces with

20,p.q 20,P,q
the intermediate property (A C [A]S ,, Cc U, A C (A)F ,, CU) and the usual
embedding (A)fo’p C [A]fo,p are the following:

(i) For every a € S there exists a constant C, such that P(y) < Cha(y) a.e. v €T,
where P is the function in the definition of i.f.
(ii) For every zo € D, there exists a compact set K C D such that

inf,cx a(z) ~.
(1) a;g aG ST

(iii) S is a multiplicative group; that is, for every a, 5 € S, af € S, 1 € S and
ales.

However, we want to insist on the fact that we do not need all that conditions
together to prove many of the results in the paper (see also [2]) but it is a good
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way of simplifying the theory and be sure we have all what we need at any moment.
Therefore, unless we specify the contrary, we shall assume, in the sequel, that the
set S satisfies conditions (i), (ii) and (iii).

Once we have the intermediate property, we would like to also get the density
condition of A in the interpolated spaces. However, this density property does not
hold even in the case of a finite family of three spaces (see [10]). For this reason, we
introduce a new K-functional,

Ryt =t { ([ (a(v)\la(’y)\H)qdv)l/q: o) €6, [atyar=af,

S
20,P,9q

~ py\ 1/p
B K (a,a) ‘

lallgays
For ¢ = 1, we write {A}2

o

It is worth to mention thoeprelation between this space and the space A{zp} in
the complex interpolation method for families in the same way that [A]fo p can be
related to Azo] (see [6] and [2]). We see in the following counterexample that the
new space does not coincide in general with [A] fmp and, similarly to what happens

in the complex method, this new space will not always be embedded in U.

for a € A, and a new space {A}
the norm

defined as the completion of A with respect to

COUNTEREXAMPLE 2.3. Let A = {A(y) = A, : v€T;,j=0,1,2} where

Iy = 3 Pl min(1,277) < +oo},

nez

3

Ay = {A = ()

A = {/\ =Mn)n: M4, = Z | An|min(1,2") < —i—oo},

nez

M = 3l < +oo}

ne”

3

Ay = {)\ = (\n)

as in Appendix 1 of [6]. Then, we get that for the set S = {1},

2 2
laliag,, = K1, a) = inf { > llagla, - a= Z%}
7=0

j=0
. 2 2
lallgays, , = K(1,a) = inf { D llajlla, : a="aja; € mgzoAj}
J=0 J=0

and, as in Remark A1.1, (iii) of [6], there exists a sequence (3¥); such that, as
k — oo, HﬁkH[A]fO , — 0, while H/BkH{A}fo _ > 1/6 for each k. [J
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For A = {A(y); A,U} and B = {B(v); B,V} two i.f., we say that T : A — B
is an interpolation operator if T : 4 — V is bounded and T : A(y) — B(7y)
with norm ||T'[| o(y)—B(y) < M(v) € L. Then, the following theorem was essentially
proved in [2].

Theorem 2.4

Let A and B be two i.f. and let T : A — B be an interpolation operator with
norm ||T|| a(y)—B(y) < M(7y) € L. Then
(a) if || M]|eo < 400, we get that, for every S C L,

T [A]Z g — 1Bl pge T {AYS g — {B}Z, pgand T: (A)3

20,P»9q

2000 <B)§o,p,q
are bounded with norm less than or equal to || M|| .

(b) If MS = {Ma : a € S} C S, then they are bounded with norm less than or
equal to M(zp) (that is, with convexity).

(c) In fact, one can easily check, using the hypothesis (iii) on S that the norm of

any of these three operators can be bounded by

oMb
ses Blzo)
Obviously, we have the following chain of embeddings:
(A)fo,p,oo ( )zo P, q o (A)fg,p,l )
[A]fopoo [ ]zopq o [A]fo,p,l?

and with respect to the embedding (A4)5 = C [A]S we have the following result:

20,P 20,pP

Proposition 2.5
Under the hypotheses assumed on S we get:
(a) If p > 1, then (A)S is embedded in [A]S and if

Z0,p,00 20D, 1s

Z (essinfan('y)>p < too.

” an(ZO)

then the same holds for p < 1.
(b) Let p > 1. Then, (A)3 ,, is embedded in [A]3

ZOPOO’

Z (infzeK an(z)>p < 400,

” an(z0)

and if

then the same result holds for p < 1.
(c¢) Under the same hypotheses of (a) and assummg that {A}Z | is embedded in
U, we get that (A)S . is embedded in {A}S

(d) Under the same hypotheses of (b) and assummg that {A}S , . is embedded in
U, we get that (A)S | is embedded in {A}S

20,P,00 *
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Proof.

(a) See [2].
(b) We get, using Szegd Theorem, (see also [2], 2.6) that, if a =35 g ag, ag € A
and C(z) = || P;||~, then

a) <Y Koo(a,a5) <Y al25)Pa, (23)

Bes Bes
=) (@87 ")(28)B(28)¢a, (23) < > Cl25)(aB ) (25)J1(8, ap),
Bes BesS

for every {z3}s C D, and hence, choosing {25} C K such that (a8 ')(z5) =
inf.cx (af~1)(2), we obtain

Koo(a,a) <C) (B, ag) inf (af7)(2)
B

and we proceed as in (a); that is, if p > 1

lallas, , . = (ZS <%a>)>)

Ji( ﬂ,ag ) essinf,ex(aB71)(2) :
Z (Z B(z0) (a61)(20) )

1/p

1/p

IA

1/p

J1(B,a5)\? essinf ek (af™1)(2)
Y (Fe) e
< Clallays  +e-

If p < 1 we just need to do the obvious changes in the second inequality.

(c) and (d): To see this, we only have to notice that if a = ), a,, and we call
aV = Zg__N @a, , then, as in the proof of (b), one can easily see that (a’¥)y is a
Cauchy sequence in {A}Z  and therefore converges to an element b € {A}2 . But,
if {A}S  is embedded in U we get that necessarily b = a. O

20,P

The following proposition will be very useful for the examples.
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Proposition 2.6

Let A = (Ag, A1) be an i.f. corresponding to the partition of T', {I'g,T'1}; that
is, A(y) = Aj, for every v € I';. Let a € L such that essinf cr; a(y) # 0 for j = 0,1

and define
@ , -1/q
o = (/ a(y)™ d7> :
1_‘.

J

Then, for every a € Ag N Az,
Koaa) ~ inf {afl aola, + P aalla, s = o + a1}
and if AgN Ay is dense in A; for j = 0, 1, then the same holds for every a € Ag+ A;.

Proof. First, we observe that

af? = inf{(/r. (a(v)w(v))qd'y>1/q : /F o(v) dy = 1}.

J J

Now, let a = ag + a1 with a; € A; and let us consider a(y) = appo(y) + a1¢1(7)
where ¢; are arbitrary measurable functions such that

(*) supp ¢; C I'; and / (y)dy =1
r

J

Then [ a(y)dy = a and
yfaa) < int { (Z / | (H%HA_,-O&('Y)I%('V)DQdv)Uq oy satistios (%)}

@ @) @ @
< (\aorjaomoq 4 a7, (o >q) ~ a®llagllag + 0@ lla ]|, -

Conversely, given € > 0, if a = [ a(y) dy with

1/q
( / () a) o) dy + / (@M lla()llh)" dfy) < Ky(a0) +¢,

we get, defining a; = fr- a(y)dy € A;, that a = ag + a1 and
J

al llaoll o + @i?|ar]| 4,

< ;Oinf{(/r. (a(w)%(v))qdv)uq :/r

e =1} [ iy

J J
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~1
Taking ¢;(v) = lla(y) | aqXr; (V) (frj Ha(')’)HA(v)d’Y> we get that the last term is
less than or equal to

1

S ([ et ®) "~ ([ @olaniam)a)

j=0 N1
< Ky(a,a) +¢

and, thus, letting € go to zero and taking the appropriate infimum we get the result. [

3. Examples

In this section we shall give some examples of interpolation spaces with the method
introduced above. Some of these examples were already studied in [2]; however, we
shall be here more precise about the ¢ parameter. In the next examples, we assume
that the intersection space N;A; is dense in every A;.

(I) Let A = (Ao, A1); that is, A(y) = A; for v € Iy, j = 0,1 with {To, I'1} a
partition of I'. Then if we take

i . 1 if y €Ty
S—{an(V)_{Qn if’yEFl’nGZ}

we get that, [A]S = (Ao, A1)r,)., .p since by Proposition 2.6

K (ap,a) ~ K(2",a)

with K (2", a) the classical K—functional.
(II) If A = (Ao, Ay, -+, Ap); that is, A(y) = Aj for v € Ty, j = 0,---,m,

{To,---,I'n} a partition of I and we consider
. . 1 1f’y€I‘0 _ m
S—{Oéﬁ(’)/)_{2nj lf,ye]:‘]7]:17’man_(nl,7nm)€Z }7

then
S —
[A]Zo,p,q = (A07 A17 T AN)(lI‘J‘ZO 7j:17”'7N)7p

(Sparr K-space, see [10]). Analogously for the J-method.
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III) If A = (Ag, A1, Ay, A3); that is, A(y) = A; when vy €T';, j =0,---,3 and we
( J J

consider
1 if v €Ty

_ _ o 2™ if v e Fl _ 9
S—{an(ﬂ)/)_ 2k ifﬁEFg’n_(n’k)GZ}
2n2k if 4y € T'3
then [A]zo pg = (Ao,Al, AQ, Ag)(gl 02),p; K where 61 = ’Fl UF3|ZO and 0y = |F2UF3|ZO
(Fernandez K-space, see [7]). Analogously for the J-method.

(IV) If A= (Ay,--+,A,,) and we take

S = {an,k(’}/) = {(a])n(b])k HESAS Fj? J = 17" ’ ,’I?’L}, (nvk) € Zz}

with a; = 2% and b; = 2% and (x;,y;) the vertices of a polygon in the affine
plane R?, then [A]5 | , = (A1, Am)(a,p)psx Where (a, 8) = 3770 [Tyl (25, 95)

(Cobos-Peetre interpolation spaces, see [5]). Analogously for the J—method.

(V) Let 1 < q < ooandlet A= {A( );v € I'} be an i.f. with A(y) = L% (w(y,-))
where L (w {f, fwe Lq} and w(7,-) is a family of weights on a measure space
M such that w(7y,z) € L a.e. . Then

(KQ(aa f))q

=it { [ () 1P isacr) [ F0) =1
—int{ [ [ (ot Ity drdss [ Foa) = 1o}

/ |f(z <mf{/r(a(7) o (v, @) |w(y, 2))* dv; /Fw(v,x)d7:1}> dz
= [ e ( [ o w) " i

and hence, if we write

Witen0) = ([ (o)™ dv>_l/ql,

we get Kq(a, f) = || flloe(w,(a,.)) and thus, if we define

1/q
Wy(S, 20) = (ZS (%U |

one can easily see that, for every S and every zg € D, [A]fo a0 = LIW(S, 20)).
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(VI) In this example we get a weighted Lorentz space as an interpolation of L?
and L*°. However, our set S will not satisfy, in general conditions (i), (ii) and
(iii). Let A = (L', L*). Then, it is well known that, for the classical K—functional

Kt f)= fot f*(s)ds where f* is the rearrangement decreasing function of f. Now,
2'n+1

let w be a weight such that for some 0 < A < 1, f w < 27(=2) " Then, if
we take I'y such that [I'1].,, = A, we can find a,, such that inf,cr, o, (y) = 1,

n+1 _
inf er, an(y) = 2" and ay(20) = 2”( 2271 w) e Therefore, if S = {a, }nez, we
get by 2.6,

nt1 1/p
K@)\ [
S _ 1 oo, )
[A]zo,p,l—{fEL +L ,(%( on ) /n w < +o00
n

~ {feL1+L°°; (/OO (i/:f*@)dt)pw(x)dx)l/p < +oo}-

Thus, if w is in the class of Arifio and Muckenhoupt By, then [A]S | = AP(w) is a
weighted Lorentz space.

(VII) Let (Ap, A1) = (L, L>). By Proposition 2.6, if we take (I' = [0, 2])

1 ify e [0,1]
a(y) = { . ,
~v ify €1,2]

and S = {a™, n € Z}, then one can easily check that

lallpisre ifn>0
Kl(an7a = )
K2 a) ifn<0
and
lal|piipe ifn>0
Koo(anaa = ’
K(|n|2",a) ifn<0

where K (2",a) and K(|n|2",a) are the usual K—functional for a couple of Banach
spaces.
Hence, there exists 0 < 8 < 1 such that

A oo = {f € L1+ L5 (Inf2" 00 1 (Inj2")) , , € 17}
and
A5 on = {f € LT+ 1% (20070 e 2m) e,
These spaces are obviously not equivalent since, for example a function f such

that f*(s) = s%~! satisfies that f € [A] but f ¢ [A]S

20,00,1 20,00,00 *
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4. Relation with the complex method for families

In this section, we shall use the notation of [6]. Let us recall that for an i.f. A, the
St. Louis group defines the following function spaces:

G(A(),T) = {9(2) =Y "pja;: ;€ H®(D), a; € A, |gllgac)r) < +OO}

where ||gllgcacy,ry = esssup,erll9(7)|lay) and F(A(),T') is the completion of
G(A(+),T) with respect to the norm || - ||g. However, as is shown in [6], one can
substitute the above norm by [|g|| = (i lg(V)1I5 d’y)l/p for every p > 1 and the
interpolated spaces A{zp} and A[zp] remains unchanged. In this paper, we shall
denote the norm with index p by || - [|gr and the corresponding spaces by GP(A(-),T")
and FP(A(+),T).

In [2], we see that the usual embeddings known for the classic method

(Ao, A1)s,1 C [Ao, Ar]e C (Ao, A1)0,00 5
(see [1]) are now given by

(4)2 1,00 C Alzo] € [A]2

20,1,00 20,00,1 "

Now, the previous relationship can be improved in the following way.

Proposition 4.1

Let zp € D and 1 < q < oo. Then the following embeddings hold.
(a) (A)S | . is embedded in A[z).

z0,1,q
(b) Alz] is embedded in [A]3

20,00,
(c) If, for every a € A, the function ||a||, € LP(I") for some p > q. Then, for every
a€ A, ||aH{A}§Om,q < Cllallagzoy-
Proof. The proof of (a) and (b) is similar to that in [2].

We shall only prove (c). We observe that, given g € G4(A(-),I') such that
9(z0) = a, we have that g = >, pja; with ¢; € H>*(D) and a; € A for all j. Set

m

go = a(20)g/&, with &(20) = a(z20). Then, we can consider simple functions s}

such that

/F <‘S§n(7) - %ﬁ;(wpzo ('y)] max (1’a(7))>(2”/q)/d7
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converges to zero as m tends to infinity and such that fF T v)dy = ¢j(z0). If we
define g,, = E Ta; we get that gn, € G, fr gm () dy = a and

/F (@M gm(¥) = ga(¥) Peo (Vl5) *dy ™= 0-

Thus, given € > 0, there exist m € N and constant C' > 0 such that

K““ﬂ>ﬁ([Xawm%xwmwa”q

1/q
<e+0( [ (@lallsIh)ar) <+ Cataallolor

Therefore, ||al|{ays < Cllal| agzyy for every a € A. O

z20,00,q

Analogously, we could define a space V' closely related to (A)fo’pﬂ as the com-
pletion of A with respect to the norm

Ju(asaa)yr)

. Q, Qg 4

HaHp:mf{ (Z <qa(—zo)> ) : Z Qg :CL}.

Then, for every a € A, ||al|a{z,1 < [lalli. We only need to consider a = San

and, hence, the function G(z) = ) /;”((z)) an is already in G4(A(-),I") and the proof
follows as in (a).
However, if V' is as before and assume that V' is embedded in U, then one

can easily show that this new space coincides with (A)fmp’q, whenever (4)5  isa
Banach space contained in U.

20,P»9q

5. Duality

In this section, we characterize the dual of the spaces {A}S |, [A]S | and (A)F P
for all 1 < p, q < +oo. The dual spaces of {A}S | and [A]SO .1 are constructed in
a similar way to the construction of the dual space of A{z} and Alzo] (see [6]).

Although a slight modification in the proof of the results for the first two

cases would give us some information about the dual of the spaces {A}Zo%q and
[A}f pq for 1 < g < 400, we are unable to give a complete characterization of

them. The reason is quite simple: for an infinite famlly of functions h;, the fact that
sup; ||h;ls < 400 does not imply sup; |h;| € L7 (except for the case ¢ = 1).

We will only consider the K;—functional in the following theorems and we simply
write K.

Let E(a) = {a € U : K(a,a) < co}. Then E(c) is a locally convex vector
space endovved with the seminorm K(a, ).
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Theorem 5.1

A linear functional | belongs to the dual space of E(«) if and only if the two
following conditions hold.
(i) There exists a constant C' > 0 such that, for every a € A, |(l,a)| < Ca(7)| a5,
a.e. yeT.

(i) Let us define for a(-) € G and (an()) € G such that a(-) = lim,, a,(-) in the
usual way, the function < l,a > (-) by

<l,a>(y):= liylgn (L%(’Y)) :

Then [ <l,a > (y)dy =0 whenever [, a(y)dy = 0.
Moreover, ||| pa)- = inf {C : C satisfies (i)} .

Proof. First, we prove that A is dense in F(a): let a € E(a) and let a(-) € G such
that a = [ a(y)dy and [la(-)|. € L' (). Let (an(-)) € G converging to a(-) in the
usual way and set a, = [, an(y)dy € A. Then

~Kmﬂ—amsaéaww%mo—mdem

and this last expression goes to zero when n goes to infinity.
Let us prove the necessary condition. Let | € E(a)* and a € A. Let us define
for ¢ € LY(T) N LY(T; ap,)

< La,p >= (lva)/FSO('Y) dy-

Then, L, is a linear operator such that

<Lm@>|§WMmyAaWHWﬂﬂﬂdW

Therefore, by the Hahn-Banach Theorem, L, can be extended to a linear operator
in L' (T'; ap,). Thus, there exists a measurable function on T, h,, such that
(@) ha@)| < [Hllz-a(lally ae. veT,
(b) < La, o >= [ ha(¥)p(7) dv, for every ¢ € L (I'; o).

Since a(-) and ¢, (-) belong to £, we can deduce (as in [6] for the dual space of
Alzo]) that if < h(7),a >= hy(y), then, for every a,b € A,

< h(®),a+b>=<h(y),a >+ < h(y),b >, ae.veT;
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that is, the above equality holds for every v € I'\ E, where |E| = 0 but E depends
on a and b.
We have that, for every p € LY(I') N LY(T; ap,),

(l,a)/FsO(v)d'Y = /F < h(v),a > ¢(y)dy,

and this condition implies h(7y) = constant a.e. v € I" and hence h = [. Obviously
[ satisfies (i) by condition (a). To see that it also satisfies (ii) we observe that by
condition (i)

‘(z,am - amw))' < Ca(n)llan() = amls.

a.e. v € I, and thus, the function < [,a > (that depends on the sequence (a,)y) is

well defined. Then, if [, a(y)dy =0 for a(-) € G and |la(-)|. € L' (), we get that if
an = [pan(7y)dy then,

= lim l(a,) = lim (l,an(v)) dry :/ <l,a> (y)dy,
r r

n—o0 n—0o0

by dominated convergence. Conversely, let [ be satisfying the hypotheses. Let
a= [pa(y)dy with a(-) € G and |a(-)||. € L*(«).

By (11) [ can be extended to E(«a) by (I,a
condition (i) we have that, a.e. y €T,

) = Jp < l,a> (y)dy. Now, by

< La> ()] =lim|(Lau()| < Climflan()ha() = Clallat),

and hence,

o)< [ I<ta>@ldr<c [ amlael,
that is, |(l,a)| < CK(a,a) and | € (E(a))* with ||l|[(g@u)y- < C. O

Remark 5.2. If we define E(E) as the completion of A with respect to the seminorm
K (e, -), the dual space is characterized only by condition (i).

Our next goal is to characterize the dual space of [A]fo p for 1 <p < +oo. We
shall use the following general fact: if (E;);cs is a collection of locally convex spaces,
then for 1 < p < 400, we have that if I[P(E;) = {(ai)i C (Ei)i:+ (llaillg,): € lp},
then (I7(E;))* = IP' (E}).
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Theorem 5.3

A linear functional | belongs to the dual space of [A] fmp if and only if, for every
a € S, there exists l, € (E(a))* such that

(i) (1, a) =Y nes Jr < lasaa > (v)dy, with |jaa())]. € L*(a), aa € G and a =
Jraa(v) dvy, and
(ii) there exists a constant C' > 0 such that

A /P
(Z (a(ZO)HlaH(E(a))*)p ) <C-

a€esS

Moreover, Hl|]([A]§0 )+ = inf {C’ > 0: C satisfies (1'1')} .

Proof. Let I € ([A]S )*. Since

Z0 p)

A]S, = { et (lallpam), € W(S)} ,

where E(a, 20) = a(z0) ' E(«), we can consider the space [A]7  as a subspace of

the space P ((E(zo,®)aes) (identifying a = (a)qes) and then, [ can be extended
to a linear operator L over this space. That is, for every a € S5, there exists
lo € (E(a,20))" = az0)E(a)* such that

<L Z/<la,aa Ya(zg) dy

a€eS

with a, = fF ao(7) dy, aq € G, and

1/p’
*k o P < +00-
() (%n o) )

Then,
< la,CLa
(I,a) =< L, (a)acs >= Z d’y—z <la,aa () d,
a€es a€eS
with [, = % and a = [} aq () dy. Obviously, I, satisfies (ii) by (**).

Reciprocally, by the properties of I, € (E (oz))*, [ is well defined by (i) and the
fact that I € ([A]S ,)* is trivial. O
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Remark 5.4. By conditions (i) and (ii) of the previous theorem, we have that if
a € A, then we can take aq(-) of the form apq(-) with [ ¢q () dy =1 and then we
get (I,a) = > (la,a); that is, we can identify, at least formally, [ = 3" I,. Now,
= Joo(a™1, h®), we get that

()

a€ES

since ||l ]| (B@)’

and then, we can embed the dual space of [A]Z  into the space (A*)foj;, where

A* = {A*(y) :y €T} and S7' = {a~': a € S}. However this embedding is just
formally since, as is well-known the family A* need not be an i.f.

Using the same argument as in the previous theorem, one can also see that the

following result holds.

Theorem 5.5

A linear functional | belongs to the dual space of {A}fmp if and only if, for every
a € S, there exists I, € (E(a))* such that
(i) forevery a € A, (l,a) =) cs fr (la,aa(fy)) dy with ||as(})||. € LY (a), an(-) €G

and a = fF aq(7y) dv,
(ii) there exists a constant C' > 0 such that

1/p

(Z <”l‘””(5<a>)*a<zo)>p/> <C.

a€S

Moreover, Hl|]({A}§0 ) = inf {C > 0: C satisfies (11)}

The following theorem will give us a characterization of the dual space of

(A)fo,p,q'
Let us define J, (o) = {a € A: Jy;(a,a) < 400} and assume that J,(a) is not

trivial. Then, if J, (o) is the completion of J,(«) with respect to the norm Jy(«, ),
we get the following result.
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Theorem 5.6
Let 1 < g < 4o00. Thenl € (Jq(a)) if and only if, for every a € Jy(a), there

exists a measurable function < h(-),a > on I' such that, for every a,b € J,(a) and
every \,u € C, < h(y),a+ b >=< h(vy),a >+ < h(y),b >, a.e. vy €T and
(1) there exists a positive constant C' so that, for every a € J (), the function

Ha(v) =| < h(3),a > |/(a(y)]all,) € L7 (T)

and |H,||y < C, and
(ii) for every a € Jq(a), (I,a) = [ < h(y),a > dy.

Jq(a)

Moreover, ||I]] ( _ )* = inf {C’ : C satisfies (1)}

Proof. The sufficient condition is obviously true by Hoélder’s inequality.
To prove the necessary condition, let LI(A(-)a(-)) be the set of all measurable
functions f : I' — U such that
(a) f(v) € A(v) a.e. v € T and,
(b) 1F(Nly € L)),
endowed with the norm || f||Le(a(ya()) = (Jr IF(3)1x()? d’y)l/q.
Then, we can identify J,(«) as a subspace of LY(A(-)a(-)) by

Jo(a) — LU A()a())
a—[yel —a]-

Hence, if | € (Jq(oz)) , | can be extended to a functional L on LI(A(-)a(-)) such

that P
LY < M (/ 1F )12 qm) -

In particular, if we fix a € Jq (a), L defines a continuous functional on the space

1/q
Ma) = {p measuravte + ([ [eOftatilaliy ) <400} = Lr(a).
r
and therefore, there exists a measurable function h, € L7 (a"tp 1) such that
Lea) = [ o),

for every ¢ € A(a) and ||hql| ;o (a-1pr1) < ||lH<J ( ))*.
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Now, as a and ¢, € L we can deduce, by standard arguments that, for every
A, B € C and every a,b € Jy(a), we get haqygp(7) = Aho(y) + Bhp(7y) ae. v €T
Thus, if < h(7),a >= he(7) a.e. v € I' and every a € J,(«), we get that, for every
a € Jq(a),

(La) = L(a) = / < h(y).a > dy,

and condition (i) holds easily.

Using this result, we get the following one.

Theorem 5.7

Let 1 < p, q < +oo. A linear functional | € ((A)fo,p,q)* if and only if, for every

a € S, and every a € Jy(a), there exists a function < ho(-),a > satisfying:
(i) for every a € (A)3 4 (La) =Y e Jp < ha(7),aa > dy, where a =3 aq in
the U—norm and a, € Jy(a), and
() (az0) S0D4, 0 | < a0 > f0Olaall ) )€ 17(5).
Moreover,

et = inf{(z (az0) sup || < ha().a0 > /(o) aal]) uq/Y)”p},

acsS aq€Jg ()

where the infimum extends over all representations of a =) aq.

Proof. The sufficient condition is obvious. Let [ € ((A)fo7p7q)*. Since, we can

identify (A)5 . with the quotient space P (Jg(ar)a(20) ™) modulo the set N of all
sequences (aq)q such that a, € Jy(a) and > an = 0, we get that [ can be seen
as an element, of 17’ ((Jq(a)*a(z0)) vanishing on N. That is, there exists a sequence

(ha)a satisfying conditions (ii) such that [ can be identified with such a sequence by

(l,a) = Z/F < ho(7),aq > dv,

a€eS

fora=>_a.. O
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6. Reiteration

It is well-known that, for the case of a compatible pair of Banach spaces, the classic
interpolated spaces (AO,Al)gfp and (Ao, Al)eJ,p coincide algebraically and topologi-
cally. However, for n > 2 only the inclusion

(Ala o 'aAn)g,p C (A17 e )An)K

0,p>

is valid in general, for the methods of Sparr, Fernandez and Cobos-Peetre.

DEFINITION 6.1. An i.f. of Banach spaces A = {A(’y) vy el A, U} is said to
satisfy the equivalence property with respect to the method S, if [A]5) b = (A)Z)@ g
for every zg € D and every p and q.

It turns out that when one wants to study the question whether a method of
interpolation is stable under reiteration, a good condition to get a positive answer
is to have the equivalence property. Without it, only some inclusions can be proved
(see, for example, [10]).

In our reiteration theorems, we have to impose a “density condition” completely
analogous to the one imposed in the reiteration theorem for families of Banach spaces
in the complex method (see Theorem 5.2, [6]). Moreover, we are also forced to work
with the method {A}5  instead of [A]J , (see Remark 5.3, [6]).

One may also ask whether reiteration works when we deal with two different
kind of methods of interpolation, whenever they can be “composed”. In particular,
we can mix our method with the complex interpolation method for families of the
St. Louis group (see Theorems 6.5, 6.6 and 6.7).

Finally, we deal with i.f. of the type A = {A(v) = (A0, A1)a(y)p(y) © ¥ €T}
A={A() = [Ao, Ailay) + v €T} A= {A() = (A1, AN)atpi ¢ 7 €T,
etc. This families are very useful to obtain the interpolated spaces for families of
LP, HP Sobolev spaces, ...

Theorem 6.2

Let Q be a simply connected domain contained in D such that > = 9 is a
closed rectifiable Jordan curve and ¥ C D. For every o € X, let us consider the
space B(o) = {A}f,p(a),q with ¢ > 1 and p(o) > 1 a measurable function on . Let
do be the normalized measure on Y. Assume that A is dense in

A* = {a € B(o), ae.c € X: / log™ [la|| p(oydo < —I-oo} ,
)
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in the following sense: A C A* and, for every b € A, there exists a sequence
(an)n C A such that

(2) lim / llan, — b||Zdo = 0,
n—oo »
where ||a||c = [|a||p(s). Also, assume that there exists a Banach space V containing

B(0) and a function P measurable on 3 whose logarithm is integrable and, for every
a€ A%, ||la|ly < P(o)||alls. Then,

(a) B={B(o): c €%; A%, V} isanif,

(b) there exists a constant C' > 0 such that, for every a € A and zy € (Q,

lallgays, ,, < Cllall

S
z0,P,q {B} 1= >

Z0,P-4

where S|y, = {a(o) = exp loga(y)Py(v)dy) : « € S¢, and, if there exists a
| r

compact set K in € such that condition (1) holds, then A is dense in A* with
Sis
respect to the norm {B}.; p.q-

Remark 6.3. If we have that the spaces {A}5 and {B}f(‘fpyq are embedded in a
common containing space W, then condition (1) in (b) implies
s o 5
{{A}J,p(a),q} - {A}zo,p,q'
20,P;4q

Proof.
(a) We have that, for every b € A*, the function

«

~ p(o)
cex— b, =3 (—K;((fj’)b)) ,

is measurable on Y. The other conditions for the family to be an i.f. are imposed
by hypotheses.

(b) Let a € A. Since A C A*, we have that given € > 0 and a € S|s, there exists
aa(-) € G¥ (the space G for the i.f. B), such that a = [, aq(0)do and

</2 (Q(U)Haa(a)ﬂa)q dU) v < I?z,q(a,a) +e,

where I?gq is the IN(q—functional corresponding to the i.f. B.
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Let us write

N
a6(0) =Y anXg, (o),

with a,, € A®, for every n € {1,---,N}. Now by (2), given ¢ > 0 and a,, € A%,
there exists b,, € A such that

1/q c
an_bn o qd0> S P NI
([ = 2N alls

for every n € {1,---, N}, with ||a||s = sup,ex a(0).
Consider b(o) = Y (Xg, (0) = |En|)bn + a. Then b(-) € G with b(o) € A
and a = [;, b(c)do. Moreover, since

N
b(o) = D (Xp,(0) = |Eal)(by — az) + aa(0)

n=1

we get

</2 (a(g)||b(0)lla)‘1da> 1/a
N

<(/[ <a<a>uaa<a>ua>qcla>l/q+2Hauzz (L. —an||a>qclo>1/q

n=1

< (/E(Q(J)Haa(a)ﬂg)qu) v +e< Ky g(o,a) + 2¢-

Hence, we can assume a = [y, b(c)do with b(-) € G* and b(0) € A.

Now, b(o) can be written as ), ¢,Xa,, with A, pairwise disjoint and ¢, € A.
Given ¢,, let 09 € X be such that, for every o € 3, a(o9)||cnllos < (1+e)a(o)||cnllo-
Then, for € > 0, set F,, € G so that [ F},(v)dy = ¢, and

1/q
(/F (a(v)HFn(V)llw)qdv) < (1 +e)afoo)lenllo, -

Let us consider F(o,7) =, Fu(7)Xa, (0). We have that a = [, ([, F(o,v)do) dy



Real interpolation for families of Banach spaces (11) 75
and fz )do € G. Therefore,

Ky(a,a) < (/p (a(v) /EF(O,V)da v)q%) 1/q
< </F (/E a(’v)IIF(aﬁ”hdU)qu)1/q

/</ <ZHF JXa. (@) (v)>qdv>l/ng

_ Z/ Xa, (o) </ <”Fn(’7)||ya(7)>qd7>l/q N

(1+¢) Z/ Nenlle do = (1 + ¢)? /Ea(a)||b(a)||od0

<<1+—a?<jé<a@ﬂuwanu»qda>lﬂl<<1+—@2(Ragﬁxa>+2e)-

Thus, since a(z0) = ax(20) = exp ( [y, log a(0) iz, (o) do) with pui, the harmonic
measure with respect to €2 and zp, and letting € go to zero, we get

KQ(aaa) < I?E#I(O‘aa) .

a(z0) ~  ax(z0)

That is, for every a € A, [lall{ays

S e < llallpysie
Z0,P>49
We need to show now that, under condition (1), A is dense in A* with respect
to the norm {B}foli,q. Now, given a € A* and € > 0, let us consider b € A such
that ([5[la — b||4do) 1/q < e. Then, given K C ( satisfying the hypothesis, there

exists C' > 0 such that

~ 1/p
B Ky 4(a,a —b)\P
'm‘bhmiiq‘(Ez( oG )

a€es
g(J(aZES (mfzef(fz(o ) ) </ Ha—byqda) " e O

Theorem 6.4

Let Q be a simply connected domain contained in D such that > = 0€) is a
closed rectifiable Jordan curve and XX C D. For every o € %, let us consider the
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space B(o) = (A)f?p(a)’q with ¢ > 1 and p(c) > 1 a measurable function on . Let

us assume that A C B(c) a.e. 0 € ¥ and that B = {B(a) 1o € E} is an i.f. Then,

(A)fo,nq is embedded in the space (B)fg?p,q, for every zy € €.

Proof. Let a € (A)% Then given € > 0,a =)

20,P,q"

1/p
Jy(a,a0)\"
(S (385)) " st

[e%

acs Ga, With (aq)q in A and

Now, since a,, € AN B(0), a.e. 0 € ¥, we get

Isq(as, aa) = (/E (a(U)’aaHa)qu>l/q

(/2 (0‘(‘”%)%) Y e

IN

Therefore,

1/p
Jsq(as, aa)\’
HGH(B)fé,Ep,q = (za: ( ax(2o) < +8)Ha||(A)§°’p’q -

The following theorem will be related to the reiteration between the real and
complex (in this order) methods. We get as an application the corresponding
reiteration result of Herndndez-Soria (see [8]).

Let B{z9} and Blzp] be the interpolated spaces of {B(c) : o € X} with the
complex method (see [6]).

Theorem 6.5

If we are under the hypotheses of the reiteration Theorem 6.2 with B(c) =

{A}S , , and there exists a positive constant M such that

inf.cqa(z)\” 1/p
. (5 (P29
o€ za: a(o)
then, if zy € 2,
(a) there exists a constant C' > 0 such that, for every a € A,
lalliays, . < Cllallpgy

A is dense in A* with respect to the norm B{zy}, and
(b) Blzo] is embedded in [A]3

20,P,9"
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Proof.
(a) We already know that B = {B(J) t o€ E} is an i.f. Since A C A*, we have

that, for every a € A and every € > 0, there exists a function G(z) = 3_; a;jp;(2) €
G'(B(:), %) such that G(z) = a and [, [|G(0)]|s do < (1 +¢)||all gz (see [6]).
Let us consider, for every j € {1,---, N}, elements b; € A such that

1/q c
oy ~bylgde ) < g
(L i~ 2N e

Set G(0) = X201 (45(0) = 95(20) )by +a. Then, 5, G(0)pizy(0) dor = a, G(o) €

A and since G can be written as

Z( )= ¢3(20)) (b = a) + Glo)

we get that

/w mw<2w%m/w]bmw<s

Now, by (3), sup,ex [|bjlle = Cj < 400 for every j € {1,---, N} and, hence,

we can consider, for each j, a simple function s; such that [, of((zo)) (0 iz (0) do =

©;(20) and
€
[ 1)~ esto)ldo < o

N
Z( —;( zo))bj—i-a-

Jj=1

We have that F' is a simple function such that F(o) € A, [ ||F (o) — G(0)||gdo < e

and (o)
= 0 F(o o)do -
a /2 ~( ) ( )IU'ZO< )d

Set

Assume I’ = Z/ anXg, , with a,, € A and FE,, measurable pairwise disjoint sets.
Let (Ca)a be a sequence of positive numbers such that > (C’a fz ”;(ES) da) <1
and let a,(-) € G be such that a, = [, an(y)dy, and

([ (ctlloatnty) 0) " < Roforan) + 2.
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Then
= a(20) o o)do = &(z0) o a o
o= [ Ser@maie =3 [ S ([ i) d
N d(Z())
-/ ( o) [ G uzmda) @,
and
~ a(z) ~
K,(a,a) < ;/El a(oo) (Kq(a,an) —&—sCa),uzo(a)da
azp) ~ a(zo)
</E o Kq(a,F(a))MZO(a)dcha/Em%(a)dg.
That is,
Ky(o,a) _ [ Ky F(@) R
el e e SO e L
and thus,
~ p\ 1/p
K (o, a)
(= (%))
@)\ o) N\
) ) Uz (0)do + € (% (Coé/Z (o) da) )

IN(q(oz,F
a(o)

(=

< (J/2 IF (o)l do + ¢ < C<5+/2]C~J(U)||gda> be

<2+ [ 1G] do) +2
b
< 0(25+ (1 +6)IIQHB{ZO}> te

Letting € go to zero we are done.
The density of A in A* is trivial by (2), since

o= e < exp ([ 108 0~ Ulnoes(0)io) <€ [ = oo < =
> >

(b) The proof of this part is completely analogous to (a). Let a = F(z) for some
F ¢ FY(B(-),%). Let (Gn)n be in G1(B(+), X) such that Gy converges to F. Then,
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as in (a), we can assume Gy to be a simple function and, hence, F' is a suitable
function for the definition of [A]$ . Following the computations in (a) one can show
that

1GN(20) = G (20)llags, , < ClIGN = Gurllgr
and thus, Gy (z0) converges to an element b in [A]J  and obviously b = a. O

Theorem 6.6
Under the hypotheses of Theorem 6.2 with B(o) = (A)gp(g) g P(0) <400 ae.

o € ¥ and p = p(z0), where = /5 ﬁuz (0) do, we have that,

p(Z)

(a) if B{zo} is embedded in U, (A)S . C B{z},and

(b) ( )zopq C B[ZO]

Proof.

(a) Given € > 0, let a € (A)3, ,, be such that ||a||(A)s =landleta=> ay,

1/p
be such that <Zn (Jq(an,an)/an(zo))p> <(1+4¢), with {a,}n, C S.

SLet aV = ZTJ:’:_N a, € A. We have that (a’¥)y is a Cauchy sequence in
(A) . Let us consider, for z € Q,

20,P,4q
GN(Z) = S d”(z) (Jq(aman))p(%)(ﬁ)_l
N an(20) an(20)

ana

n=—

where (1/;(/,2)) is the analytic extension of 1/p(z) = [y 1/p - (0)do such that

(1/p(20)) = 1/p(20). Then GV € GH(B(-), %), GN(z) = a¥ and, given ¢ > 0 there
exist N and M such that

la¥ — M| gy < IGY — GMgr = / IG™ (0) — G (0)|| (o) do
1/p(o)

S/ Z <an—(a))p(0) <M>P(zo)—ll(a) <M>P(0) .
2 \wlurenr 2 (20) an(20) (o)
(20) 1/p(o)
_ / > (M) . o
= \ n<ni<m an(20) <

That is, (a”)x is a Cauchy sequence in B{z} and, therefore, since we are
assuming that B{zp} is embedded in U, we have that a” converges to a in B{z}
and, hence, a € B{z} and ||a||p{z,} < HGH(A)S
(b) The proof of this part is completely analogous to (a). O

Now, we deal with reiteration with the complex method first and then real.
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Theorem 6.7

Under the hypotheses of the Theorem 6.2 with B(c) = A{c}, we have that
(a) B={B(0): 0 €%, A¥,V} isanif,
(b) if we assume that, for every a € A, the function v — |a||, is in LP, for some
p > q, then, for every a € A,

lallag, ., < Cllell 5
(c) if U=V, then (A)S  is embedded in (B)5%,,.
Remark 6.8. If we have that the spaces {A}S and {B}fgp,q are embedded in

a common containing space W and if there exists a compact set K C ) satisfying
(3), then A is dense in {A{a}}fo‘zp , and therefore, (b) implies

S
{A{U}}z;,zp,q - {A}fmp»q )
Proof. The proof of (a) can be found in [6].

(b) Let a € A. Since A C A* we have that given € > 0 and « € S|y, there exists
aa(-) € G* (the space G for the i.f. B), such that a = [j; an(0) do and

(/z (a(U)H%(U)HU)qu)l/q < I?z,q(a,a) + ¢,

where I?gq is the I?qffunctional corresponding to the i.f. B.
Let us write

N
aq(0) = Z anXg, (o),

with a,, € A*, for every n € {1,---, N}. Now, we can assume (as we did in Theorem
6.2) that an(0) € A.

Given a,, let o9 € ¥ be such that «a(og)|lan|le, < (1 + €)a(o)|an||s, for
every 0 € Y. Then, for e > 0, set F,, € G(A(-),T") so that F,(0¢) = a, and
|Eullg < (14 €)||an]|oo- Let us consider the function F,(-) = F,(-)a(oo)/a(-). We
can assume (see the proof of Theorem 4.1) that F,,(-)P,,(-) € G. Let us consider
F(o,7) = 3, Fu(7)Xa, (o). We have that a = [, ([, F(0,7)do) Pry(7)dy and
Js F(0,-)Pyy(-)do € G. The proof now follows as in Theorem 6.2 (b).
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(c) Let a =", a, and € > 0 such that

1/p
J, Ay Qg P
(Z (%) ) <@ +9)lalls, .,

n

Then, since ||alls < J4(ev,a)/a(0) for every a € A and every a € S, we get

1/p
Jx q(arman))p
< Z2,9\%ny Bn)
lall g2z, < (; ( an(20)

(fz (an(U)!anlla)qdff) "

an(20)

p\ 1/p

IN

1/p
Jq an7an ?

Reiteration for a compatible pair of Banach spaces

Theorem 6.9

Let (Ao, A1) be a compatible pair of Banach spaces. Let 0 < «a(-) < 1 and
p(-) > 1 be two measurable functions on I'. Let us define, for each v € T', the
space A(7) = (Ao, A1) a(y)pr)- Set S = {an(-) =2"*0) . n € Z}. Then, for every
1<p<+ocandqg>1,

[A]fo,p,q = (AO’Al)O‘(ZO),p = (A)fo,I%Q’

where a(z0) = [;. () Py (7)d7.

Proof. Let us start with the first embedding. Let a € [A]S . Given e > 0, we
have that, for every n € Z, there exists a,(-) such that a = [ an(y)dy, an(:) € G,

an(7) € (Ao, A1) a(y)p(y) and

/ 27|y ()l dy < Ry, an) + ¢
N
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for every n € Z. We now observe that we can always assume that a € A and that
a, € G. Hence, for each n € Z, let a/,(-) : T — A; be a simple function (j = 0,1) so
that a,(v) = aj(7) +ay,(7) and [lag (v)[lao + 2" lap (D4, < (1 +€)2"* O an ()]l
Let us define af, = [ al,(v)dy € A;. Hence, af +al = [ an(y)dy = a and

K(2",a) < [laplla, + 2" an]la, < (1 +€)/2”“(”)Han(7)\lwd7
r

< (1 —l—&t)(Kq(an,a) —|—£) .

Dividing by 27*(*0) and taking the I/P-norm, we get lall(a0,41) 00y 0 < ||a||{A}§0 o
To see the embedding with the J-method, let a € (Ao, A1)a(z0),p- Using,t’he

equivalence of this space with the corresponding space for the J-method, we get

that, given ¢ > 0, a = Y, a, in the (49 + A;)norm with (a,), in Ag N A; and

max(an o 2% lanll) "\
1|0y n|l1
(Z < ona(zo) ) ) = (1 +€)||a||(AO’A1)”(ZO)m.

n

Now, a, € A and

q 1/q
Jq(2na()7an) = </ <2na(7)HanH,y> d’y)
r

/ (znammaxumn\o,znuanun)qdy)”q
T

ona(y)

< max([lanlo, 2" [lanl1) = J (2", an) -

Hence, a € (4)5 . and ||a||(A)s0

20,P:4 s < llall(ae,41)0(.,),,- Therefore,

(AO?Al)Oé(Zo)yp - (A)fo,p,q C [A]fo,p,q C (AO?Al)CY(ZO)yp’

and, therefore, all the equivalences are proved. [

By Corollary 4.12 in [2], we get the following result.

Corollary 6.10

If S’ contains the set S = {a,(-) = 2"*() . n € Z}, we have that, for every
q=1
[A]S = (A07 Al)a(zo),p = (A)S

20,0,4 — 20,0,9
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Using the relationship between the real and complex methods, one can also

prove the following;:

Corollary 6.11

If A(7y) = [Ao, A1]a(y), a.e vy €T and S as in Theorem 6.9, then

[A]fg,p,q = (A()yAl)O((ZO),p = (A)§07p7q '

Using the same kind of proof as in the case of a compatible pair, we can get

similar results in the case of Sparr, Fernandez and Cobos-Peetre. However, since for
these methods the equivalence between the K and J—methods does not hold, we can

onl

y get the corresponding embeddings, unless the family satisfies the equivalence

property.

10

References

. J. Bergh and J. Lofstrom, Interpolation spaces. An introduction, Springer, Berlin Heidelberg
New York, 1976.

. MLJ. Carro, Real interpolation for families of Banach spaces, Studia Math. 109 (1994), 1-21.

. MLJ. Carro and L.Y. Nikolova, Interpolation of limited and weakly compact operators for families
of Banach spaces, Preprint 1994.

. MLJ. Carro and J. Peetre, Some compactness results in real interpolation for families of Banach
spaces, Preprint 1993.

. F. Cobos and J. Peetre, Interpolation of compact operators: the multidimensional case, Proc.
London Math. Soc. 63 (1991), 371-400.

. R.R. Coifman, M. Cwikel, R. Rochberg, Y. Sagher and G. Weiss, A theory of complex interpo-
lation for families of Banach spaces, Advances in Math. 43 (1982), 203-229.

. D.L.Fernandez, Interpolation of 29 Banach spaces and the Calderén spaces X (E'), Proc. London
Math. Soc. 56 (1988), 143—162.

. E. Hernandez and J. Soria, Spaces of Lorentz type and complex interpolation, Ark. Mat. 29
(1991), 203-220.

. D.N. Kutzarova, L.Y. Nikolova and T. Zachariades, Real interpolation for families of Banach
spaces and convexity, Preprint 1993.

. G. Sparr, Interpolation of several Banach spaces, Ann. Mat. Pura Appl. 99 (1974), 247-316.



