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ABSTRACT

As an extension of a useful inverse pair due to Gould—Hsu (1973), a gene-
ral pair of reciprocal relations is established. The inversion technique for
proving combinatorial identities, originated by Riordan (1968) and Greene
& Knuth (1981), is developed systematically to explore the dual relations of
Pfaff-Saalschutz and Dougall-Dixon formulae. Most of the known strange hy-
pergeometric evaluations, covered in Bailey (1935), Slater (1966), Gessel &
Staton (1982), Gasper (1989) and Gasper & Rahman (1990), and several new
mysterious looking formulas are demonstrated almost mechanically.

1. Introduction

Recently, combinatorial computation has aroused new interest for its wide applica-
tions in mathematics, physics and computer science. As its main part, thousands of
binomial identities have been realized, by combinatorists during the past few years,
to be equivalent to the relatively few hypergeometric evaluations. Since then, atten-
tion has been turned to the hypergeometric relations. Through the mathematical
world, the hypergeometric “windstorm” swept across, and the “disease” of its ¢—
analogue has expanded rapidly, partly because of the Indian mathematical genius
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14 CHU WENCHANG

Ramanujan’s romantic career. The vast literature along this direction leaves us an
impression that (basic) hypergeometric series is full of magic power and treasure to
be explored.

However, during the past years, one important discovery due to Gould and
Hsu [13], in 1973, has been neglected completely by combinatorists although its
special cases were rediscovered, rephrased in terms of Lagrange inversion, and used,
by Gessel and Stanton [12], to investigate hypergeometric evaluations. To be precise,
we restate Gould and Hsu’s theorem as follows: Let {a;} and {b;} be any two complex
sequences such that the polynomials defined by

n—1

(1.1a) Y(x;n) = H (ar + zbi)

k=0

differ from zero for non—negative integers x and n with ¢ (x;0) = 1. Then there hold
the inverse relations

(1.10) ) = 3 (-0 () oths ).

B n\ ag + kbg
(110 o) = S0 (1) gty S

Originated from Riordan (1968), now it begins to be accepted by combinatorists,
e.g. Andrews [1], Greene & Knuth [14], and Chu & Hsu [6-7], that inverse series
relations are partially responsible for the proliferation of combinatorial identities.
One implication of (1.1) is that for every relation of one form in this pair, there is a
companion of the dual form. To prove one is to prove both. On one side, if one mem-
ber of an inverse pair is a known relation, then the other member often provides a
new formula. On another side, if the truth for one combinatorial summation formula
in one form of the inverse pair needs to be confirmed (proved or disproved), then it
would be transformed into checking its dual formulation which is often attributed
to a routine combinatorial fact. Based on this observation, numerous combinatorial
identities, e.g. the convolution formulas due to Abel and Hagen—Rothe, and the
evaluations discovered by Dougall-Dixon—-Kummer and Watson—-Whipple, and con-
jectured by Gasper (cf. Gessel and Stanton [12]), have been revisited through (1.1)
and in fact transformed into Euler’s binomial theorem, Chu—Vandermonde—Gauss
and Pfaff-Saalschutz formulae. For details the interested reader can consult the
recent work [6, 7].
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The main objective of the present paper is to establish an extended version of
Gould-Hsu’s theorem. By means of the inversion technique described above, most
of the known strange hypergeometric evaluations, covered in Bailey [4], Slater [18],
Gessel & Stanton [12], Gasper [9] and Gasper & Rahman [10-11], and several
new mysterious—looking formulas are demonstrated, almost mechanically, to be the
dual relations of Pfaff-Saalschutz and Dougall-Dixon formulas. Among them, the
most striking example is the re—confirmation for one 7Fg—identity, conjectured by
Gasper (1977) and proved recently by Zeilberger [8] and Gasper & Rahman [10-11].

Except for special indications, the usual notation of shifted factorial, binomial
coefficient, and hypergeometric series from the monographs by Bailey [4], Slater [18]
and Gasper & Rahman [11] will be adopted throughout the paper. To save space in
writing, we will use

instead of factorial-fraction.

2. Inverse series relations

Theorem
With the 1)—polynomials defined by (1.1a), the inverse series relations

n

(212) f(n) =3 (~1)* (Z) O ki) (k)

k=0

A+ 2k
A+ 1)kt g

O, k() et A+ Rbe ap — kb
@10) g =32 () T ey OB 0

are valid provided that the sequence—transforms involved are non-singular, i.e.
YA+ mn;m+1), Y(—n;m + 1) and (A + n)m4+1 do not vanish for non-negative
integers m < n.

It is obvious that this pair of inversions is an extension of Gould and Hsu’s
because it reduces to (1.1) when A tends to infinity. Similar to the role of Gould
and Hsu’s inversions, (2.1) may be used, systematically, to deal with the strange
hypergeometrics, based on the so—called embedding machinery described in the in-
troduction. The exhibition demonstrated in the next three sections will show that
this approach can not only certify the know hypergeometric formulas, but also create
several new strange evaluations.
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Proof of the theorem. As the linear transformation defined by (2.1b) with fixed
is non-singular, it suffices to show that (2.1a) implies (2.1b). In fact, substituting
(2.1a) into (2.1b) gives

" n\ ar+ A+ k)b ar — kb
kz::O — <k‘> POtk D) semkrn) AR

k
<3y () 60 mid) wmsk) 25 g

Interchanging the summation indices and noting that

D)= CICm) o - G
we can reformulate this expression as
> () Gz o

ym —m\ YA +mik) p(—m;k) (A +n)y
- Z +k< >¢(>\+n;k+1) P(=n;k+1) (A+m)gq1

x (A +2m)(ar + (A + k)by)) (ar, — kbg) .

It will reduce to g(n) if we can verify that the inner sum equals 6, ,, , the Kronecker
delta, or equivalently, the orthogonal relation

(2.2a)

- pymek (70— m V(X +m; k) Y(—m; k)
”sz < >w<A+n;k+w<—n;kz+1>

()\—i-n)k (

_ + (N4 k)b — kb)) = b
(A +m)gt1 ( )k)(ak 2 '

which simply follows from the summand-—splitting

n—m> PO+ mik)p(=msk) A+
k—m) OO+ mik + 1) b(—nik + 1) (A + m)ees

(A+m+n)<

x (ax + (A -+ k)bx) (ax — kby)
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mik+1) (A+n)rm
nyk+1) (A4 m)rt1

—m;k) (A +n)g
—n;k) (A+m)g

B <n—m—1> YA +myk+1) Y(—
\k-m YA+ njk+1) P(—
(
(

n—m—1\ Yp(A+m;k)
+ (kz—m—l) YA +nsk)

Y

G

and the diagonal-canceling. This completes the proof of the theorem. [J
If we substitute (2.1b) into (2.1a), then the resulting orthogonality

n

(2.2b) (an()\ + n)bn) (an — nby) Z (_l)erk

k=m

n—m YA+ k;n) Y(—k;n) A+ E)m _
y < > = (A+2K) = 6,

kE—m At ksm+1) p(=ksm+1) A+ E)psa

is much more tedious to confirm. In fact the author has not found a direct derivation.
In view of the relation between reciprocal transforms and matrix inverse
pairs, (2.1a) and (2.1b) admits the following rotated forms.

Corollary

Assume the condition of the theorem. The system of equations

N k A+ 2n
(2.3a) F(n) = I; (—U’“(n) YA +n;k) p(—n; k) b G(k), (0<n<N)

is equivalent to the system

(2.3b)

N
Gn)=>_ (-1 (z) Z?;(yn?blg ¢(afk_;:inl) (A+n)p F(k), (0<n<N)

k=n
where N is an arbitrary non—negative integer or infinity.
One special pair of inverse relations implied in the works of Bressould [5] and

Gasper [9] could also be derived from (2.2) and (2.3) by defining 1)—polynomials to
be shifted-factorials.
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Proposition

Let a,b, and p be complex numbers such that a + © + py, b+ x — puy and
2+ pu~1(a—b) differ from zero for non-negative integers x and y. Then there hold
the inverse series relations

. o) — = k(™Y (4 B pt(a—b)+ 2k
a0 500 = 3204 () otk b ST g,
2a0) o =3 () Gy B 0D R 10

and their rotated forms

A (@ —b)+2n
(Afl(a —b) + k:)n+1

oo =T an(8) R L ey

=
E
|
|
N
-
PR
S =

) (a+ )k (b—An)g

3. Embedding technique on k—balanced hypergeometrics

Based on the transform

(3.02) (@ +k)n = (a+n)i(a)n/(a)x

(3.0b) (c—k)pn=(0)n(l—c)/(1—c—n)g

the Saalschutzian (i.e. one-balanced) and 2-balanced formulas will be rewritten
in the form of (2.4b), and produce a family of curious hypergeometric evaluations
through the dual relation (2.4a).

ExXAMPLE 3.1: Saalschutz theorem <= The first very well-poised 7 Fg—summation.
The Saalschutz summation (cf. e.g. [4, p. 9])
(3.1a)
142u—2v, u-+n, —n 14u—v, 14+2u—wv, v/2, (1+v)/2

3F =
l+u—v—n, 1+2u—v+n v, v—u, u—(v—1)/2, u—(v—2)/2
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can be restated in the form

(3.1b) i(_nk(Z)( 2u — v + 2k w— v

P 20 —v+n)gt1 (U—v—=n)k1

2u—v

< (utkn o — ok

(u)k(l + 2u — 2v)

u, l+u—v, 2u—wv, v/2, (1+v)/2

v, l—u+v, 1+u—v/2, u+(1—v)/2

and yield the dual relation

n

(31c) Y (~1)* <Z> (Qu—v+ k) (u—v—k),

k=0

u + 2k
(u+ 7))k

u, 1+u—v, 2u—wv, v/2, (1+v)/2

X
v, l—u+wv, I+u—v/2, u+(1-v)/2],
2u —v
= - 1+ 2u—2
2u—v+2n(u)n( e Uln

which may be reformulated as the first interesting hypergeometric evaluation

(3.1d)
u, 14 u/2, v/2, (v+1)/2, 1+u—v, 2u—v+n, -n
7Fs
w/2, u+1—v/2, u+(1-2v)/2, v,l—u+v—n, l+u+n
Y 1+u, 142u—2v
T 2u—v+2n

U—v, 2u—0v "

EXAMPLE 3.2: 2-balanced series <= The second very well-poised 7 Fs—summation.

The nearly—poised (also a 2—balanced series, cf. e.g. [4, p. 30])

20—2v, u+n, —n
(32&) 3F2
| 1+u—v—n, 1+2u—-v+n

u—v, 14+2u—v, v/2, (14+v)/2

1+v, v—u, u—(v—1)/2, u—(v—2)/2
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can be restated in the form

(3.2b)

. 2u— v+ 2k u—v QU — v
_1k n kni oy 9

u, u—v, 2u—v, v/2, (1+v)/2

1+v, 1—u+v, 1+u—v/2, u+ (1 —-v)/2
and yield the dual relation

(3.2¢)
n
n u+ 2k
—1)k 2u—v+ k), (u—v—=~k), ————
> (1)« I s o
u, u—wv, 2u—v, v/2, (14wv)/2
X
l+v, 1—utv, 1+u—v/2, u+(1-v)/2 ],
2u—v
= T (W)n (2u—20),
2u—v+2n(u) (2u v)
which may be reformulated as the second interesting hypergeometric evaluation
(3.2d)
u, 14 u/2, v/2, (v+1)/2, u—wv, 2u—uv+n, -n
7F6
w/2, u+1l—v/2, u+(1-2v)/2, 14+v,1—u4+v—mn, 1+u+n
B % — v 14+ u, 2u—2v
 2u—v+2n

u—v, 20— "

ExaMPLE 3.3: Saalschutz series <= The third very well-poised 7 Fg—summation.
The Saalschutzian series (also a nearly—poised series, cf. e.g. [4, p. 30])
(3.3a)

(2 +2u—2v, 1+ (1+2u—v)/2, u+n, -n
1l
(1+2u—v)/2, 24u—v—n, 242u—v+n

1+u—v, 242u—v, v/2, (1+0v)/2

v, v—u—1, u—(v—1)/2,u— (v—2)/2

n
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can be restated in the form

(3.3b)
- 14 2u—v+2k l4+u—v

—)k (" k)., 2+ —2
kzzo( ) <k> AT 0u—otmrn Gru—v_nny TPk @+2u—20)

u, l+u—v, 14+2u—v, v/2, (1+v)/2

v, v —u, l+u—v/2, u+(1l—-v)/2
and yield the dual relation

(3.3¢)
u + 2k
(u+ 1)k

zn:(—nk <Z> (1+2u—v+k)p(l+u—v—Fk),

k=0

u, l+u—v, 14+2u—v, v/2, (1+wv)/2

v, v —u, l+u—v/2, u+(1-v)/2],

= (u)n (24 2u—2v),

which may be reformulated as the third interesting hypergeometric evaluation

u, 14+u/2, v/2, (v+1)/2, 1+u—v, 14+2u—v+n, -n
(3.3d) 7Fs
u/2, ut+l—v/2, ut(l-v)/2, v, v—u—n, 14+u+n

14+ u, 24+2u—2v

| l+u—v, 14+2u—-w
ExaMPLE 3.4: 2-balanced series <= The fourth very well-poised 7 Fg—summation.
The nearly—poised series (also a 2-balanced series, cf. e.g. [4, p. 30])

(3.4a)

[1+2u—2v, 1+ (1+2u—0)/2, u+n, -n
1l
(1+2u—v)/2, 24u—v—n, 242u—v+n

v—u, 242u-—w, v/2, (1+v)/2

1+v, v—u—-1, u—(v-1)/2, u—(v—2)/2
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can be restated in the form

(3.4b)
- 14 2u—v+2k l4+u—w

—k (" k) 14 2u—2
kzo( ) (k) AT 0u—ot e Gru—v_nny TPk (l42u—2v)

u, u—v, 14+2u—v, v/2, (1+v)/2

1+v, v—u, 1+u—v/2, u+(1-v)/2
and yield the dual relation

(3.4c)

u + 2k

. k(" u—v U—v— —_—
(1) ()(1+2 + k) (14 O

u, u—v, 14+2u—v, v/2, (1+v)/2

l+v, v—u, 14+u—-v/2, u+(1-v)/2],

= (u), (14+2u—2v),
which may be reformulated as the fourth interesting hypergeometric evaluation

(3.4d)

[, T+w/2, v/2, (W+1)/2, u—v, 1+2u—v+n, -n
7Fs
u/2, u+1-v/2, u+(1—-v)/2, 1+v, v—u—n, l4+u+n

[ 14w, 14+2u—2v

| 1+u—v, 1+2u—vw

All the formulas demonstrated above but the last one (cf. Bailey [3], or [4,
p. 98]) have not appeared in the literature explicitly.
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4. Strange hypergeometric evaluations

For terminating hypergeometrics, the most general evaluation is the Dougall-Dixon
theorem

a, 14+a/2, b, c, d, e, f
7F%
a/2, l1+4a-0b, 14a—-¢, 14+a—d, 14+a—e, 1+a-—f

'Nl+a—-0I'l4+a—c)T’1l+a-d)I'l+a—e)l'(14+a—b—c—d)
" Tl+a)l(l+a—-b—cl(l+a—b—dIl(1+a—b—e)l'(1+a—c—d)

'l4a—-b—c—e)l'l14+a—-b—d—e)l'1l+a—c—d—e)
Nl+a—c—e)l14+a—-d—-e)T(1+a—-b—c—d—e)
provided that one of b, ¢, d, e and f is a non—positive integer and 142a =b+c+
d+ e+ f. In fact, this formula has been the starting point for many combinatorial
computations.
By means of the transforms (3.0) and relations

(4.0a) (Wt =M™ (W), (u+ 1/m)g, ... (u+ (m — 1)/m),
(4.0b) (0 +1)mp = (0)mk (0 +mk)n/(0)n
(4.0c) (w—=n)mk = (W)me(l —w)y/(1 —w —mk),

the Dougall-Dixon theorem will be specified to telescope in (2.1a) and generate,
through (2.1b), the dual formulas. From this process, several strange hypergeometric
evaluations will be found, unexpectedly.

EXAMPLE 4.1: Dougall-Dixon theorem <= Gessel and Stanton’s strange evalua-
tion.
Rewrite the special Dougall-Dixon formula

(4.1a)

[atdt1/2, 14(atdt1/2)/2, dibtl/2,  d—bil, atn/2,  a+(14n)/2, “n
7F6
(a+d+1/2)/2, 14+a—b, a+b+1/2, d—(n—3)/2, d—(n—2)/2, a+d+n+3/2

2b, 1— 20, a—d, a+d+3/2

|2+2d, —1—-2d, 1+a—b, a+b+1/2
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in the form

(4.1b)

2k +a+d+1/2
(n+a+d+1/2)ks

0( 1) (k) (2a + 2k), (=1 — 2d — 2k),,

a,a+1/2, d+b+1/2, 1+d—b, a+d+1/2

1+d, d+3/2, a+b+1/2, 1+a—b
2a, 2b, 1 —2b, a—d, a+d+1/2

l+a—b, a+b+1/2, 2+ 2d
Its dual relation

(4.1c)

-~ n 2a + 3k —1-2d—k
—1)k E+a+d+1/2),
k:O( ) (k) (2@ + 2n)k+1 (—1 —2d — 2n)k+1 ( / )

2a, 2b, 1 —2b, a—d, a+d+1/2
l+a—b,a+b+1/2, 2+2d |,
a,a+1/2, d+b+1/2, 1+d—0b, a+d+1/2

1+d, d+3/2, at+b+1/2, 1+a—b

n

can be reformulated as one strange evaluation of Gessel and Stanton [12, Eq. (1.7)]

(4.1d)
[2a, 2b, 1-2b, 1+2a/3, a—d, a+d+n+1/2, —n
75
| 1+a—0b, a+b+1/2, 2a/3, 1+2d, —2d—2n, 1+2a+2n
1+ 2a 1+d—0b, d+b+1/2
1+2d], |[1+a—b a+b+1/2]

EXAMPLE 4.2: Dougall-Dixon theorem <= Gessel and Stanton’s strange evalua-
tion.
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Rewrite the special Dougall-Dixon formula
(4.2a)

75

[a—b+1/2, b, —2d, 2a +2d+ 1

| 2a—2b+1, 2b, —d, a+d+1/2

in the form

(4.2b) 3y (27;) (0+ K)o (=4 = k) - Ak 2a + 2d

k>0 n + 2a + 2d)2k+1

1/2, a, a+d, b+d, a—b+1/2
X 4k
b+1/2, d+1, 1+a—5b

k
a, b, a—b+1/2, 2a+ 2d, —2d
2b, 1+2a—2b, a+d+1/2
Its dual relation
(4.2¢)
- n\ a-+3k/2 —d +k/2
~1)* k+ 2a+ 2d),
];)( ) (k) (a+n/2)ky1 (—d—n/2)k41 ( )
a, b, a—b+1/2, 2a+2d, 2d
X
2b, 14+2a—2b, a+d+1/2 |,
0, (n-odd)
_ 1/2, a, a+d, b+d, a—b+d+1/2
4m ,  (n=2m)
b+1/2, d+1, 1+a—1b m

can be reformulated as another evaluation of Gessel and Stanton [12, Eq. (1.8)]

at+d, 1+(a+d)/2, b+d, a—d+b+1/2, a+n, —n/2, (1—n)/2

(a+d)/2, 14+a—b, b+1/2, 1+d—n, 1+a+d+n/2, a+d+(n+1)/2

25



26 CHU WENCHANG

a, b, a—-b+1/2, 1+2a/3, 1-—2d, 2a + 2d + n, -n

2b, 2a—2b+1, 2a/3, a+d+1/2, 1+a+n/2, 1—d—n/2

0, (n-odd)
— 1/2, a, b+d, a—b+d+1/2

, (n=2m) .
b+1/2,d+1, 1+a—-b, a+d+1/2],,

Both (4.1d) and (4.2d) are due to Gessel and Stanton [12], where their discov-

eries were motivated by a special pair of Gosper’s conjectures and accomplished by
series-rearrangement.

ExXaMPLE 4.3: Dougall-Dixon theorem <= Whipple formula.

Rewrite the special Dougall-Dixon formula

(4.3a)
[a, 14a/2, 2a—2b, bin/2, b+ (14n)/2, —n/2, (1—n)/2
7Fs
L a/2, 1—a+2b, a—b+1-n/2, a—b+(1—n)/2, 14+a+n/2, a+(n+1)/2
[ 2a+1, 2a—2b, 2b—a+1/2
— (-1
la+1/2, 2b—2a, 4b—2a+1

in the form

(4.3b)
2a — 2b
n 2a + 4k 2a — 2b a,
2. <2k> @a+n)arr: (2a—2b—njgey 020 (1)2k (2624
k>0 2k+1 2k-+1 1 1—a+2b .
2a, 2b, 2a —2b, 2b—a+1/2
= (1"

a+1/2, 1—2a+2b, 1—2a+4b]

Its dual relation
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(4.3¢)
2b + 2k

<n> (2a 4 k)pn (2a — 2b — k), @ en

k
k=

2a, 2b, 2a —2b, —a+2b+1/2

X
a+1/2, 1—2a+26, 1 —2a+4b],
0, (n-odd)
_ a, 2a —2b
(1)n (2b)y, , (n=2m)
1,1-a+2b],,

can be reformulated as a terminating Whipple [19, Eq. (15.73)] formula

(4.3d)
2b, 1+b, 2b —a+1/2, 2a — 20, 2a + n, —-n
i —1
6L
b, a+1/2, 1—2a+4b, 1 —2a+2b—n, 1+2b+n
0, (n-odd)
_ 1/2, b+1/2, 1+b, 2a—2b
, (n=2m) .
a+1/2, a—b, a—b+1/2, 1—a+2b],,
ExXaMPLE 4.4: Dougall-Dixon theorem <= Gasper’s strange evaluation.
Rewrite the special Dougall-Dixon formula
(4.4a)
_2a+b, 14+a+b/2, a+2b, a+n/3, a+(1+n)/3, a+(2+n)/3, —n
7Fe6
L a+b/2, 14a—b, 14a+b—n/3, a+b+(2—n)/3, a+b+(1—n)/3, 14+2a+b+n
1+ 2a + b, 3b 3a
| 1+a—-b, —3a—-3b] |[1+3a+3b],

in the form



28 CHU WENCHANG

(4.4b)
2a + b+ 2k
0 (™) (3a + 3K)n (—3a — 3b — 3k),
S (0 () e 3890 (30— 303000 o T
a+2b, 2a+0b 3a
X
1+a—->5 A 1+ 3a+3b 3k
3a, 2a+b, 3b 1-3b

l1+a-0 " 1+3a+3b on

Its dual relation

(4.4c)
. 3a + 4k —3a —3b—2k
L R s ¢ (20 +b+ k)
— k) (3a+3n)g+1 (—3a —3b—3n)k11
3a, 2a+0b, 3b 1—-3b
X
l1+a—b L L1+3a+3b],,
a+2b, 2a+b 3a

14+a—-20 " 1+3a+3b an

can be reformulated as a terminating Gasper’s formula (cf. [9, Eq. (5.23)] and[10,
Eq. (1.3)])

(4.4d)

3a, 3b, (1-3b)/2, (2—-3b)/2, 14 3a/4, 2a+b+n, -n
7Fs

l1+a—0b, (1+3a+3b)/2, (3a+3b)/2, 3a/4, 1 —3a—3b—3n, 1+3a+3n
a—+2b 3a+1

1+a—-25 N 3a + 3b I

ExaMPLE 4.5: Dougall-Dixon theorem <= The first new strange evaluation.

Rewrite the special Dougall-Dixon formula



Hypergeometric identities 29

(4.5a)

a, 1+a/2, a—b, a+b+n, (1-n)/3, (2—n)/3, -n/3
7Fs

a/2, 14+b,1-b—n,a+(2+n)/3, a+(1+n)/3, 1+a+n/3
a, 1+3a] [3b

b,1+3b | |3a

in the form

2n

(4.5b)
L (n . - 3a -+ 6k a, a+b, a—2>b
g)( 1) <3k>( bR (b= B o { . L(3k)!/k:!

a, a+b, 3a 3b

1+ 3b N 3a o

Its dual relation

(4.5¢)

zn:(—l)k <n> a+b+4k/3 b+ 2k/3 (3a + k) noeh "
—~ k) (a+b+n/3)kr1 (b—n/3)ks1 " 14+ 3b w L3a] o

a, a+b, a—>b
nl/m!, (n=3m)

1+b6,1-b |,,
0, (otherwise)
can be reformulated as the first new strange evaluation in this section

(4.5d)

a, a+b, 14+3(a+b)/4, (1+3b)/2, (2+3b)/2, 3a-+n, —n
7Fs

1+3b, 3(a+0b)/4, 3a/2, (143a)/2, 1+b—n/3, 1+a+b+n/3
a, 1+a+b, a—-1>

] n!/(3a), , (n=3m)
1, 1+0, —b "

0, (otherwise) .
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ExAMPLE 4.6: Dougall-Dixon theorem <= The second new strange evaluation.

Rewrite the special Dougall-Dixon formula

(4.6a)
a, 1l4a/2, 2a+n—-1/2, —n/4, (1—n)/4, (2—n)/4, (83—n)/4
7Fs
a/2, —a—n+3/2, a+1l4+n/4, a+(3+n)/4, a+(24+n)/4, a+(1+n)/4
—1+2a, 1+4dl,
_gn o2 Lidahy

[—1+ 2a, —2 + 4a, 4alay,

in the form

(4.6b)
n 4a + 8k
,; (4k> (k+2a—1/2), (~k +a—1/2), (da + )
) a, 2a —1/2 (451l = 20 (4a)n (=2 + 4a)sn
st 3/2 ) (4@)2n

Its dual relation
(4.6¢)

. —(1/2) + 2a + 5k/4 —(1/2 k/4
prt k) (= (1/2)+2a+n/4), . (—(1/2)+a—n/4),
(4a) (=2 + da)sk 31
(4a)2k
a, 2a —1/2
n!/m!, (n=4m)
= —-a+3/2 |,
0, (otherwise)
can be reformulated as the second new strange evaluation in this section
(4.6d)
(=14 4a)/3, 4a/3, (14 4a)/3, (3 + 8a)/5, 4a + n, -n
6F5 ,27/32
2a, 2a+1/2, (=2+8a)/5, a+(2—n)/4, 2a+ (2+n)/4
a, 2a+1/2
n!/(4a), , (n=4m)
= 1, —a+1/2],,

0, (otherwise) .



Hypergeometric identities 31

ExXAMPLE 4.7: Dougall-Dixon theorem <= The third new strange evaluation.

Rewrite the special Dougall-Dixon formula

(4.7a)
7Fs (146x)  (1546z—4n)  (11+6z—4n)  (7T+6z—4n)  (54+6z+2n)  (3+6x+2n)
8 12 ) 12 s 12 s 1 , :
~ (—1) 3z +3/2 3x+n+1/2 ((1+62)/4),,

3v+1/2 3v+n+3/2 (3+6x)/4), (—(3+6x)/4),
in the form

(4.7b)

Ak 4 3z +1/2

g) (%) (3k +3),, (— 3k — (3+62)/4) eSS

3x
X (14 62)/4), (2k)!/k!

(7T+6z)/4],,

3z, 3z +3/2

= (=" (1 +62)/4),, .
3z +5/2, (3+62)/4]

Its dual relation

(4.7¢)
() 3¢+ 5k/2 —(3 + 6z + 2k) /4
=0 <k> 3z +3n/2)k1 (— (3+6$+6n)/4)k+1 Bx+k+1/2),
3x, 31:—1—3/2
% ((1+62)/4),,
3x+5/2, (3+6x)/4],
0, (n-odd)
= 3x e o 2
(7~|—6x)/4]3m ((L+62)/4),,, nifmt, (n=2m)

can be reformulated as the third new strange evaluation in this section
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(4.7d)

3z, 1+6x/5, (1+6x)/8, (5+6x)/8, 3x+n+1/2, -n
6l5 i —4

62/5, 3z +1/2, (3+62)/4, 143z +3n/2, (1 — 6z — 6n)/4

0, (n-odd)

— 1/2 1+ 3z
, (n=2m) .
(3+6z)/4],, L(3+062)/4]5,

ExaMPLE 4.8: Dougall-Dixon theorem <= The fourth new strange evaluation.

Rewrite the special Dougall-Dixon formula

(4.8a)

9+4y n 1+n —n 1-n 2—n
y‘i'Zy g y+5, yt—, = 3 3

144y 5—2n 3—2n 154+4n 114+4n T+4n
s 4 1 YtTH o, Ytz Yt 3

n—1/2 (y+1/4)n By +7/4)n
n—3/2 (3y + 3/4)2,,

in the form

(4.8b)
k(T o 3y + 6k +3/4
k; (-1) (%) (2y + 2k)n (—2k — 1/2),, Gy 0+ 3/
2y
X (y+1/4)k (3k)!/K!
3/2],,
_ (—nyngn T L2 [21/2 20,y 1/4,3y + 3/4)n
- n—3/2 (3y +3/4)2n '
Its dual relation
(4.8¢)
" /n\  2y+5k/3 —(3 —2k)/6
— <k> Gy +20/3)t (— B+ dn)/6),,, Y TET A
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L k=12 172,295+ 1/4,3y + 3/4)
—(3—2k)/6 (3y +3/4)2k

2y
2m

3/2
0, (otherwise)

can be reformulated as the fourth new strange evaluation in this section
(4.8d)

1/2, 1+ 6y/5, 2y, y+1/4, 3y+n+3/4, -n
6Fs ;—1/4

6y/5, (34 12y)/8, (7+12y)/8, (3 —4n)/6, 1+ 2y +2n/3
1/3, 2/3, y+1/2, y+1
,  (n=3m)
= 1/4, 3/4, y+7/12, y+11/12]

0, (otherwise) .
Remark. Similarly, one can show that the original Dougall formula
(4.9)

a,1+a/2, b, c, d 1+2a—b—c—d+n, -n
7F%

a/2, 1l+a-b, 14a—¢, 14+a—d, b+c+d—a—n, l+a+n
l1+a, 1+a—b—c, 1+a—b—d, 1+a—c—d

l+a-b—c—d,1+a-b,1+a—-c, 1+a—-d]
with 5-free parameters, is self reciprocal, i.e., the dual relation is the same as the
original one under parameter replacement. An exceptional case of the Dougall-
Dixon theorem
(4.10)
datd atd a+i ablE asEoesds
7Fes
otk IR B et ek kdnt]

= 60 n
with 2 free parameters, leads to trivial reciprocal relations under the embedding
process.
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5. Reversal embeddings on the Dougall-Dixon theorem
Sometimes a terminating hypergeometric summation Y ;_,T(n, k) = S(n) can not
be expressed as one of the relations in (2.1), but its reversal > ;'_, T'(n,n—k) = S(n)
can be expressed in this form. In this case, the dual relation will create some

“mysterious—looking” formulas. By means of (3.0), (4.0) and transforms

(5.02) (z —mn+n)mp—mr = (=)™ (2 —mk)n (1= 2)mn—n/(1 — Z)mk

(5.0b) (z —mn — n)pmn—mr = (=)™ (1 — 2+ mk)71 (1 = 2)mnsn/ (1 — 2)mk
some striking examples are demonstrated as follows.

ExaMPLE 5.1: Dougall-Dixon formula <= One “very-strange” evaluation.

For € =0 and 1, the reversal of Dougall-Dixon formula

(5.1a)
A—2n, 1—‘,—%, —'erTn, —%, A—u—n, A—v—n, etutv—n+3
7Fe
AEQ", 1—i—A—i-":723"7 A+ 1+5;3n, 1+u—n, l4+v—n, —e+A—u—v—n+3
—e—A+1/2, —e—2u, —e —2v, e —2A+2u+2v+1
(_A)2n
(_6_2A)3n —u, -, e-—A+utv+1/2]

may be expressed as, after adding some extra zero—terms

(5.1b)
" —A+2k
—1k<n> —e—2A+2k —e—2k) ———
) 1, —u, —v, e—A4+u+v+1/2 (= — 24)1
1-A+u, 1-A+v, —e—u—v+1/2], (1 + )2t

1, A, —e—A+1/2, —e —2u, e —2v, 1+e—-2A+2u+2v

l+e, 1-A+u, 1—A+u, —e—u—v+1/2
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whose dual relation

(5.1c)

- —e—2A+ 3k ——k
_1)k ”) < —A+ k),
k:Z:O( ) (k (—e —2A+2n)k41 (—€ — 2n)k41 ( )

1, —A, —e—A+1/2, —e—2u, —e —2v, 1+e—-2A+2u+2

X
1+e, 1—-A+u, 1—A+v, —e—u—v+1/2 .
(e —24), 1, —u, —v, e—A4+u+v+1/2
(1+)2n 1-A+u, 1-A+v, —e—u—v+1/2]
can be reformulated in hypergeometrics
(5.1d)
787A+%7 1, 17#, —e—2u, —e—2v, 14e—2A+2u+2v, —A+n, —n
sF7
g, 7#, 1-A+u, 1-A+wv, 7£fufv+%, l—e—2n, 1—e—2A+42n
C(1—e—24),, 1, —u, —v, e—A+u+v+1/2
(£)2n —A, 1 —A4u, 1—A+v, —e—u—v+1/2
For € = 1, this formula results in the strange evaluation:
(5.1e)
-A-1/2,(2—-2A4)/3,-1 —2u,—1—2v,2 — 2A 4+ 2u+ 2v,— A + n, -n
7Fs

—(14+24)/3, 1—-A4+u, 1—A4+v, —u—v—1/2, —2n, —2A+2n
—A+1/2,—u,—v,—A+u+v+3/2

1/2,1-A+ul-A+v,—u—v-1/2]

When ¢ tends to 0, the limiting version of (5.1d) multiplied by ¢ will return to (5.1e)
after the parameter replacements n — n+1, A — A+2, u — u+1, v — v+1
have been performed.
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EXAMPLE 5.2: Dougall-Dixon formula <= Two “very—strange” evaluations.

For e =0, 1 and 2, the reversal of Dougall-Dixon formula

(5.2a)
—2n—%, l—n—#, _€+32n, _5—13+2n’ _8—23+2n, _n_zaT—b7 _n
7Fs
7”7#, 3*2(5*471 2721:7;7471, 172%74717 17”}7574»13 1—
(e +2a)/3),, (1420 —)an b, e—b
(20)4n (e +b)/3, (2 — b)/3

may be expressed as, after adding some extra zero—terms

(5.2b)
YA a o 2k + (¢ + 2a)/3
;;O( 1) (k) (2a+ 300 (& = 3h) (= )
. 1,(e4+0)/3,(2e — b)/3 (2a)3s
14 (2a—b)/3, 1—(e—2a—0b)/3 |, (1T
(1+2a_€)2n 1, b, e — b, (€+2a)/3
G

14+(2a-b)/3, 1 = (6 —=2a-b)/3]

whose dual relation

(5.2¢)
S (2) e e e,
1, b, e—b, (¢ +2a)/3 | +9a—c
X 1+ (Q2a—b)/3, 1—(e—2a—b)/3], | 1+¢ |,
(2a)3n 1, (e+b)/3, (26 —b)/3
(1+¢)s3p

1+ (2a—1b)/3, 1—(¢—2a—1b)/3

can be reformulated in hypergeometrics

_ 2a+b—¢
3

_2e—-b
3
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(5.2d)
zz—‘,—l;s, 1, a+2—55, 1+4, b, e—b, n—i—#, —n

sF7
£, = g, 142020 qp2edboc 9 3n,  142a+3n

1, (=+b)/3, (2¢ —b)/3
(Dn | (e 4 20)/3,1+ (20— b)/3.1+ 20+ b—€)/3

This formula is the unified version of a pair of very strange hypergeometric evalua-
tions. One of these for e =1

a, 1+3%, a+%, b, 1-b, n+%7 —n
(528) 7F6

, %’ 2a—3b+3 , 20.4;317#»2 , —Sn, 14+2a4-3n

(1+5)/3,(2 = b)/3, (2a +2)/3, (2a + 3)/3

NS

| 1/3, 2/3, (3+2a—1)/3, (2420 +1b)/3

n

is the original Gosper Conjecture (1977) (see also Gessel & Stanton [12]), which was
recently confirmed by Ekhad [8] by computer certification and Gasper & Rahman
(cf. [10, Eq. (1.6)] and [11, Eq. (3.8.17)]) for its non—terminating version. Another
for e =2

(5.2f)
[a, 1+ 3, a—3 b, 2 — b, n—l—%, -n
7Fs

3 2a—b+3 2a+4b+1
s apts  2abil s —1-3n, 1+2a+3n

a
29

(2+0)/3,(4—0)/3,(2a+1)/3,(2a+ 3)/3

I

| 2/3, 4/3, (3+2a—b)/3, (14 2a+)/3

is due to Gasper and Rahman (cf. [10, Eq. (4.7)] and [11, p. 100]), where its non—
terminating form was established either. When ¢ tends to 0, the limiting version
of (5.2d) multiplied by e will return to (5.2f) after the parameter replacements
n—mn+1, a— a—2, b— b—1 have been performed.

EXAMPLE 5.3: Dougall-Dixon formula <= Three “very—strange” evaluations.
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For e =0, 1, 2 and 3, the reversal of Dougall-Dixon formula

(5.3a)

z—2n, l-n+%, —%

_e—1+43n
2 4

e—2+42n e—342n 1
) ) - 4 ) -T2 €+21‘—TL—§

75

. e+4—5n £+3—5n (e+2—5n e+1—5n 3
-n—3%, x+p>2, +0, ohe—5—, SR, —e—x—nts

— 23n (—(If)gn (]- — 2¢ — 4.73)2” +3e + T, —¢& T+ 3/

(—e—4x)

5n E+x— 1/2
may be expressed as, after adding some extra zero—terms

(5.3b)
zn:(—l)’“ (Z) (e — da+ 4k), (—e — 4k), — 228

(=7 +n)pn

l,e+ax—1/2 —€ —4x

—e—2x+3/2|, | 1+e |,

_ o3n (1 —2e —4x)9y,

1, —x, -2+ 3¢ + 4z,
(1 +€)3n [ ]

whose dual relation

(5.3c)
- —e—4 5k —e—3k
S0 (1) - (—2+ k)
— k) (—e =4z +4n)ky1 (—e —4n)pp
(1 - 26 - 4$)2k; 3k
1, —x, -2+ 3+ 4x| 2
(1 + 5)3k [ ]k
l,e+ax—1/2 —e —4x
—e—2x+3/2| | 1+¢ |,
can be reformulated in hypergeometrics
(5.3d)
—243e+4x, 1, —e—2x+1, —s—2x+%, 1—#, —x+n, —-n
7Fs 153
337 5;1 5;’2 7#, l—e—4n, 1—edzxz+4n
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(€)an

—r, —e—2x+3/2]

It can be displayed, explicitly for € =1, 2, and 3, as three very strange evaluations:

(5.3¢)

1+4x, -2z, —2x—-1/2, (4—4x)/5, —x+n, —n
6F5 732/27

1/3, 2/3, —(1+4x)/5, —4n, —dx+4n
—x+1/4, —x+2/4, —x+3/4, v+ 1/2
1/4, 2/4, 3/4, -2z +1/2 .
(5.3f)
444z, —1-—2z, —2x—3/2, (3—4x)/5, —x+n, -n
iy :32/27

2/3, 4/3, —(2+4x)/5, —1—4n, —1—da+4n
—x—1/4, —x+1/4, —x+2/4, v+ 3/2

2/4, 3/4, 5/4, —2x—1/2

(5.3g)

_7+4ac, —2—2x, wif%, 5 —z+n, —n
9

(=2}

e
§;|u
NiiY]

3% 33 34 9 4p - dptdn

[ 2 —2/4, —x—1/4, —x+1/4, 2 +5/2

3/4, 5/4, 6/4, —2x —3/2

When ¢ tends to 0, the limiting version of (5.3d) multiplied by e will return to (5.3g)
after the parameter replacements n — n + 1, * — x + 2 have been performed.

EXAMPLE 5.4: Dougall-Dixon formula<= Two “very—strange” evaluations.
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For ¢ =0, 1, and 2, the reversal of Dougall-Dixon formula

(5.4a)
7572n+%, —n+ 57425’ 72545»477.7 7257é+4n7 725*%4»477.7 7267124,»4717 72574é+4n
6Fs
o lz2e 15—6e—12n 13—6e—12n 11—6e—12n 9—6e—12n 7T—6e—12n
T 10, 10, 10, 10, 10

_ 52n[5+ 1/2,e —1/2,e — 3/2]2,/(3e — 5/2)¢n

may be expressed as, after adding some extra zero—terms

(5.4b)
—~, o (n B o e+2k—1/2
kZ:O( 1) <k> (3¢ + 5k — 5/2), (—2& — 5k)n, Ey
3e—5/2
_ 2n (€ =3/2)2n B
R P (R

whose dual relation

(5.4c)
= n\  3e+6k—5/2 —2¢ — 4k
~1)* k—1/2
kZ:;J( : <k> (3 +5n—5/2)k1 (=26 —5n)k41 €+ /2n
3e—5/2
e—3/2 k
e (e /2 B4 = (1)
2k 2+1 |,
can be reformulated in hypergeometrics
(5.4d)
[ %7 17 %, %, €+n—%, —n
6k ;25
L g, = =E#be 1 92c5n, 3etbn—3
[ 1 3e —3/2
12 | 2 |,
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We can exhibit it, for ¢ =1 and 2, as two very strange evaluations:

(5.4e)
1/4, —1/4,13/12, n+1/2, -n
1/2, 1/12, 5n+3/2, —1—5n
1 3/2
1/2 n 2 5n
(5.4f)

1/4, 3/4,19/12, n+3/2, -n
54 :25/16
3/2, 7/12, 5n+9/2, —3—5n

1 9/2

3/2 n 4 5n
When ¢ tends to 0, the limiting version of (5.4d) multiplied by ¢ will return to
(5.4f) after the parameter replacement n — n + 1 has been performed.

Except for (5.2e) and (5.2f), all the formulas demonstrated in this section do
not fit into the known hypergeometric relations. The author believes them to be
new confidently.

Concluding remarks

The examples exhibited in this paper are sufficient to convince that the inversion
technique described is indeed an efficient approach for verifying and discovering
combinatorial identities. As the computations involved are quite trivial (only the
transforms between hypergeometric series and inverse relations), it is very convenient
to check the truth of any given combinatorial sum in the forms of (2.1a-2.1b) by
inversion machinery. In fact, it can be shown that almost all terminating hypergeo-
metric identities are the dual relations of only three hypergeometric formulae named
after Chu—Vandermonde—Gauss, Pfaff-Saalschutz and Dougall-Dixon—Kummer, as
long as a general reciprocal pair (2.1) is accepted in advance. Moreover, the applica-
ble aspects of (2.1a) and (2.1b) have not been exhausted. The author believes that
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the potential this pair of reciprocal relations needs to be tapped further. For exam-
ple, the dual relations of a very—well-poised and four—balanced evaluation (instead
of Dougall-Dixon theorem) due to Lakin [16] (cf. Askey [2]) would result in the
strange evaluations parallel to those displayed in Section 3 and 4. The author hopes
that some new striking combinatorial relationships hidden behind (2.1a-b) will be
found soon.
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