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Abstract

The purpose of this paper is to prove a new topological fact about the Poincaré
and related groups. If G is a group, say that G is an algebraically determined
Polish (i.e., complete separable metric topological) group if, whenever H is a
Polish group and ϕ : H → G is an algebraic isomorphism, then ϕ is a topolog-
ical isomorphism. The proper Lorentz group, the proper orthochronous Lorentz
group and the Heisenberg group are examples of Polish groups that are not alge-
braically determined. On the other hand it will be shown that the Lorentz group,
the orthochronous Lorentz group and the Poincaré group and the other closely
associated semi-direct products are algebraically determined Polish groups.

1. Introducction

The purpose of this paper is to prove a new topological fact about the Poincaré and
related groups. If G is group, say that G is an algebraically determined Polish (i.e.,
complete separable metric topological) group if, whenever H is a Polish group and
ϕ : H → G is an algebraic isomorphism, then ϕ is a topological isomorphism. This
notion is a strengthening of the assertion that every automorphism of G is continuous.
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The proper Lorentz group Ls, the proper orthochronous Lorentz group Le and the
Heisenberg group are examples of Polish groups that are not algebraically determined.
On the other hand it will be shown that the Lorentz group L, the orthochronous
Lorentz group Lt and the Poincaré group P and the other three closely associated
natural semi-direct products (Pt, Ps, Pe) are algebraically determined Polish groups.
The main results are contained in the following two theorems.

Theorem 1.1

The groups P, Pt, Ps and Pe are all algebraically determined Polish groups.

Theorem 1.2

L and Lt are algebraically determined Polish groups.

The methods used are a combination of descriptive set theory, algebra and Lie
group theory. Careful definitions and preliminary results, many but not all probably
well known, are given in Section 2. The proof of Theorem 1.1 is carried out in a se-
quence of lemmas in Section 3. Section 4 is devoted to the proof of Theorem 1.2 as
well as demonstrating a rather general lemma which has as a consequence that the
proper Lorentz group Ls as well as the proper orthochronous Lorentz group Le are not
algebraically determined Polish groups. The last Section 5, devoted to the Heisenberg
group, may be regarded as a supplement to these results on the Lorentz and Poincare
groups. It is simple to show that the Heisenberg group is not an algebraically deter-
mined Polish group but it is a little less simple to prove a universal partial continuity
result.

The results of this paper can be greatly generalized but the apparently physically
relevant groups considered here seem to be of special interest. It would be curious if
the theorems presented here had physical implications or interpretations.

Algebraically determined Polish groups have been studied for some time now.
The first Polish group shown to be algebraically determined was the infinite sym-
metric group S∞ ([9]). Other Polish groups shown to be algebraically determined
include compact simple Lie groups ([7]), the p-adic integers ([8]), compact connected
metrizable groups with totally disconnected center ([10]), the ax+ b group ([11]), the
measure preserving transformations of the Lebesgue space [0, 1] ([12]), the group home-
omorphisms of Euclidean manifolds and and the group of diffeomorphisms of smooth
manifolds([13]) and the group of unitary operators on an infinite dimensional separable
Hilbert space ([1]). Very recent work of a related but somewhat different character can
be found in [4, 15, 18], and [19].

2. Preliminaries

The Lorentz group, L, is defined to be the collection of 4 × 4 real matrices which
leave the quadratic form Q((t, x, y, z)) = t2 − x2 − y2 − z2 invariant. Note that if

J =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 then J2 = I and Q(v) = 〈Jv, v〉. The mapping

(v, w)→ B(v, w) = [Q(v + w)−Q(v − w)]/4 = 〈J(v), w〉
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is bilinear, Q(v) = B(v, v) and B(L(v), L(w)) = B(v, w) for all v, w ∈ R4 and L ∈ L.
A real 4 × 4 matrix L is an element of L if and only if LTJL = J . Therefore the
elements of L have determinant ±1 and are invertible, L is a group and L ∈ L if and
only if LT ∈ L. If L = [Li,j ]1≤i,j≤4 ∈ L, then

L2
1,1 = 1 + L2

2,1 + L2
3,1 + L2

4,1 = 1 + L2
1,2 + L2

1,3 + L2
1,4 ≥ 1.

L is a closed subgroup of GL(4,R) and thus a complete separable metric group. The
subgroup of L which fixes the t-component of every element of R4 may be identified
with O(3). Define Lt, the group of orthochronous transformations, to be the set of
elements in L whose upper-left coordinate is greater than or equal to 1. Then Lt is
closed under the transpose operation and is a closed normal subgroup of L of index 2.
Lt contains the connected component of the identity in L. Define Ls as the elements
of L whose determinant is 1. Then Ls is closed under the transpose operation and
is a closed normal subgroup of L of index two. Ls is called the group of proper
Lorentz transformations. Ls contains the connected component of the identity in L.
Let Le = Ls ∩ Lt, the group of orthochronous proper Lorentz transformations. Then
Le is a closed normal subgroup of L of index four, is a closed normal subgroup of Ls
of index two and is a closed normal subgroup of Lt of index two. Le contains the
connected component of the identity in L and in fact is the connected component of
the identity in L.

For any t ∈ R, let

Bx(t) =


cosh(t) sinh(t) 0 0
sinh(t) tanh(t) 0 0

0 0 1 0
0 0 0 1

, By(t) =


cosh(t) 0 sinh(t) 0

0 1 0 0
sinh(t) 0 cosh(t) 0

0 0 0 1

,

Bz(t) =


cosh(t) 0 0 sinh(t)

0 1 0 0
0 0 1 0

sinh(t) 0 0 cosh(t)

, Rz(t) =


1 0 0 0
0 cos(t) − sin(t) 0
0 sin(t) cos(t) 0
0 0 0 1

,

Ry(t) =


1 0 0 0
0 cos(t) 0 − sin(t)
0 0 1 0
0 sin(t) 0 cos(t)

 and Rx(t) =


1 0 0 0
0 1 0 0
0 0 cos(t) − sin(t)
0 0 sin(t) cos(t)

.

Then

Bx = Bx(R), By = By(R), Bz = Bz(R), Rx = Rx(R), Ry = Ry(R) and Rz = Rz(R)

are all connected one-parameter subgroups of Le. The group generated by Rx, Ry
and Rz is a connected subgroup of SO(3) ⊂ O(3). Actually this connected subgroup
coincides with SO(3) since simple geometric considerations prove that the group gene-
rated by Rx and Ry is transitive on the 2-sphere and the stability subgroup of SO(3)
at the north pole is Rz. Here we use the elementary fact that if G is a group, X is
a transitive G-space, H ⊂ G is a subgroup which is transitive on X and contains the
stability group of G at some point of X, then G = H.
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Let L′e be the subgroup of Le generated by Bx, By, Bz, Rx, Ry and Rz (i.e.,
the group generated by Bx, By, Bz and SO(3)). Then L′e is a connected subgroup
of Le. We will prove that Le = L′e. Let S1 = {v = (t, x, y, z) ∈ R4 | Q(v) = 1} and
let S+1 = {v = (t, x, y, z) ∈ R4 | Q(v) = 1 and t > 0}. S1 is invariant under L and
therefore under Le. We claim that S+1 is invariant under Lt and therefore under Le.
To see this, note that if L ∈ Lt and v = (t, x, y, z) ∈ S+1 , then the first component of
L(v) is

L1,1t+ L1,2x+ L1,3y + L1,4z ≥ L1,1t− |L1,2x+ L1,3y + L1,4z|

≥ L1,1t−
√
L2
1,2 + L2

1,3 + L2
1,4 ·

√
x2 + y2 + z2

> L1,1t−
√
L2
1,2 + L2

1,3 + L2
1,4 + 1 ·

√
x2 + y2 + z2 + 1 = 0.

Next, we claim that L′e, and therefore Le, is transitive on S+1 . To see this, let
(t, x, y, z) ∈ S+1 . Use an element of SO(3) to map this vector to a vector of the
form (t, x′, 0, 0) ∈ S+1 and then an element of Bx to map (t, x′, 0, 0) to (1, 0, 0, 0). In
particular, since L′e is connected, we have that S+1 is connected.

Finally, let L ∈ L fix (1, 0, 0, 0). Then a direct computation shows that L1,1 = 1
and L2,1 = L3,1 = L4,1 = 0. Since L2

1,1 = 1 + L2
1,2 + L2

1,3 + L2
1,4, we have that

L1,2 = L1,3 = L1,4 = 0. Hence, L is a block diagonal matrix with the lower right 3× 3
block an element of O(3). Hence, if L ∈ Ls, then this lower right 3 × 3 block is an
element of SO(3). So the stability subgroup of Le at (1, 0, 0, 0) is SO(3) ⊂ L′e. Hence,
as before, Le = L′e and Le is connected.

Lemma 2.1

Le is algebraically generated by {x2 | x ∈ Le} and {x2 | x ∈ L} ⊂ Le. Therefore
if Le ⊂ K ⊂ L, then the group generated by {x2 | x ∈ K} is Le.

Proof. Every element of the one-parameter groups Bx, By, Bz, Rx, Ry and Rz of
course is a square. Since these one-parameter groups algebraically generate Le, we
have that the group algebraically generated by {x2 | x ∈ Le} is Le.

On the other hand, if L ∈ L then certainly L2 ∈ Ls and either L or −L ∈ Lt.
Therefore L2 = (−L)2 ∈ Lt ∩ Ls = Le.

The following proposition and its proof are taken from [1].

Proposition 2.2

Let G be a Polish group, A ⊂ G an analytic subset and H ⊂ G an analytic
subgroup such that A intersects each H-coset in exactly one point and G = AH. Then
H is closed in G.

Proof. Since the topology on G is Polish, the relative topology on A is second countable
and there exists a separating family of relatively open sets {Ci}i≥1 for the topology on
A, each of which is an analytic set in G. Let Ei = CiH for every i ≥ 1. Each Ei is
right-invariant under H and is analytic and hence has the Baire property since each
Ei is a product of two analytic sets. The countable collection {Ei}i≥1 separates the
H-cosets. Miller’s Theorem ([17, Theorem 1]) now implies that H is closed in G.
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The following general proposition ([3, 1.2.6]) is a key tool used in the proofs of
the present results.

Proposition 2.3

Let G and H be Polish groups and let ϕ : G → H be an algebraic isomorphism
which is measurable with respect to sets with the Baire property. Then ϕ is a topo-
logical isomorphism. This applies in particular if ϕ is a Borel mapping.

The next known general result ([3, 1.2.3]) will also be used to study the Heisenberg
group.

Proposition 2.4

Let G be a Polish group and let N ⊂ G be a closed normal subgroup. Then G/N
is a Polish group in the quotient topology.

The proof of Theorem 1.2 will require that certain compact connected semisimple
Lie groups be algebraically determined Polish groups. A proof that compact connected
metrizable groups with totally disconnected center are algebraically determined Polish
groups, a much more general result, is in [10], but the proof is somewhat involved.
A proof for what is needed here was given in [7], but unfortunately in that paper
the theorem was stated only for the restricted class of locally compact groups with a
countable basis and not for Polish groups. The following more general result can be
found in [1] and is given here for the convenience of the reader.

Proposition 2.5

Let G be a compact connected semisimple Lie group, H a Polish group and
ϕ : H → G a surjective homomorphism such that ϕ−1(e) is an analytic set. Then ϕ is
continuous. In particular if ϕ is a bijection, then ϕ is a topological isomorphism and
therefore G is an algebraically determined Polish group.

Proof. First note that if a ∈ G then ϕ−1(a) is an analytic subset of H. To see this, if
w ∈ H satisfies ϕ(w) = a, then ϕ−1(a) = ϕ−1(e) · w is certainly an analytic subset of
H. Suppose that G is n-dimensional. Then by van der Waerden [20] the sets of the
form { ∏

1≤`≤n
c`(b`ab

−1
` a−1)c−1` | b`, c` ∈ G

}
,

where a is not in the center of G, are a neighborhood basis at e in G. But then

ϕ−1
({ ∏

1≤`≤n
c`(b`ab

−1
` a−1)c−1` | b`, c` ∈ G

})
=
{ ∏

1≤`≤n
c`(b`ϕ

−1(a)b−1` ϕ−1(a−1))c−1` | b`, c` ∈ H
}

is clearly an analytic set since ϕ−1(a) and ϕ−1(a−1) are analytic sets. Therefore ϕ
is continuous by the Banach, Kuratowski and Pettis Theorem ([14, Theorem 9.10,
page 61]) since analytic sets are sets with the Baire property. If ϕ is a bijection, then
ϕ−1(e) is a single point and therefore an analytic set. Hence, ϕ is continuous. ϕ is
a topological isomorphism by Proposition 2.3 and G is an algebraically determined
Polish group.



342 Kallman and McLinden

3. L×α R4 is algebraically determined

Let P = L ×α R4 be the Poincare group, i.e., the natural semi-direct product of the
Lorentz group L with R4. Similarly, we define Pt = Lt ×α R4, Ps = Ls ×α R4, and
Pe = Le ×α R4. All of these groups are Polish groups in their natural topologies.
{I} ×α R4 (respectively, L ×α {0}, Lt ×α {0}, Ls ×α {0}, Le ×α {0}) is identified
algebraically and topologically with R4 (respectively, L, Lt, Ls, Le).

Lemma 3.1

{I} ×α R4 is maximal abelian in P. If ϕ : H → P is an algebraic isomorphism of
Polish groups, then ϕ−1({I} ×α R4) is maximal abelian and hence closed.

Proof. If (I, v1), (I, v2) ∈ {I}×αR4, then (I, v1)(I, v2) = (I, v1+v2) and (I, v2)(I, v1) =
(I, v2 + v1) = (I, v1 + v2), so {I} ×α R4 is an abelian subgroup of P.

If (L,w) ∈ P commutes with {I} ×α R4, then for each v ∈ R4, (I, v)(L,w) =
(L,w + v) and (L,w)(I, v) = (L,L(v) + w), L(v) = v, so L = I and hence {I} ×α R4

is maximal abelian.
The last statement follows from the general fact that any maximal abelian sub-

group of any Hausdorff topological group is closed.

Lemma 3.2

If G = L, or Ls, or Lt or Le, then the centralizers of each of (Bx ·Rx) ×α {0},
(By ·Ry) ×α {0} and (Bz ·Rz) ×α {0} in G ×α R4 are subgroups of G ×α {0} which
contain the groups themselves.

Proof. Each of the groups (Bx ·Rx) ×α {0}, (By ·Ry) ×α {0} and (Bz ·Rz) ×α {0}
are abelian and are therefore contained in their centralizers. These centralizers are
subgroups of G ×α {0}. To see this, it suffices to give a proof for the x case. The y
and z cases are similar. Suppose that (L, v) is in the centralizer of (Bx ·Rx) ×α {0}.
Then Bx(t)Ry(s)(v) = v for all s, t ∈ R and therefore v = 0.

Corollary 3.3

If G = L, or Ls, or Lt or Le and ϕ : H → G×α R4 is an algebraic isomorphism,
then ϕ−1(Le×α{0}) and ϕ−1(G×α{0}) are closed subgroups of H, while ϕ−1(Le×αR4)
is an open subgroup of H of finite index less than or equal to 4.

Proof. The subgroup of H algebraically generated by the squares of the centralizers of

ϕ−1((Bx ·Rx)×α {0}), ϕ−1((By ·Ry)×α {0}) and ϕ−1((Bz ·Rz)×α {0})

is an analytic subgroup since these centralizers are closed in H, since the set of squares
of the elements of a closed subset are an analytic set and since a subgroup of H alge-
braically generated by a sequence of analytic subsets of H is analytic. This subgroup
is contained in ϕ−1(Le ×α {0}) by Lemma 3.2 and Lemma 2.1. On the other hand
ϕ−1(Le ×α {0}) is contained in this subgroup since Bx · Rx, By · Ry and Bz · Rz are
contained in their own centralizers and algebraically generate Le by the discussion
in Section 2. Hence, ϕ−1(Le ×α {0}) is an analytic subgroup of H. Furthermore,
ϕ−1(G ×α {0}) is an analytic subgroup of H since it consists of a finite number of
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cosets of ϕ−1(Le ×α {0}). Now ϕ−1({I} ×α R4) is a maximal abelian and therefore
closed subgroup of H by Lemma 3.1. Furthermore

H = ϕ−1
(
{I} ×α R4

)
· ϕ−1

(
G×α {0}

)
since (

G×α R4
)

=
(
{I} ×α R4

)
·
(
G×α {0}

)
and

ϕ−1
(
{I} ×α R4

)
∩ ϕ−1

(
G×α {0}

)
= ϕ−1

(
(I, 0)

)
since (

{I} ×α R4
)
∩
(
G×α {0}

)
=
{

(I, 0)
}
.

ϕ−1
(
{I} ×α R4

)
hits each ϕ−1(G ×α {0}) coset in one and only one point and

therefore ϕ−1(G×α {0}) is closed in H by Proposition 2.2.

ϕ−1(Le×α{0}) is an analytic subgroup of ϕ−1(G×α{0}) and is of second category
in ϕ−1(G×α{0}) since ϕ−1(G×α{0}) is a finite union of ϕ−1(Le×α{0})-cosets. Hence
ϕ−1(Le ×α {0}) is closed in ϕ−1(G ×α {0}) and therefore in H by either another use
of Proposition 2.2 or by [2, Théorème 1, page 21]. Furthermore

ϕ−1(Le ×α R4) = ϕ−1({I} ×α R4) · ϕ−1(Le ×α {0})

is an analytic subgroup of H that is of finite index in H and therefore is both open and
closed by still another application of Proposition 2.2 or by [2, Théorème 1, page 21].

Proposition 3.4

Let S+0 = {v = (t, x, y, z) ∈ R4 | Q(v) = 0 and t > 0}. S+0 is invariant under
Le, Le acts transitively on S+0 and (S+0 + S+0 ) = C+

0 , where C+
0 = {(t, x, y, z) | t2 ≥

x2 + y2 + z2 and t > 0}.

Proof. If L ∈ Le and v = (t, x, y, z) ∈ S+0 , we have that the first component of L(v) is

L1,1t+ L1,2x+ L1,3y + L1,4z ≥ L1,1t−
√
L2
1,2 + L2

1,3 + L2
1,4

√
x2 + y2 + z2

= L1,1t−
√
L2
1,1 − 1 · t > 0.

Hence, S+0 is invariant under Le. To show that Le is transitive on S+0 , first choose an
element R ∈ SO(3) ⊂ Le such that R−1(v) = (t, x′, 0, 0), where t2 − x′2 = 0 and then
choose an element B ∈ Bx such that B(1, 1, 0, 0) = (t, x′, 0, 0). Then RB ∈ Le and
(RB)(1, 1, 0, 0) = v and Le acts transitively on S+0 .

The Schwarz inequality implies that

S+0 + S+0 ⊂ {(t, x, y, z) | t
2 ≥ x2 + y2 + z2 and t > 0}.

Conversely, suppose that t > 0 and t2 > x2. Then

(t, x, 0, 0) =
( t+ x

2
,
x+ t

2
, 0, 0

)
+
( t− x

2
,
x− t

2
, 0, 0

)
,
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where ( t+ x

2
,
x+ t

2
, 0, 0

)
,
( t− x

2
,
x− t

2
, 0, 0

)
∈ S+0 .

If t > 0 and t2 = x2, then

(t, x, 0, 0) =
( t

2
,
x

2
, 0, 0

)
+
( t

2
,
x

2
, 0, 0

)
,

where ( t
2
,
x

2
, 0, 0

)
∈ S+0 .

Therefore {
(t, x, 0, 0) | t > 0 and t2 ≥ x2

}
⊂ S+0 + S+0 .

The right hand side of this containment is invariant under SO(3) ⊂ Le and therefore{
(t, x, y, z) | t2 ≥ x2 + y2 + z2 and t > 0

}
= SO(3)

({
(t, x, 0, 0) | t > 0 and t2 ≥ x2

})
⊂ S+0 + S+0 .

Lemma 3.5

Let {v`}`≥1 ⊂ R4 be dense. Then the σ-algebra of subsets of R4 generated by
{v` + C+

0 }`≥1 is B(R4), the set of all Borel subsets of R4.

Proof. Note that Int(C+
0 ) = {(t, x, y, z) | t2 > x2 + y2 + z2 and t > 0} and that

Cl(C+
0 ) = {(t, x, y, z) | t2 ≥ x2 +y2 +z2 and t ≥ 0} = C+

0 ∪{(0, 0, 0, 0)}. Note also that
Int(v+C+

0 ) = v+ Int(C+
0 ) and Cl(v+C+

0 ) = v+ Cl(C+
0 ) for all v ∈ R4 since translation

is a homeomorphism.

The σ-algebra of subsets of R4 generated by {v` + C+
0 }`≥1 will be B(R4) if the

sequence {v` + C+
0 }`≥1 separates the points of R4 by Mackey [16]. Suppose that

(t1, x1, y1, z1), (t2, x2, y2, z2) ∈ R4 are distinct points. If one can prove that there
exists v ∈ R4 such that (t2, x2, y2, z2) − v ∈ Int(C+

0 ) and (t1, x1, y1, z1) − v 6∈ Cl(C+
0 ),

then, by continuity of addition, the same will be true with v replaced with some v`
since the collection {v`}`≥1 is dense in R4. But then (t2, x2, y2, z2) ∈ v` + C+

0 and
(t1, x1, y1, z1) 6∈ v` + C+

0 .

First suppose that t1 < t2. If v =
(
t1+t2

2 , x2, y2, z2

)
, then

(
t2, x2, y2, z2

)
− v =

( t2 − t1
2

, 0, 0, 0
)
∈ Int(C+

0 )

and

(t1, x1, y1, z1)− v =
(
− t2 − t1

2
, x1 − x2, y1 − y2, z1 − z2

)
6∈ Cl(C+

0 ).

Next, suppose that t1 = t2 = t. If

v =
(
t−

√
(x2 − x1)2 + (y1 − y2)2 + (z1 − z2)2

2
, x2, y2, z2

)
,
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then

(t2, x2, y2, z2)− v =
(√(x2 − x1)2 + (y1 − y2)2 + (z1 − z2)2

2
, 0, 0, 0

)
∈ Int(C+

0 )

and

(t1, x1, y1, z1)− v

=
(√(x2 − x1)2 + (y1 − y2)2 + (z1 − z2)2

2
, x1 − x2, y1 − y2, z1 − z2

)
6∈ Cl(C+

0 ).

Proposition 3.6

If ϕ : H → Le ×α R4 is an algebraic isomorphism of Polish groups, then
ϕ|ϕ−1({I} ×α R4) : ϕ−1({I} ×α R4) → {I} ×α R4 is a topological isomorphism of
Polish groups.

Proof. Lemma 3.1 implies that ϕ−1({I}×αR4) is a maximal abelian subgroup of H and
therefore is a closed and hence Polish subgroup. ϕ−1(Le ×α {0}) is a closed subgroup
of H by Corollary 3.3.

C+
0 =

{
L((1, 1, 0, 0)) | L ∈ Le

}
+
{
M((1, 1, 0, 0)) | M ∈ Le

}
and therefore

{I} ×α C+
0 =

{
(L, 0)(I, (1, 1, 0, 0))(L, 0)−1 | L ∈ Le

}
×
{

(M, 0)(I, (1, 1, 0, 0))(M, 0)−1 | M ∈ Le
}

by Proposition 3.4. Hence,

ϕ−1
(
{I} ×α C+

0

)
=
{
ϕ−1((L, 0))ϕ−1((I, (1, 1, 0, 0)))ϕ−1((L, 0))−1 | L ∈ Le

}
×
{
ϕ−1((M, 0))ϕ−1((I, (1, 1, 0, 0)))ϕ−1((M, 0))−1 | M ∈ Le

}
=
{
Lϕ−1((I, (1, 1, 0, 0)))L−1 | L ∈ ϕ−1(Le ×α {0})

}
×
{
Mϕ−1((I, (1, 1, 0, 0)))M−1 | M ∈ ϕ−1(Le ×α {0})

}
is an analytic subset of ϕ−1({I} ×α R4). Furthermore,

ϕ−1
(
{I} ×α (v + C+

0 )
)

= ϕ−1((I, v)) · ϕ−1
(
{I} ×α C+

0

)
is an analytic subset of ϕ−1({I} ×α R4) for every v ∈ R4. Therefore ϕ−1({I} ×α B)
is in the σ-algebra generated by the analytic sets for every Borel subset B ⊂ R4 by
Lemma 3.5. Hence, ϕ|ϕ−1({I} ×α R4) is measurable with respect to the sets with the
Baire property and therefore is a topological isomorphism by Proposition 2.3.

Proposition 3.7

If ϕ : H → Le×αR4 is an isomorphism of Polish groups, then ϕ|ϕ−1(Le×α {0}) :
ϕ−1(Le ×α {0})→ Le ×α {0} is a topological isomorphism.
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Proof. Let {v`}`≥1 ⊂ R4 be dense in R4 and define

ϕ1 : ϕ−1(Le ×α {0})→
∏
`≥1

ϕ−1({I} ×α R4)

by

ϕ1(z) =
∏
`≥1

zϕ−1((I, v`))z
−1,

ϕ2 :
∏
`≥1

ϕ−1({I} ×α R4)→
∏
`≥1
{I} ×α R4

by

ϕ2

(∏
`≥1

z`

)
=
∏
`≥1

ϕ(z`)

and
ϕ3 : Le ×α {0} →

∏
`≥1
{I} ×α R4

by

ϕ3((L, 0)) =
∏
`≥1

(L, 0)(I, v`)(L, 0)−1 =
∏
`≥1

(I, L(v`)).

First, notice that ϕ1 maps ϕ−1(Le×α{0}) into
∏
`≥1 ϕ

−1({I}×αR4), for if L ∈ Le
then

ϕ1(ϕ
−1((L, 0))) =

∏
`≥1

ϕ−1((L, 0))ϕ−1((I, v`))ϕ
−1((L, 0))−1

=
∏
`≥1

ϕ−1((L, 0)(I, v`)(L
−1, 0)) =

∏
`≥1

ϕ−1((I, L(v`))).

ϕ1 is continuous since z 7→ zϕ−1((0, v`))z
−1 is continuous for each v` and the product

of continuous maps is also continuous.
ϕ2 is continuous by Proposition 3.6.
ϕ3 is continuous by the same mode of reasoning used to prove that ϕ1 is contin-

uous. ϕ3 is injective since {v`}`≥1 is dense in R4 and each L : R4 → R4 is continuous.
Thus the Lusin-Souslin Theorem (page 89, [14]) gives us that ϕ3(Le×α {0}) is a Borel
subset of

∏
`≥1{I}×αR4 and that ϕ−13 : ϕ3(Le×α{0})→ Le×α{0} is a Borel mapping.

Finally, notice that ϕ−13 ◦ ϕ2 ◦ ϕ1 is well-defined and

(ϕ−13 ◦ ϕ2 ◦ ϕ1)
(
ϕ−1((L, 0))

)
= (ϕ−13 ◦ ϕ2)

(∏
`≥1

ϕ−1
(
(I, L(v`))

))
= ϕ−13

(∏
`≥1

(
I, L(v`)

))
= (L, 0) = ϕ

(
ϕ−1((L, 0))

)
.

Hence ϕ−13 ◦ ϕ2 ◦ ϕ1 = ϕ|ϕ−1(Le ×α {0}). This yields that

ϕ|ϕ−1(Le ×α {0}) : ϕ−1(Le ×α {0})→ Le ×α {0}

is a Borel isomorphism of Polish groups and hence is a topological isomorphism by
Proposition 2.3.
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Proposition 3.8

If ϕ : H → Le ×α R4 is an algebraic isomorphism of Polish groups, then ϕ is a
topological isomorphism.

Proof. Ψ : H ×H → H defined by Ψ(a, b) = ba is continuous.
ϕ−1(Le ×α {0})× ϕ−1({I} ×α R4) is closed in H ×H and hence is itself Polish and

Ψ0 = Ψ|ϕ−1(Le ×α {0})× ϕ−1({I} ×α R4)

is a continuous bijection since

Ψ0(ϕ
−1((L, 0)), ϕ−1((I, v))) = ϕ−1((L, v)).

So by the Lusin-Souslin Theorem ([14, page 89]) Ψ−10 is a Borel mapping. Also notice
that if we define Φ1 : ϕ−1(Le ×α {0}) × ϕ−1({I} ×α R4) by Φ1(a, b) = (ϕ(a), ϕ(b)),
then Φ1 is continuous by Propositions 3.6 and 3.7. Moreover, if we define

Φ2 : (Le ×α R4)× (Le ×α R4)→ Le ×α R4

by Φ2(a, b) = ba, then Φ2 is continuous and so ϕ = Φ2 ◦ Φ1 ◦Ψ−10 is a Borel mapping.
Therefore ϕ is a topological isomorphism by Proposition 2.3.

Proof of Theorem 1.1. We have already proven that Pe is an algebraically determined
Polish group in Proposition 3.8. We prove that P is an algebraically determined Polish
group. The proofs that Pt and Ps are algebraically determined Polish groups are
similar. Let H be a Polish group and let ϕ : H → P be an algebraic isomorphism.
Then ϕ|ϕ−1(Le ×α R4) : ϕ−1(Le ×α R4) → Le ×α R4 is an algebraic isomorphism
of Polish groups by Corollary 3.3. Hence, ϕ|ϕ−1(Le ×α R4) is continuous since Pe
is an algebraically determined Polish group and therefore ϕ itself is continuous since
ϕ−1(Le×αR4) is an open subgroup of H by Corollary 3.3. Therefore ϕ is a topological
isomorphism by Proposition 2.3.

4. The Lorentz Group and Related Groups

The purpose of this section is to prove that L and Lt are algebraically determined
Polish groups but that Ls and Le are not.

Lemma 4.1

Let G be a second countable Lie group with Lie algebra g and X ∈ g such that
span({Ad(g)(X) | g ∈ G}) = g and let GX = {exp(tX) | t ∈ R}. Suppose that H is a
Polish group, ϕ : H → G is an algebraic isomorphism, ϕ−1(GX) is a Borel subgroup
of H and ϕ|ϕ−1(GX) : ϕ−1(GX) → GX is a Borel mapping. Then ϕ is a topological
isomorphism.

Proof. Let n = dim(g) and let e = a1, . . . , an ∈ G such that X` = Ad(a`)(X)
(1 ≤ ` ≤ n) forms a basis for g. Let

G` =
{

exp(tX`) | t ∈ R
}

= a`GXa
−1
` .ϕ−1(G`) = ϕ−1(a`)ϕ

−1(GX)ϕ−1(a`)
−1
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is a Borel subgroup of H and ϕ|ϕ−1(G`) : ϕ−1(G`)→ G` is a Borel mapping since

ϕ−1
(
a` exp(tX)a−1`

)
→ ϕ−1

(
exp(tX)

)
→ exp(tX)→ a` exp(tX)a−1`

is a composition of Borel mappings. For every ε > 0 which is sufficiently small, the set

Nε =
{

exp(t1X1) · · · exp(tnXn) | t` ∈<−ε, ε>
}

is a subbasic open neighborhood of e ∈ G ([6, Lemma 2.4, page 105]). Furthermore

ϕ−1(Nε) = ϕ−1
(
{exp(t1X1) | t1 ∈<−ε, ε>}

)
· · ·ϕ−1

(
{exp(tnXn) | tn ∈<−ε, ε>}

)
is an analytic subset of H since each ϕ−1({exp(t`X`) | t` ∈< −ε, ε >}) is a Borel
subset of H. Next, if U ⊂ G is open, then U = ∪m≥1gmNεm for suitable gm ∈ G
and εm > 0. Hence, ϕ−1(U) = ∪m≥1ϕ−1(gm)ϕ−1(Nεm) is an analytic subset of H.
Therefore, if B ⊂ G is a Borel set, then ϕ−1(B) is in the σ-algebra generated by the
analytic subsets of H and therefore is a set with the Baire property. Hence, ϕ is a
topological isomorphism by Proposition 2.3.

Proof of Theorem 1.2. Let A =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

, an involution in Lt. Let H be a

Polish group and let ϕ : H → Lt be an algebraic isomorphism. Centralizer({A}) =
O(3) and therefore ϕ−1(O(3)) = Centralizer(ϕ−1({A})) is a closed subgroup of H.
The commutator subgroup of O(3) is SO(3) and therefore the commutator subgroup
of ϕ−1(O(3)), viz., ϕ−1(SO(3)), is an analytic subgroup of ϕ−1(O(3)) of index two.
Hence, ϕ−1(SO(3)) is a closed subgroup of ϕ−1(O(3)) and therefore a closed subgroup
of H by [2, Théorème 1, page 21]. ϕ|ϕ−1(SO(3)) : ϕ−1(SO(3)) → SO(3) is an al-
gebraic isomorphism of Polish groups and is therefore a topological isomorphism by
Proposition 2.5 since SO(3) is a compact connected simple Lie group. Therefore there
certainly is a compact one-parameter subgroup of T of SO(3) such that ϕ−1(T ) is
compact and ϕ|ϕ−1(T ) : ϕ−1(T ) → T is a topological isomorphism. Let l be the Lie
algebra of Lt (the same as the Lie algebras of Le or Ls or L). The adjoint represen-
tation of Le (and therefore of Lt or Ls or L) acts irreducibly on l since l is a simple
Lie algebra. Now use Lemma 4.1 to conclude that ϕ is a topological isomorphism and
that Lt is an algebraically determined Polish group.

An almost word-for-word repetition of this argument proves that L is an alge-
braically determined Polish group. The only change needed is that the centralizer of A
in L is (±I) ·O(3) and not just O(3). But the commutator subgroup of (±I) ·O(3) is
SO(3) just as it was for O(3) and ϕ−1(SO(3)) is again closed in Centralizer(ϕ−1({A}))
and therefore in H since ϕ−1(SO(3)) is of index four in Centralizer(ϕ−1({A})). �

Lemma 4.2

Let G be a topological group and and let Z ⊂ Center(G) be a subgroup such that
z ∈ Z implies z2 = e. Suppose that each of the sets {w2 | w ∈ W}, where W is an
open neighborhood of e ∈ G, contains a neighborhood of e ∈ G (which is true if G is
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a Lie group). Suppose that ϕ is an automorphism of G such that ϕ(Z) = Z and such
that the induced automorphism ϕ̃ : G/Z → G/Z is continuous. Then ϕ is continuous.

Proof. Let π : G → G/Z be the quotient mapping. ϕ̃(π(a)) = π(ϕ(a)) for all a ∈ G.
Let U be an open neighborhood of e ∈ G and choose an open neighborhood V of e ∈ G
such that V 2 ⊂ U . Since ϕ̃ is continuous there is an open neighborhood W of e ∈ G
such that ϕ̃(π(W )) ⊂ π(V ). Therefore π(ϕ(W )) ⊂ π(V ), Zϕ(W ) ⊂ ZV and

ϕ
(
Int({w2 | w ∈W})

)
⊂ ϕ

(
{w2 | w ∈W}

)
=
{

(zϕ(w))2 | w ∈W and z ∈ Z
}
⊂
{

(zv)2 | v ∈ V and z ∈ Z
}

=
{
v2 | v ∈ V

}
⊂ V 2 ⊂ U.

Since U is an arbitrary open neighborhood of e ∈ G and Int({w2 | w ∈ W}) is a
neighborhood of e ∈ G, we have that ϕ is continuous at e ∈ G and therefore is
continuous.

If G is a Lie group, U is an open neighborhood of e ∈ G and g is its Lie algebra,
then there is an open convex neighborhood C of 0 ∈ g such that the restriction of the
exponential mapping exp : g → G to C is a homeomorphism onto an open neighbor-
hood V ⊂ U of e ∈ G ([6, Proposition 1.6, page 94]). If v ∈ V and v = exp(X) for
X ∈ C, then X/2 ∈ C, exp(X/2) ∈ V and v = exp(X/2)2 and thus every element of
V is a square.

Proposition 4.3

If G is either Ls or Le, then G is not an algebraically determined Polish group.

Proof. In order to show that a Polish group is not algebraically determined it suffices
to show that it has a discontinuous automorphism. Le is a connected Lie group with
SL(2,C) as its simply connected covering group. If ψ is a discontinuous automorphism
of C, then von Neumann pointed out that the mapping ϕ : SL(2,C)→ SL(2,C) given

by ϕ :

[
a b
c d

]
→
[
ψ(a) ψ(b)
ψ(c) ψ(d)

]
is a discontinuous automorphism of SL(2,C). Since

Center(SL(2,C)) = {±I}, ϕ induces an automorphism ϕ̃ of Le = SL(2,C)/{±I}
which must be discontinuous by Lemma 4.2.

ϕ̃ may be extended to an automorphism of Ls by defining ϕ̃(L) = −ϕ̃(−L) if
L ∈ Ls \ Le. This extended automorphism is not continuous on Ls since it is not
continuous on the open subgroup Le.

5. The Heisenberg Group

The purpose of this section is to point out that the Heisenberg group is not an alge-
braically determined Polish group but that it does possess partial automatic continuity.

Proposition 5.1

If G is the Heisenberg group, then G is not an algebraically determined Polish
group. However, if H is a Polish group, G is the Heisenberg group and ϕ : H → G is an
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algebraic isomorphism, then ϕ|Center(H) : Center(H) → Center(G) is a topological
isomorphism and the induced quotient isomorphism ϕ̃ : H/Center(H)→ G/Center(G)
is a topological isomorphism of Polish groups.

Proof. Recall that if G is the Heisenberg group, then G consists of all 3 × 3 strictly
upper triangular real matrices with 1’s along the diagonal, so G is a Polish group in its
natural topology. The connection between G and the canonical commutation relations

is well known. A typical element of G is of the form g(a, b, c) =

1 a b
0 1 c
0 0 1

, where a,

b, c ∈ R, we have the multiplication g(a, b, c)g(e, f, g) = g(a+ e, ag + b+ f, c+ g), the
identity g(0, 0, 0) and g(a, b, c, )−1 = g(−a, ac−b,−c). If ψ is any discontinuous additive
mapping of R → R, then check that g(a, b, c) 7→ g(a, b + ψ(a), c) is a discontinuous
automorphism of G. Hence, G is not an algebraically determined Polish group.

Suppose that H is a Polish group and ϕ : H → G is an algebraic isomorphism. It
is simple to check that Center(G) = {g(0, b, 0) | b ∈ R} and that A1 = {g(a, b, 0) | a, b ∈
R} is a maximal abelian subgroup of G. Therefore Center(H) = ϕ−1(Center(G)) and
ϕ−1(A1) are closed subgroups of H and therefore Polish groups since the center and
any maximal abelian subgroup of a Hausdorff topological group are closed. Notice that

g(a, b, c)g(1, 0, λ) = g(1 + a, λa+ b, λ+ c) and g(1, 0, λ)g(a, b, c) = g(a+ 1, b+ c, c+λ).

So for fixed λ ∈ R,

CentralizerG
(
g(1, 0, λ)

)
=
{
g(a, b, λa) | a, b ∈ R

}
.

Therefore both

ϕ−1
(
{g(a, b, a) | a, b ∈ R}

)
and ϕ−1

(
{g(a′, b′,−a′) | a′, b′ ∈ R}

)
are closed subgroups of H since

ϕ−1
(
CentralizerG(g(1, 0, λ))

)
= CentralizerH

(
ϕ−1(g(1, 0, λ))

)
is a closed subgroup of H. Hence, the set of pairs in

ϕ−1
(
Centralizer(g(1, 0, 1))

)
× ϕ−1(Centralizer(g(1, 0,−1))

)
whose product lies in ϕ−1(A1) is a closed subset of H × H since multiplication is
continuous. This set is{

(ϕ−1(g(a, b, a)), ϕ−1(g(a, b′,−a)) | a, b and b′ ∈ R
}
.

The set of commutators

ϕ−1
(
g(a, b, a)

)
ϕ−1

(
g(a, b′,−a)

)
ϕ−1

(
g(a, b, a)

)−1
ϕ−1

(
g(a, b′,−a)

)−1
of such pairs, viz., {ϕ−1(g(0,−2a2, 0)) | a ∈ R}, is therefore an analytic set in H.
By taking inverses and reparameterizing we see that {ϕ−1(g(0, x2, 0)) | x ∈ R}, is an
analytic subset of H. From this it follows that

{ϕ−1(g(0, b+ x2, 0)) | x ∈ R} = ϕ−1(g(0, b, 0)) · {ϕ−1(g(0, x2, 0)) | x ∈ R},
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for fixed b ∈ R, is an analytic subset of Center(H) ⊂ H. Since sets of the form{
y ∈ R | y ≥ b} = {y | y = b+ x2, x ∈ R

}
generate the Borel subsets of R, we have that {ϕ−1(g(0, y, 0)) | y ∈ B}, where B ⊂ R
is a Borel set, lies in the σ-algebra generated by the analytic subsets of H. Hence,
ϕ|Center(H) : Center(H)→ Center(G) is measurable with respect to the sets with the
Baire property and therefore is a topological isomorphism by Proposition 2.3.

Next, the mapping H → R, ϕ−1(g(a, b, c)) → a is continuous since it is the
composition of the continuous mappings

ϕ−1
(
g(a, b, c)

)
→ ϕ−1

(
g(a, b, c)

)
ϕ−1

(
g(0, 0, 1)

)
ϕ−1

(
g(a, b, c)

)−1
ϕ−1

(
g(0, 0, 1)

)−1
= ϕ−1

(
g(0, a, 0)

)
→ g(0, a, 0)→ a.

Similarly, the mapping H → R, ϕ−1(g(a, b, c)) → c is continuous since it is the com-
position of the continuous mappings

ϕ−1
(
g(a, b, c)

)
→ ϕ−1

(
g(a, b, c)

)
ϕ−1

(
g(−1, 0, 0)

)
ϕ−1

(
g(a, b, c)

)−1
ϕ−1

(
g(−1, 0, 0)

)−1
= ϕ−1

(
g(0, c, 0)

)
→ g(0, c, 0)→ c.

Let π : G→ G/Center(G) be the natural quotient mapping. The natural mapping

H → R2 → G→ G/Center(G), ϕ−1(g(a, b, c))→ (a, c)→ g(a, 0, c)→ π(g(a, 0, c))

is therefore a continuous homomorphism with kernel Center(H). H/Center(H) is a
Polish group in the quotient topology by Proposition 2.4 and the natural induced
mapping ϕ̃ : H/Center(H)→ G/Center(G) is a continuous algebraic isomorphism and
therefore a topological isomorphism by Proposition 2.3.
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