Collectanea Mathematica (electronic version): http://www.collectanea.ub.edu

Collect. Math. 61, 3 (2010), 303-322
(c) 2010 Universitat de Barcelona

DOI 10.1344/cmv61i3.5261

A product of two generalized derivations on polynomials in prime rings

Vincenzo De Filippis
DI.S.I.A., Faculty of Engineering, University of Messina, 98166 Messina, Italy
E-mail: defilippis@unime.it

Received February 4, 2009. Revised October 30, 2009

Abstract

Let R be a prime ring of characteristic different from $2, U$ the Utumi quotient ring of R, C the extended centroid of R, F and G non-zero generalized derivations of R and $f\left(x_{1}, \ldots, x_{n}\right)$ a polynomial over C. Denote by $f(R)$ the set $\left\{f\left(r_{1}, \ldots, r_{n}\right): r_{1}, \ldots, r_{n} \in R\right\}$ of all the evaluations of $f\left(x_{1}, \ldots, x_{n}\right)$ in R. Suppose that $f\left(x_{1}, \ldots, x_{n}\right)$ is not central valued on R. If R does not embed in $M_{2}(K)$, the algebra of 2×2 matrices over a field K, and the composition $(F G)$ acts as a generalized derivation on the elements of $f(R)$, then $(F G)$ is a generalized derivation of R and one of the following holds: 1. there exists $\alpha \in C$ such that $F(x)=\alpha x$, for all $x \in R$; 2. there exists $\alpha \in C$ such that $G(x)=\alpha x$, for all $x \in R$; 3. there exist $a, b \in U$ such that $F(x)=a x, G(x)=b x$, for all $x \in R$; 4. there exist $a, b \in U$ such that $F(x)=x a, G(x)=x b$, for all $x \in R$; 5. there exist $a, b \in U, \alpha, \beta \in C$ such that $F(x)=a x+x b$, $G(x)=\alpha x+\beta(a x-x b)$, for all $x \in R$.

Throughout this paper, R always denotes a prime ring with center $Z(R), U$ the Utumi quotient ring of R and $C=Z(U)$ the center of U. We refer the reader to [3] for the definitions and the related properties of these objects.

Let $F: R \longrightarrow R$ be an additive mapping of R into itself. It is said to be a derivation of R if $F(x y)=F(x) y+x F(y)$, for all $x, y \in R$. If $F(x y)=F(x) y+x d(y)$, for all $x, y \in R$ and d a derivation of R, then the mapping F is called a generalized derivation on R. Obviously any derivation of R is a generalized derivation of R.

Keywords: Prime rings, Differential identities, Generalized derivations.
MSC2000: 16N60, 16W25.

A typical example of a generalized derivation is a map of the form $x \mapsto a x+x b$, where a, b are fixed elements in R; such generalized derivations are called inner. The well known Posner's first theorem states that if δ and d are two non-zero derivations of R, then the composition ($d \delta$) cannot be a non-zero derivation of R ([11, Theorem 1]). An analogue of Posner's result for Lie derivations was proved by Lanski in [8]. More precisely Lanski showed that if δ and d are two non-zero derivations of R and L is a Lie ideal of R, then $(d \delta)$ cannot be a Lie derivation of L into R unless $\operatorname{char}(R)=2$ and either R satisfies $s_{4}\left(x_{1}, \ldots, x_{4}\right)$, the standard identity of degree 4 , or $d=\alpha \delta$, for $\alpha \in C$.

In [6] Hvala initiated the algebraic study of generalized derivations. In particular, generalized derivations whose product is again a generalized derivation was characterized. More precisely Hvala in ([6, Theorem 1]) proved that:

Theorem

Let R be a prime ring of characteristic different from $2, U$ the Utumi quotient ring of R, C the extended centroid of R, F and G non-zero generalized derivations of R. If the composition $F G$ acts as a generalized derivation on R, then one of the following holds:

1. there exists $\alpha \in C$ such that $F(x)=\alpha x$, for all $x \in R$;
2. there exists $\alpha \in C$ such that $G(x)=\alpha x$, for all $x \in R$;
3. there exist $a, b \in U$ such that $F(x)=a x, G(x)=b x$, for all $x \in R$;
4. there exist $a, b \in U$ such that $F(x)=x a, G(x)=x b$, for all $x \in R$;
5. there exist $a, b \in U, \alpha, \beta \in C$ such that $F(x)=a x+x b, G(x)=\alpha x+\beta(a x-x b)$, for all $x \in R$.

One might wonder if it is possible that the composition of two generalized derivations with special forms may act like a generalized derivation on some subset of prime rings. Following this line of investigation, our main theorem gives a description of the forms of two generalized derivations F and G of a prime ring R, in the case when $(F G)$ acts as a generalized derivation on the elements of the subset $f(R)$, where $f(R)$ is a the set of all evaluations in R of a polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ over C in n non-commuting variables. More precisely we assume that this means $(F G)(s t)=(F G)(s) t+s h(t)$, for all $s, t \in f(R)$ and for a derivationn h of R. The statement of our result is the following:

Theorem 1

Let R be a prime ring of characteristic different from 2, U the Utumi quotient ring of R, C the extended centroid of R, F and G non-zero generalized derivations of R and $f\left(x_{1}, \ldots, x_{n}\right)$ a polynomial over C. Denote by $f(R)$ the set $\left\{f\left(r_{1}, \ldots, r_{n}\right)\right.$: $\left.r_{1}, \ldots, r_{n} \in R\right\}$ of all the evaluations of $f\left(x_{1}, \ldots, x_{n}\right)$ in R. Suppose that $f\left(x_{1}, \ldots, x_{n}\right)$ is not central valued on R. If R does not embed in $M_{2}(K)$, the algebra of 2×2 matrices over a field K, and the composition $(F G)$ acts as a generalized derivation on the elements of $f(R)$, then $(F G)$ is a generalized derivation of R and one of the following holds:

1. there exists $\alpha \in C$ such that $F(x)=\alpha x$, for all $x \in R$;
2. there exists $\alpha \in C$ such that $G(x)=\alpha x$, for all $x \in R$;
3. there exist $a, b \in U$ such that $F(x)=a x, G(x)=b x$, for all $x \in R$;
4. there exist $a, b \in U$ such that $F(x)=x a, G(x)=x b$, for all $x \in R$;
5. there exist $a, b \in U, \alpha, \beta \in C$ such that $F(x)=a x+x b, G(x)=\alpha x+\beta(a x-x b)$, for all $x \in R$.

The assumption that R does not embed in $M_{2}(K)$, for K a field, is essential to the main result. For example let $e_{i j}$ be the usual matrix unit in $R=M_{2}(K)$ and consider $F(x)=e_{22} x-x e_{22}, G(x)=\left(e_{12}+e_{21}\right) x+x\left(e_{12}+e_{21}\right)$. Then $F G([R, R])=(0)$, but $F G$ does not act on R like a generalized derivation as described by the main theorem.

1. The matrix case and inner generalized derivations

In this section we will study the case when $R=M_{m}(K)$ is the algebra of $m \times m$ matrices over an infinite field K. Here we will assume that there exist a, b, c, q, v, w elements of R such that $a(c x+x q)+(c x+x q) b=v x+x w$ for all $x \in[R, R]$. Notice that the set $[R, R]=\left\{\left[r_{1}, r_{2}\right]: r_{1}, r_{2} \in R\right\}$ is invariant under the action of all inner automorphisms of R. Let us denote as usual by $e_{i j}$ the matrix unit with 1 in (i, j)-entry and zero elsewhere, moreover let I be the identity matrix in R. In this section we will prove that, in case $m \geq 3$, one of the following holds:

- c and q are central matrices;
- a and b are central matrices;
- b, q and w are central matrices;
- a, c and v are central matrices;
- there exists $\eta \in K$ such that $a+\eta c, b-\eta q$ are central matrices.

In order to prove this result we will make implicit use of the following easy remarks:
Remark 1.1 For any inner automorphism φ of $M_{m}(K)$, we have that

$$
\begin{aligned}
0= & \varphi(a(c s+s q)+(c s+s q) b-v s-s w)=\varphi(a)(\varphi(c) s+s \varphi(q)) \\
& +(\varphi(c) s+s \varphi(q)) \varphi(b)-\varphi(v) s-s \varphi(w)
\end{aligned}
$$

for all $s \in[R, R]$, since $[R, R]$ is invariant under the action of all inner automorphisms of R. Clearly

- c and q are central matrices if and only if $\varphi(c)$ and $\varphi(q)$ are central matrices;
- a and b are central matrices if and only if $\varphi(a)$ and $\varphi(b)$ are central matrices;
- b, q and w are central matrices if and only if $\varphi(b), \varphi(q)$ and $\varphi(w)$ are central matrices;
- a, c and v are central matrices if and only if $\varphi(a), \varphi(c)$ and $\varphi(v)$ are central matrices;
- $a+\alpha b, c-\alpha q$ and $b-\eta q$ are central matrices if and only if $\varphi(a)+\alpha \varphi(b)$, $\varphi(c)-\alpha \varphi(q)$ and $\varphi(b)-\eta \varphi(q)$ are central matrices.

Hence, to prove our result, we may replace a, b, c, q, v, w respectively with $\varphi(a), \varphi(b)$, $\varphi(c), \varphi(q), \varphi(v), \varphi(w)$.

Remark 1.2 The matrix unit $e_{k l}$ is an element of $[R, R]$ for all $k \neq l$.
We need the following:
Remark 1.3 Let R be a prime ring and $a, c \in R$ such that $a x+x c=0$ for all $x \in R$. Then $a=-c \in Z(R)$.

Proof. Consider the assumed identity

$$
\begin{equation*}
a x+x c=0 . \tag{1}
\end{equation*}
$$

Left multiplying (1) by any $t \in R$, we have $t a x+t x c=0\left(1^{\prime}\right)$. On the other hand, by replacing x with $t x$ in (1), we also have atx $+t x c=0\left(1^{\prime \prime}\right)$. Comparing (1^{\prime}) with ($1^{\prime \prime}$) it follows $[a, t] x=0$ and, by the primeness of R, a must be central. So $x(a+c)=0$, that is $a=-c$.

Remark 1.4 Let R be a prime ring and $a, b, c \in R$ such that $a x b+x c=0$ for all $x \in R$. Then either $a \in Z(R)$ and $c+a b=0$, or a, b, c are central elements of R.

Proof. Consider the assumed identity

$$
\begin{equation*}
a x b+x c=0 . \tag{2}
\end{equation*}
$$

Right multiplying (2) by any $t \in R$, we have $a x b t+x c t=0\left(2^{\prime}\right)$. On the other hand, by replacing x with $x t$ in (2), we also have $a x t b+x t c=0\left(2^{\prime \prime}\right)$. Comparing ($\left.2^{\prime}\right)$ with ($2^{\prime \prime}$) it follows

$$
\begin{equation*}
a x[b, t]+x[c, t]=0 . \tag{3}
\end{equation*}
$$

As above, left multiplying (3) by any $z \in R$, we have $z a x[b, t]+z x[c, t]=0\left(3^{\prime}\right)$. Moreover, by replacing x with $z x$ in (3), we also have $a z x[b, t]+z x[c, t]=0\left(3^{\prime \prime}\right)$. Comparing (3^{\prime}) with ($3^{\prime \prime}$) it follows $[a, z] x[b, t]=0$ and, by the primeness of R, either $a \in Z(R)$ or $b \in Z(R)$. In the first case $x(a b+c)=0$, which implies $a b+c=0$. In the second case $a b x+x c=0$, and the conclusion follows from Remark 1.3.

We also need the following lemma:

Lemma 1.5

Let F be a infinite field and $n \geq 2$. If A_{1}, \ldots, A_{k} are not scalar matrices in $M_{n}(F)$ then there exists some invertible matrix $Q \in M_{n}(F)$ such that each matrix $Q A_{1} Q^{-1}, \ldots, Q A_{k} Q^{-1}$ has all non-zero entries.

Proof. First we show that if $A \in M_{n}(F)$ is not scalar then there exists a conjugate $Q A Q^{-1}$ having a non-zero entry in any particular position.

Assume that A is not diagonal, hence for some $i \neq j$ the (i, j)-entry $A_{i j}$ of A is nonzero. Clearly if $p \neq q$ then there exists a permutation $\sigma \in S_{n}$ such that $\sigma(i)=p$ and $\sigma(j)=q$. We consider the automorphism φ_{σ} on $M_{n}(F)$ defined by $\varphi_{\sigma}\left(e_{r s}\right)=e_{\sigma(r) \sigma(s)}$, for any matrix unit $e_{r s}$. Let $Q \in M_{n}(F)$ be the permutation matrix which induces in $M_{n}(F)$ this automorphism φ_{σ}, hence the (p, q)-entry of $Q A Q^{-1}$ is $A_{i j}$. Assume now that $p=q$. By the previous argument, for $s \neq p$, some conjugate A^{\prime} of A has non-zero (p, s)-entry. Let $\lambda \in F$, and put $A_{\lambda}^{\prime}=\left(I+\lambda e_{s p}\right) A^{\prime}\left(I-\lambda e_{s p}\right)$. Then the (p, p)-entry of
A_{λ}^{\prime} is $A_{p p}^{\prime}-\lambda A_{p s}^{\prime}$. Of course we can choose λ in F such that $A_{p p}^{\prime}-\lambda A_{p s}^{\prime}$ is not zero. This proves our claim in the case when A is not diagonal. If A is a diagonal matrix which is not a scalar one, there exist $i \neq j$ such that $A_{i i} \neq A_{j j}$. The (i, j)-entry of the conjugate $A^{\prime \prime}=\left(I+e_{i j}\right) A\left(I-e_{i j}\right)$ is $A_{j j}-A_{i i}$ which is not zero. Hence $A^{\prime \prime}$ is not diagonal and by the previous case we are done.

Consider the set $\left\{x_{i j}: 1 \leq i, j \leq n\right\}$ of n^{2} commutative indeterminates and let $M_{n}\left(F\left[x_{i j}\right]\right)$ be the algebra of $n \times n$ matrices over the polynomial ring $F\left[x_{i j}\right]$. Let $P=\sum_{i j} x_{i j} e_{i j}$ be the generic matrix and consider, for $l=1, \ldots, k, P_{l}=P \cdot A_{l}$. $\operatorname{adj}(P)$. Any substitution of the indeterminates $x_{i j}$ with elements $c_{i j} \in F$ induces a homomorphism $\varphi: M_{n}\left(F\left[x_{i}\right]\right) \longrightarrow M_{n}(F)$. If $\varphi(P)$ is an invertible matrix Q then $\varphi\left(P_{l}\right)$ is a non-zero scalar multiple of $Q A_{l} Q^{-1}$. Clearly any matrix $Q \in M_{n}(F)$ is the image of P under the action of some of such homomorphisms. Now each entry of $\operatorname{adj}(P)$ is a homogeneous polynomial in $\left\{x_{i j}\right\}$ so the entries of P_{l} are homogeneous polynomials in $\left\{x_{i j}\right\}$ without constant terms. None of these entries is zero by our observation above: in any particular position some conjugate of A_{l} has a non-zero entry. Also $\operatorname{det}(P)$ is a non-zero polynomial of $F\left[x_{i j}\right]$. Let $G\left(x_{i j}\right)$ be the product of $\operatorname{det}(P)$ and all entries of P_{l}, for $l=1, \ldots, k$. Clearly $G\left(x_{i j}\right)$ is a non-zero polynomial and, since the field F is infinite, some evaluation of $G\left(x_{i j}\right)$ is not zero in F. As above let φ be the homomorphism induced by this evaluation, then $Q=\varphi(P)$ is invertible and $Q A_{l} Q^{-1}=\frac{1}{\operatorname{det}(Q)} \varphi\left(P_{l}\right)$ is a matrix with all non-zero entries, for $l=1, \ldots, k$.

We start the proof of the main theorem of this section by studying the following case:

Lemma 1.6

Let K be an infinite field, let $R=M_{m}(K)$ be the algebra of $m \times m$ matrices over $K, Z(R)$ the center of R and $S=[R, R]$. Assume that there exist $a, b, c, q, v, w \in R$ such that $a(c s+s q)+(c s+s q) b=v s+s w$ for all $s \in S$. If $q \in Z(R)$ then one of the following holds:

1. c is a central matrix;
2. b and w are central matrices.

Proof. Since $q \in Z(R)$, by the assumption we have that $a(c+q) s+(c+q) s b=v s+s w$ for all $s \in S$. Clearly if $c+q \in Z(R)$ we are done. Suppose that $b \in Z(R)$. Then $(a+b)(c+q) s=v s+s w$ for all $s \in S$, in other words for all $i \neq j, X=(a+b)(c+q) e_{i j}-$ $v e_{i j}-e_{i j} w=0$. In particular the (i, i)-entry of X is $-e_{i j} w e_{i i}=0$, that is w is a diagonal matrix, say $w=\sum_{k=1}^{m} w_{k} e_{k k}$, for $w_{k} \in K$. Let χ be any inner automorphism of R; of course $\chi(q)$ and $\chi(b)$ are central matrices and $\chi((a+b)(c+q) s-v s-s w)=0$ for all $s \in S$. Thus $\chi(w)$ must be a diagonal matrix, say $\chi(w)=\sum_{k=1}^{m} w_{k}^{\prime} e_{k k}$, for some $w_{k}^{\prime} \in K$. In particular for $r \neq s$ and $\chi(x)=\left(1+e_{r s}\right) x\left(1-e_{r s}\right)$, we have $\chi(w)=w+e_{r s} w-w e_{r s}$. Since the (r, s)-entry of $\chi(w)$ is zero, it follows $w_{r}=w_{s}$, for all $r \neq s$. This means that w is a central matrix in R and we are done.

In light of this, we consider $c+q$ and b both non-scalar matrices. We will prove that in this case we get a contradiction.

By Remark 1.1 and Lemma 1.5, we can assume that $c+q$ and b have all non-zero entries, say $c+q=\sum_{k l} t_{k l} e_{k l}$ and $b=\sum_{k l} b_{k l} e_{k l}$, for $0 \neq t_{k l}, 0 \neq b_{k l} \in K$.

Since $e_{j i} \in S$ for all $i \neq j$, then for any $i \neq j$

$$
X=a(c+q) e_{j i}+(c+q) e_{j i} b-v e_{j i}-e_{j i} w=0
$$

in particular the (i, j)-entry of X is $t_{i j} b_{i j}=0$, a contradiction.
Analogously one may prove the following (we omit the proof for brevity):

Lemma 1.7

Let K be an infinite field, let $R=M_{m}(K)$ be the algebra of $m \times m$ matrices over K, $Z(R)$ the center of R and $S=[R, R]$. Assume that there exist $a, b, c, q, v, w \in R$ such that $a(c s+s q)+(c s+s q) b=v s+s w$ for all $s \in S=[R, R]$. If $c \in Z(R)$ then one of the following holds:

1. q is a central matrix;
2. a and v are central matrices.

Lemma 1.8

Let K be an infinite field, let $R=M_{m}(K)$ be the algebra of $m \times m$ matrices over K, $Z(R)$ the center of R and $S=[R, R]$. Assume that there exist $a, b, c, q, v, w \in R$ such that $a(c s+s q)+(c s+s q) b=v s+s w$ for all $s \in S$. If $b \in Z(R)$ then one of the following holds:

1. a is a central matrix;
2. q and w are central matrices.

Proof. We assume both a and q non-scalar matrices and prove that a contradiction follows. Denote $q=\sum_{k l} q_{k l} e_{k l}$ and $a=\sum_{k l} a_{k l} e_{k l}, w=\sum_{k l} w_{k l} e_{k l}$, for $w_{k l}, q_{k l}, a_{k l} \in K$.

By Remark 1.1 and Lemma 1.5, we may assume that q and a have all non-zero entries. Since $b \in Z(R)$, we have that $(a+b)(c s+s q)=v s+s w$ for all $s \in S$, that is $((a+b) c-v) s+(a+b) s q-s w=0$ for all $s \in S$, in other words for all $i \neq j$, $X=((a+b) c-v) e_{i j}+(a+b) e_{i j} q-e_{i j} w=0$. In particular the (j, i)-entry of X is $a_{j i} q_{j i}=0$, which contradicts our assumption.

In particular, in case $q \in Z(R)$, by Lemma 1.6, either c is central or w is central. If $c \in Z(R)$, one has $(a+b)(c+q) s=v s+s w$ for all $s \in S$. For any $i \neq j$ and $s=e_{i j}$: $0=Y=(a+b)(c+q) e_{i j}=v e_{i j}+e_{i j} w$. In particular the (i, i)-entry of Y is $w_{j i}=0$, that is w is a diagonal matrix. Let χ be any inner automorphism of R; of course $\chi(q)$, $\chi(b)$ and $\chi(c)$ are central matrices and $\chi((a+b)(c+q) s-v s-s w)=0$ for all $s \in S$. Thus $\chi(w)$ must be a diagonal matrix, say $\chi(w)=\sum_{k=1}^{m} w_{k}^{\prime} e_{k k}$, for some $w_{k}^{\prime} \in K$. In particular for $r \neq s$ and $\chi(x)=\left(1+e_{r s}\right) x\left(1-e_{r s}\right)$, we have $\chi(w)=w+e_{r s} w-w e_{r s}$. Since the (r, s)-entry of $\chi(w)$ is zero, it follows $w_{r}=w_{s}$, for all $r \neq s$. This means that w is a central matrix in R and we are done.

Lemma 1.9

Let K be an infinite field, let $R=M_{m}(K)$ be the algebra of $m \times m$ matrices over K with $m \geq 3, Z(R)$ the center of R. Assume that there exist $a, b, c, q, v, w \in R$ such that $a(c s+s q)+(c s+s q) b=v s+s w$ for all $s \in S=[R, R]$. If $q \notin Z(R)$ and $b-\alpha q \in Z(R)$, for a suitable $\alpha \in K$, then $a+\alpha c$ is a central matrix.

Proof. Assume that $a+\alpha c$ is not a scalar matrix. By Remark 1.1 and Lemma 1.5, we can assume that $a+\alpha c$ and q have all non-zero entries, say $a+\alpha c=\sum_{k l} t_{k l} e_{k l}$ and $q=\sum_{k l} q_{k l} e_{k l}$, for $0 \neq t_{k l}, 0 \neq q_{k l} \in K$.

Since $b=\beta I+\alpha q$, for a suitable $\beta \in K$, by our assumption we have that

$$
a(c x+x q)+(c x+x q)(\beta+\alpha q)-v x-x w=0
$$

that is

$$
(a c+\beta c) x+(a+\alpha c) x q+x\left(\alpha q^{2}+\beta q\right)-v x-x w=0
$$

for all $x \in S$, and for $x=e_{i j}$, with $i \neq j$

$$
0=X=(a c+\beta c) e_{i j}+(a+\alpha c) e_{i j} q+e_{i j}\left(\alpha q^{2}+\beta q\right)-v e_{i j}-e_{i j} w=0 .
$$

By calculations one has that the (j, i)-entry of X is $0=t_{j i} q_{j i}$, a contradiction.
Therefore $a+\alpha c$ must be a central matrix in R and we are done.

Lemma 1.10

Let K be an infinite field, let $R=M_{m}(K)$ be the algebra of $m \times m$ matrices over K with $m \geq 3$ and $S=[R, R]$. Suppose there exist $a, b, c, q, u, p, v, w \in R$ such that $u x+a x q+c x b+x p=v x+x w$ for all $x \in S$. Denote

$$
a=\sum_{k l} a_{k l} e_{k l}, b=\sum_{k l} b_{k l} e_{k l}, c=\sum_{k l} c_{k l} e_{k l}, q=\sum_{k l} q_{k l} e_{k l},
$$

for suitable $a_{k l}, b_{k l}, c_{k l}$ and $q_{k l}$ elements of K. If there are $i \neq j$ such that $q_{j i} \neq 0$, $c_{j i} \neq 0$ and $b_{j i}=0$, then $a_{r i}=0$ and $b_{r k}=0$ for all $r \neq i$ and $k \neq r$ (that is the only non-zero off-diagonal elements of b fall in the i-th row).

Proof. Consider the assumption

$$
u x+a x q+c x b+x p-v x-x w=0 \quad \forall x \in[R, R] .
$$

In particular, for $x=e_{i j}$ we have:

$$
X=u e_{i j}+a e_{i j} q+c e_{i j} b+e_{i j} p-v e_{i j}-e_{i j} w=0
$$

and for $x=e_{i t}$, with $t \neq i, j$, we also have

$$
Y=u e_{i t}+a e_{i t} q+c e_{i t} b+e_{i t} p-v e_{i t}-e_{i t} w=0 .
$$

From the previous equalities it follows that:

1. for all $r \neq i$, the (r, i)-entry of the matrix X is $0=a_{r i} q_{j i}+c_{r i} b_{j i}=a_{r i} q_{j i}$;
2. for all $s \neq j$, the (j, s)-entry of the matrix X is $a_{j i} q_{j s}+c_{j i} b_{j s}=0$;
3. the (j, i)-entry of the matrix Y is $a_{j i} q_{t i}+c_{j i} b_{t i}=0$;
4. for all $k \neq i, t$, the (j, k)-entry of the matrix Y is $a_{j i} q_{t k}+c_{j i} b_{t k}=0$ (note that this holds also in case $k=j$);
From (1) and since $q_{j i} \neq 0$, one has $a_{r i}=0$ for all $r \neq i$, in particular $a_{j i}=0$. Thus by (2) and since $c_{j i} \neq 0$, we have $b_{j s}=0$ for all $s \neq j$. So by (3) $b_{t i}=0$ for all $t \neq i$. Finally by (4), $b_{t k}=0$ for all $t \neq i, j$ and $k \neq t$.

Lemma 1.11

Let K be an infinite field, let $R=M_{m}(K)$ be the algebra of $m \times m$ matrices over K with $m \geq 3$ and $S=[R, R]$. Suppose there exist $a, b, c, q, u, p, v, w \in R$ such that $u x+a x q+c x b+x p=v x+x w$ for all $x \in S$. Denote

$$
b=\sum_{k l} b_{k l} e_{k l}, c=\sum_{k l} c_{k l} e_{k l}, q=\sum_{k l} q_{k l} e_{k l}
$$

for suitable $b_{k l}, c_{k l}$ and $q_{k l}$ elements of K. Assume there are $i \neq j$ such that $b_{j i}=0$. If $q_{r s} \neq 0, c_{r s} \neq 0$ for all $r \neq s$, then b is central in R.

Proof. The first step is to apply twice Lemma 1.10: this forces b to be a diagonal matrix. In fact $b_{j i}=0, q_{j i} \neq 0$ and $c_{j i} \neq 0$ imply that $b_{r k}=0$ for all $r \neq i$ and $k \neq r$, in particular, since $m \geq 3$, ther exists $t \neq i$ such that $b_{l t}=0$, for all $l \neq t$. Since $q_{l t} \neq 0, c_{l t} \neq 0$ we have $b_{r k}=0$ for all $r \neq t$ and $k \neq r$, so $b_{i k}=0$ for all $k \neq i$, as required. Say $b=\sum_{k} b_{k k} e_{k k}$.

Consider now the inner automorphism of R induced by the invertible matrix $P=I+e_{r j}$, for $r \neq i, j: \varphi(x)=P^{-1} x P$. Of course

$$
\varphi(u) x+\varphi(a) x \varphi(q)+\varphi(c) x \varphi(b)+x \varphi(p)=\varphi(v) x+x \varphi(w)
$$

for all $x \in R$. Moreover the (j, i)-entries of $\varphi(q), \varphi(c), \varphi(b)$ are respectively $q_{j i} \neq 0$, $c_{j i} \neq 0$ and $b_{j i}=0$. Therefore, again by Lemma 1.10, any (r, j)-entry of $\varphi(b)$ is zero, for all $r \neq i$. By calculations $0=(\varphi(b))_{r j}=b_{j j}-b_{r r}$, that is $b_{j j}=b_{r r}$.

On the other hand, if χ is the inner automorphisms induced by the invertible matrix $Q=I+e_{r i}$, as above $\chi(u) x+\chi(a) x \chi(q)+\chi(c) x \chi(b)+x \chi(p)=\chi(v) x+x \chi(w)$, for all $x \in R$. Since the (i, j)-entries of $\chi(q), \chi(c)$ and $\chi(b)$ are respectively $q_{i j} \neq 0$, $c_{i j} \neq 0$ and $b_{i j}=0$, again any (r, i)-entry of $\chi(b)$ is zero, for all $r \neq j$, that is $0=(\varphi(b))_{r i}=b_{i i}-b_{r r}$ and $b_{i i}=b_{r r}=b_{j j}=\beta$, for all $r \neq i, j$. Thus $b=\beta I$ is a central matrix in R.

Now we are ready to prove the main result of this section:

Proposition 1.12

Let K be an infinite field, let $R=M_{m}(K)$ be the algebra of $m \times m$ matrices over K with $m \geq 3$ and $S=[R, R]$. Suppose there exist $a, b, c, q, v, w \in R$ such that $a(c x+x q)+(c x+x q) b=v x+x w$ for all $x \in S$. Then one of the following holds:

1. c, q are central matrices;
2. a, b are central matrices;
3. b, q and w are central matrices;
4. a, c and v are central matrices;
5. there exists $\eta \in K$ such that $a+\eta c$ and $b-\eta q$ are central matrices.

Proof. Let

$$
a=\sum_{k l} a_{k l} e_{k l}, \quad b=\sum_{k l} b_{k l} e_{k l}, c=\sum_{k l} c_{k l} e_{k l}, \quad q=\sum_{k l} q_{k l} e_{k l}
$$

for suitable $a_{k l}, b_{k l}, c_{k l}$ and $q_{k l}$ elements of K.

Clearly if one of q or c is a scalar matrix we are done by Lemmas 1.6 and 1.7. In order to prove the proposition, we may assume that q and c are non-central matrices.

By Remark 1.1 and Lemma 1.5, there exists some invertible matrix $Q \in M_{m}(K)$ such that $Q q Q^{-1}=q^{\prime}$ and $Q c Q^{-1}=c^{\prime}$ have all non-zero entries. By this conjugation we denote

$$
a^{\prime}=\sum_{k l} a_{k l}^{\prime} e_{k l}, b^{\prime}=\sum_{k l} b_{k l}^{\prime} e_{k l}, \quad c^{\prime}=\sum_{k l} c_{k l}^{\prime} e_{k l}, q^{\prime}=\sum_{k l} q_{k l}^{\prime} e_{k l},
$$

for suitable $a_{k l}^{\prime}, b_{k l}^{\prime}, c_{k l}^{\prime}$ and $q_{k l}^{\prime}$ elements of K, the conjugates of elements a, b, c, q. Moreover let u^{\prime} and v^{\prime} be the conjugates of elements u and v. Of course

$$
a^{\prime} c^{\prime} x+a^{\prime} x q^{\prime}+c^{\prime} x b^{\prime}+x q^{\prime} b^{\prime}=v^{\prime} x+x w^{\prime} \text { for all } x \in S
$$

Since $q_{r s}^{\prime} \neq 0$ and $c_{r s}^{\prime} \neq 0$ for all $r \neq s$, then the following holds: if for some $i \neq j$ there is some $b_{j i}^{\prime}=0$ then by Lemma $1.11 b^{\prime}$ is a central matrix, that is also b is a central matrix and we are finished by Lemma 1.8.

Hence assume that $b_{r s}^{\prime} \neq 0$ for all $r \neq s$. Let $\eta=\frac{b_{j i}^{\prime}}{q_{j i}^{\prime}} \neq 0$ and $a^{\prime \prime}=a^{\prime}+\eta c^{\prime}$. By replacing a^{\prime} with $a^{\prime \prime}-\eta c^{\prime}$ in the main equation we get

$$
\left(a^{\prime \prime}-\eta c^{\prime}\right) c^{\prime} x+\left(a^{\prime \prime}-\eta c^{\prime}\right) x q^{\prime}+c^{\prime} x b^{\prime}+x q^{\prime} b^{\prime}=v^{\prime} x+x^{\prime} w \text { for all } x \in S .
$$

By calculations it follows that

$$
\left(a^{\prime \prime}-\eta c^{\prime}\right) c^{\prime} x+a^{\prime \prime} x q^{\prime}+c^{\prime} x\left(b^{\prime}-\eta q^{\prime}\right)+x q^{\prime} b^{\prime}=v^{\prime} x+x^{\prime} w \text { for all } x \in S \text {. }
$$

Note that the (j, i)-entry of the matrix $\left(b^{\prime}-\eta q^{\prime}\right)$ is zero; since $q_{r s}^{\prime} \neq 0$ and $c_{r s}^{\prime} \neq 0$ for all $r \neq s$, then by Lemma $1.11 b^{\prime}-\eta q^{\prime}$ must be a central matrix, that is $b-\eta q$ is central in R. Let $b=\eta q+\beta$ for a suitable $\beta \in Z(R)$. Thus by the main assumption we get

$$
a c x+a x q+\eta c x q+\eta x q^{2}+\beta c x+\beta x q=v x+x w \text { for all } x \in S .
$$

Assume finally that $a+\eta c$ is not a scalar matrix. Since q is not a scalar matrix, then there exists some invertible matrix $P \in M_{m}(K)$ such that $P q P^{-1}=q^{\prime \prime \prime}$ and $P(a+\eta c) P^{-1}=c^{\prime \prime \prime}$ have all non-zero entries. As above, by this conjugation we denote

$$
a^{\prime \prime \prime}=\sum_{k l} a_{k l}^{\prime \prime \prime} e_{k l}, \quad c^{\prime \prime \prime}=\sum_{k l} c_{k l}^{\prime \prime \prime} e_{k l}, \quad q^{\prime \prime \prime}=\sum_{k l} q_{k l}^{\prime \prime \prime} e_{k l},
$$

for suitable $a_{k l}^{\prime \prime \prime}, c_{k l}^{\prime \prime \prime}$ and $q_{k l}^{\prime \prime \prime}$ elements of K, the conjugates of elements a, c, q, and $v^{\prime \prime \prime}$, $w^{\prime \prime \prime}$ the conjugates of elements u and v. Then

$$
a^{\prime \prime \prime} c^{\prime \prime \prime} x+a^{\prime \prime \prime} x q^{\prime \prime \prime}+\eta c^{\prime \prime \prime} x q^{\prime \prime \prime}+\eta x\left(q^{\prime \prime \prime}\right)^{2}+\beta c^{\prime \prime \prime} x+\beta x q^{\prime \prime \prime}=v^{\prime \prime \prime} x+x w^{\prime \prime \prime} \text { for all } x \in S .
$$

Choose $x=e_{j i}$ for $i \neq j$. Hence the matrix

$$
a^{\prime \prime \prime} c^{\prime \prime \prime} e_{j i}+a^{\prime \prime \prime} e_{j i} q^{\prime \prime \prime}+\eta c^{\prime \prime \prime} e_{j i} q^{\prime \prime \prime}+\eta e_{j i}\left(q^{\prime \prime \prime}\right)^{2}+\beta c^{\prime \prime \prime} e_{j i}+\beta e_{j i} q^{\prime \prime \prime}-v^{\prime \prime \prime} e_{j i}+e_{j i} w^{\prime \prime \prime}
$$

is zero. In particular the (j, i)-entry is $\left(a_{i j}^{\prime \prime \prime}+\eta c_{i j}^{\prime \prime \prime}\right) q_{i j}^{\prime \prime \prime}=0$. This contradiction shows that also $a+\eta c$ must be a central matrix and we are done.

2. The proof of the Theorem 1

We begin this section by studying in detail the case when F, G and H are all inner generalized derivations. More precisely, if $F(x)=a x+x b$ is the inner generalized derivation induced by the elements $a, b \in U, G(x)=c x+x q$ the one induced by $c, q \in U$, and $H(x)=v x+x w$ the one induced by $v, w \in U$, is the composition $F G$ on $[R, R]$. Thus

$$
\Phi\left(x_{1}, x_{2}\right)=a\left(c\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] q\right)+\left(c\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] q\right) b-v\left[x_{1}, x_{2}\right]-\left[x_{1}, x_{2}\right] w
$$

is a generalized polynomial identity for R.
We observe the following:
Remark 2.1 If B is a basis of U over C then any element of $T=U *_{C} C\left\{x_{1}, \ldots, x_{n}\right\}$, the free product over C of the C-algebra U and the free C-algebra $C\left\{x_{1}, \ldots, x_{n}\right\}$, can be written in the form $g=\sum_{i} \alpha_{i} m_{i}$. In this decomposition the coefficients α_{i} are in C and the elements m_{i} are B-monomials, that is $m_{i}=q_{0} y_{1} q_{1} \cdots y_{h} q_{h}$, with $q_{i} \in B$ and $y_{i} \in\left\{x_{1}, \ldots, x_{n}\right\}$. In [4] it is shown that a generalized polynomial $g=$ $\sum_{i} \alpha_{i} m_{i}$ is the zero element of T if and only if all α_{i} are zero. Let $a_{1}, \ldots, a_{k} \in U$ be linearly independent over C and $a_{1} g_{1}\left(x_{1}, \ldots, x_{n}\right)+\ldots+a_{k} g_{k}\left(x_{1}, \ldots, x_{n}\right)=0 \in T$, for some $g_{1}, \ldots, g_{k} \in T$. If, for any $i, g_{i}\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{n} x_{j} h_{j}\left(x_{1}, \ldots, x_{n}\right)$ and $h_{j}\left(x_{1}, \ldots, x_{n}\right) \in T$, then $g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{k}\left(x_{1}, \ldots, x_{n}\right)$ are the zero element of T. The same conclusion holds if $g_{1}\left(x_{1}, \ldots, x_{n}\right) a_{1}+\ldots+g_{k}\left(x_{1}, \ldots, x_{n}\right) a_{k}=0 \in T$, and $g_{i}\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{n} h_{j}\left(x_{1}, \ldots, x_{n}\right) x_{j}$ for some $h_{j}\left(x_{1}, \ldots, x_{n}\right) \in T$. (We refer the reader to [2] and [4] for more details on generalized polynomial identities).

We will make frequent use of the previous remark in our next result:

Lemma 2.2

If $\Phi\left(x_{1}, x_{2}\right)=0$ in $T=U *_{C} C\left\{x_{1}, x_{2}\right\}$, then one of the following holds:

1. $c, q \in C$;
2. $a, b \in C$;
3. $b, q, w \in C$;
4. $a, c, v \in C$;
5. there exists $\eta \in C$ such that $a+\eta c \in C$, and $b-\eta q \in C$.

Proof. By our hypothesis, $\Phi\left(r_{1}, r_{2}\right)=0$ for all $r_{1}, r_{2} \in R$, that is R satisfies the generalized polynomial identity $\Phi\left(x_{1}, x_{2}\right)$.

If $a \in C$, then

$$
\Phi\left(x_{1}, x_{2}\right)=\left(c\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] q\right)(a+b)-v\left[x_{1}, x_{2}\right]-\left[x_{1}, x_{2}\right] w .
$$

Notice that in case $c \in C$, it follows

$$
\Phi\left(x_{1}, x_{2}\right)=\left[x_{1}, x_{2}\right](c+q)(a+b)-v\left[x_{1}, x_{2}\right]-\left[x_{1}, x_{2}\right] w
$$

and this implies $v \in C$, since $\Phi\left(x_{1}, x_{2}\right)=0$ in T. In this case we are done. On the other hand, if $c \notin C$, since $\{c, v, 1\}$ must be linearly C-dependent, there exist $\lambda, \mu \in C$ such that $v=\lambda c+\mu$ since $\{c, 1\}$ is linearly C-independent. As a consequence R satisfies

$$
\Phi\left(x_{1}, x_{2}\right)=c\left[x_{1}, x_{2}\right](a+b-\lambda)+\left[x_{1}, x_{2}\right](q(a+b)-w-\mu),
$$

which is a non-trivial generalized polynomial identity for R, unless $a+b=\lambda$, which means $b \in C$. Also in this case we are done.

Analogously is suppose $b \in C$, by using the same argument on the right of the identity $\Phi\left(x_{1}, x_{2}\right)$, one may prove that either $q, w \in C$ or $a \in C$.

Assume now that $c \in C$ and $a \notin C$, then

$$
\Phi\left(x_{1}, x_{2}\right)=a\left[x_{1}, x_{2}\right](c+q)+\left[x_{1}, x_{2}\right](c+q) b-v\left[x_{1}, x_{2}\right]-\left[x_{1}, x_{2}\right] w .
$$

Thus $\{a, v, 1\}$ is linearly C-dependent and since $a \notin C$, we may write $v=\lambda a+\mu$, for suitable $\lambda, \mu \in C$. It follows that

$$
\Phi\left(x_{1}, x_{2}\right)=a\left[x_{1}, x_{2}\right](c+q-\lambda)+\left[x_{1}, x_{2}\right]((c+q) b-w-\mu)
$$

which is a non-trivial generalized polynomial identity for R, unless $c+q=\lambda$. In this last case, it follows that $q \in C$, and we are finished.

Using a similar argument we may prove that if $q \in C$ and $b \notin C$, then we obtain the conclusion $c \in C$.

Clearly in all that follows we may assume that a, b, c, q are all non-central elements of U.

Remark that, since

$$
\Phi\left(x_{1}, x_{2}\right)=(a c-v)\left[x_{1}, x_{2}\right]+a\left[x_{1}, x_{2}\right] q+c\left[x_{1}, x_{2}\right] b+\left[x_{1}, x_{2}\right](q b-w)
$$

is the zero element in T, then $\{(a c-v), a, c, 1\}$ must be C-linearly dependent, and also $\{(q b-w), q, b, 1\}$ must be C-linearly dependent.

We divide the rest of the proof into three steps:

- Suppose that $\{a, c, 1\}$ is linearly C-independent. Since $\{(a c-v), a, c, 1\}$ must be C-linearly dependent, there exist $\alpha, \beta, \gamma \in C$ such that $a c-v=\alpha a+\beta c+\gamma$. Hence R satisfies

$$
\Phi\left(x_{1}, x_{2}\right)=(\alpha a+\beta c+\gamma)\left[x_{1}, x_{2}\right]+a\left[x_{1}, x_{2}\right] q+c\left[x_{1}, x_{2}\right] b+\left[x_{1}, x_{2}\right](q b-w)
$$

that is

$$
\Phi\left(x_{1}, x_{2}\right)=a\left[x_{1}, x_{2}\right](\alpha+q)+c\left[x_{1}, x_{2}\right](\beta+b)+\left[x_{1}, x_{2}\right](q b-w+\gamma) .
$$

This implies that $q=-\alpha \in C, b=-\beta \in C, w=q b+\gamma=\alpha \beta+\gamma \in C$ and we are done.

- Suppose now that $\{b, q, 1\}$ is linearly C-independent.

Since $\{(q b-w), q, b, 1\}$ must be C-linearly dependent, there exist $\alpha, \beta, \gamma \in C$ such that $q b-w=\alpha b+\beta q+\gamma$. Hence R satisfies

$$
\Phi\left(x_{1}, x_{2}\right)=(a c-v)\left[x_{1}, x_{2}\right]+a\left[x_{1}, x_{2}\right] q+c\left[x_{1}, x_{2}\right] b+\left[x_{1}, x_{2}\right](\alpha b+\beta q+\gamma)
$$

that is

$$
\Phi\left(x_{1}, x_{2}\right)=(a c-v+\gamma)\left[x_{1}, x_{2}\right]+(a+\beta)\left[x_{1}, x_{2}\right] q+(c+\alpha)\left[x_{1}, x_{2}\right] b .
$$

This implies that $c=-\alpha \in C, a=-\beta \in C, v=q b+\gamma=\alpha \beta+\gamma \in C$ and we are done again.

- Finally suppose that there exist $0 \neq \alpha \in C, 0 \neq \beta \in C$ and $\gamma, \eta \in C$ such that $a=\alpha c+\gamma, b=\beta q+\eta$. In order to obtain the last conclusion of the Lemma, our aim is now to prove that $\alpha=-\beta$.

In this case R satsfies the generalized identity

$$
\left(\alpha c^{2}-v\right)\left[x_{1}, x_{2}\right]+c\left[x_{1}, x_{2}\right](\alpha q+\beta q+\gamma+\eta)+\left[x_{1}, x_{2}\right]\left(\gamma q+\beta q^{2}+\eta q-w\right)
$$

Since $\Phi\left(x_{1}, x_{2}\right)=0$ in T, then $\left\{\alpha c^{2}-v, c, 1\right\}$ is linearly C-dependent and, since $c \notin C$, there exist $\lambda, \mu \in C$ such that $\alpha a c^{2}-v=\lambda c+\mu$. Therefore R satisfies

$$
c\left[x_{1}, x_{2}\right](\lambda+\alpha q+\beta q+\gamma+\eta)+\left[x_{1}, x_{2}\right]\left(\gamma q+\beta q^{2}+\eta q-w+\mu\right)=0 \in T
$$

Hence $(\alpha+\beta) q+(\lambda+\gamma+\eta)=0$. Since $q \notin C$, that is $\{q, 1\}$ is linearly C-independent, it follows $\lambda+\gamma+\eta=0$ and $\alpha+\beta=0$, as required.

When R is a matrix algebra over the field K, then its Utumi quotient ring coincides with R. In this case we have the following consequence of Proposition 1.12.

Proposition 2.3

Let $R=M_{m}(K)$ be the algebra of $m \times m$ matrices over a field K with $m \geq 3$ and $\operatorname{char}(K) \neq 2$. If there exist $a, b, c, q, v, w \in R$ such that $a(c s+s q)+(c s+s q) b=v s+s w$ for all $s \in[R, R]$, then one of the following holds:

1. c and q are central matrices;
2. a and b are central matrices;
3. b, q and w are central matrices;
4. a, c and v are central matrices;
5. there exists $\alpha \in K$ such that $a+\alpha c$ and $b-\alpha q$ are central matrices.

Proof. Let L be an infinite extension of K and let $\bar{R}=M_{m}(L) \cong R \otimes_{K} L$. Recall that any multilinear generalized polynomial is an identity for R if and only if it is an identity also for \bar{R}. As in the previous lemma, we consider the generalized polynomial

$$
\Phi\left(x_{1}, x_{2}\right)=a\left(c\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] q\right)+\left(c\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] q\right) b-v\left[x_{1}, x_{2}\right]-\left[x_{1}, x_{2}\right] w
$$

and we remark that $\Phi\left(x_{1}, x_{2}\right)$ is a generalized multilinear polynomial identity for R. Clearly the multilinear polynomial $\Phi\left(x_{1}, x_{2}\right)$ is a generalized polynomial identity for \bar{R} too. We obtain $\Phi\left(r_{1}, r_{2}\right)=0$, for all $r_{1}, r_{2} \in \bar{R}$, and the conclusion follows from Proposition 1.12.

In order to prove our final result in the inner case, we observe the following one, which is a reduced version of Hvala's theorem we recalled in the beginning of the paper in $([6$, Theorem 1]):

Proposition 2.4

Let R be a prime ring with $\operatorname{char}(R) \neq 2$. If there exist $a, b, c, q, v, w \in R$ such that $a(c s+s q)+(c s+s q) b=v s+s w$ for all $s \in R$, then one of the following holds:

1. c and q are central matrices;
2. a and b are central matrices;
3. b, q and w are central matrices;
4. a, c and v are central matrices;
5. there exists $\alpha \in K$ such that $a+\alpha c$ and $b-\alpha q$ are central matrices.

Proof. Let $F(x)=a x+x b, G(x)=c x+x q$ and $H(x)=v x+x w$ be generalized derivations of R. Our assumption is $F G=H$ in R. From [6, Theorem 1], one of the following possibilities holds:

1. there exists $\gamma \in C$ such that either $F(x)=a x+x b=\gamma x$ or $G(x)=c x+x q=\gamma x$. Thus either $(a-\gamma) x+x b=0$ or $(c-\gamma) x+x q=0$, for all $x \in R$. By Remark 1.3, either $a, b \in C$ and $a+b=\gamma$, or $c, q \in C$ and $c+q=\gamma$ (conclusions 1 and 2 of proposition).
2. there exist $p, u \in U$ such that $F(x)=x p$ and $G(x)=x u$. Hence $a x+x b=x p$ and $c x+x q=x u$, that is $a x+x(b-p)=0$ and $c x+x(q-u)=0$, for all $x \in R$. Also in this case we apply Remark 1.3 and obtain $a=p-b \in C$ and $c=u-q \in C$, moreover $H(x)=v x+x w=F G(x)=x u p$ implies $v \in C$ (conclusion 4).
3. there exist $p, u \in U$ such that $F(x)=p x$ and $G(x)=u x$, that is $a x+x b=p x$ and $c x+x q=u x$. As above, by applying Remark 1.3, we obtain $b=p-a \in C$, $q=u-c \in C$ and $w \in C$ (conclusion 3).
4. there exist $\lambda, \mu \in C$ such that $G(x)=(\lambda+\mu a) x-x(\mu b)$. In this case $c x+x q=$ $(\lambda+\mu a) x-x(\mu b)$, that is $c-\mu a-\lambda=-q-\mu b \in C$. If $\mu \neq 0$ we get the conclusion 5 of the proposition. On the other hand, in case $\mu=0$ then $c-\lambda=-q \in C$, that is $c, q \in C$ and we obtain the conclusion 1 .

Proposition 2.5

Let R be a prime ring with $\operatorname{char}(R) \neq 2$. Assume that R does not embed in $M_{2}(L)$, the algebra of 2×2 matrices over a field L. If there exist $a, b, c, q, v, w \in R$ such that $a(c s+s q)+(c s+s q) b=v s+s w$ for all $s \in[R, R]$, then one of the following holds:

1. c and q are central matrices;
2. a and b are central matrices;
3. b, q and w are central matrices;
4. a, c and v are central matrices;
5. there exists $\alpha \in K$ such that $a+\alpha c$ and $b-\alpha q$ are central matrices.

Proof. We consider the generalized polynomial

$$
\Phi\left(x_{1}, x_{2}\right)=a\left(c\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] q\right)+\left(c\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] q\right) b-v\left[x_{1}, x_{2}\right]-\left[x_{1}, x_{2}\right] w .
$$

By Lemma 2.2 we may assume that $\Phi\left(x_{1}, x_{2}\right)$ is a non-trivial generalized polynomial identity for R. By a theorem due to Beidar in ([2, Theorem 2]) this generalized polynomial identity is also satisfied by the symmetric Martindale quotient ring Q of R. Let K be an algebraic closure of C. By [8, Theorem 1], either $\Phi(x)=a(c x+x q)+$ $(c x+x q) b-v x-x w$ is a generalized polynomial identity for $Q \bigotimes_{C} K$, so in R, and we are finished by Proposition 2.3, or $\Phi\left(x_{1}, x_{2}\right)$ is an identity $Q \bigotimes_{C} K \cong M_{m}(K)$. In this last case the conclusion follows by Proposition 2.2.

Before proving the main theorem of this paper, we need a well known result:
Remark 2.6 We would like to point out that in [9] Lee proves that every generalized derivation can be uniquely extended to a generalized derivation of U and thus all generalized derivations of R will be implicitly assumed to be defined on the whole U. In particular Lee proves the following result:

In [9, Theorem 3]. Every generalized derivation g on a dense right ideal of R can be uniquely extended to U and assumes the form $g(x)=a x+d(x)$, for some $a \in U$ and a derivation d on U.

Finally we are able to prove our main result:

Theorem 2.7

Let R be a prime ring of characteristic different from $2, U$ the Utumi quotient ring of R, C the extended centroid of R, F and G non-zero generalized derivations of R and $f\left(x_{1}, \ldots, x_{n}\right)$ a polynomial over C. Denote by $f(R)$ the set $\left\{f\left(r_{1}, \ldots, r_{n}\right)\right.$: $\left.r_{1}, \ldots, r_{n} \in R\right\}$ of all the evaluations of $f\left(x_{1}, \ldots, x_{n}\right)$ in R. Suppose that $f\left(x_{1}, \ldots, x_{n}\right)$ is not central valued on R. If R does not embed in $M_{2}(K)$, the algebra of 2×2 matrices over a field K, and the composition $(F G)$ acts as a generalized derivation on the elements of $f(R)$, then $(F G)$ is a generalized derivation of R and one of the following holds:

1. there exists $\alpha \in C$ such that $F(x)=\alpha x$, for all $x \in R$;
2. there exists $\alpha \in C$ such that $G(x)=\alpha x$, for all $x \in R$;
3. there exist $a, b \in U$ such that $F(x)=a x, G(x)=b x$, for all $x \in R$;
4. there exist $a, b \in U$ such that $F(x)=x a, G(x)=x b$, for all $x \in R$;
5. there exist $a, b \in U, \alpha, \beta \in C$ such that $F(x)=a x+x b, G(x)=\alpha x+\beta(a x-x b)$, for all $x \in R$.

Proof. Let S be the additive subgroup of R generated by the set $f(R)$. In [5] it is proved that, if characteristic of R is not 2 and $f\left(x_{1}, \ldots, x_{n}\right)$ is not central-valued on R, then S contains a non-central Lie ideal L of R. Moreover it is well known that, in case of characteristic different from 2 , there exists a non-central ideal I of R such that $[I, R] \subseteq L$. Of course it is easy to see that if $F G$ acts as a generalized derivation on $f(R)$, then it acts as a generalized derivation also on L and $[I, R]$. Therefore there exists a generalized derivation H of R such that $F G\left(\left[r_{1}, r_{2}\right]\right)=H\left(\left[r_{1}, r_{2}\right]\right)$ for all $r_{1}, r_{2} \in I$. As we said in Remark 2.6, we can write $F(x)=a x+d(x), G(x)=b x+\delta(x)$ and $H(x)=c x+h(x)$, for suitable $a, b, c \in U$ and d, δ, h derivations of U. Therefore I satisfies the differential identity

$$
a\left(b\left[x_{1}, x_{2}\right]+\delta\left(\left[x_{1}, x_{2}\right]\right)\right)+d\left(b\left[x_{1}, x_{2}\right]+\delta\left(\left[x_{1}, x_{2}\right]\right)\right)-c\left[x_{1}, x_{2}\right]-h\left(\left[x_{1}, x_{2}\right]\right) .
$$

Since R and I satisfy the same differential identities (see [10]), then also R satisfies

$$
\begin{align*}
a\left(b\left[x_{1}, x_{2}\right]+\right. & {\left.\left[\delta\left(x_{1}\right), x_{2}\right]+\left[x_{1}, \delta\left(x_{2}\right)\right]\right)+d(b)\left[x_{1}, x_{2}\right] } \\
& +b\left[d\left(x_{1}\right), x_{2}\right]+b\left[x_{1}, d\left(x_{2}\right)\right]+\left[d \delta\left(x_{1}\right), x_{2}\right] \\
& +\left[\delta\left(x_{1}\right), d\left(x_{2}\right)\right]+\left[d\left(x_{1}\right), \delta\left(x_{2}\right)\right]+\left[x_{1}, d \delta\left(x_{2}\right)\right] \\
& -c\left[x_{1}, x_{2}\right]-\left[h\left(x_{1}\right), x_{2}\right]-\left[x_{1}, h\left(x_{2}\right)\right] . \tag{4}
\end{align*}
$$

First consider the case when $\{d, \delta, h\}$ is a set of linearly C-independent derivations modulo X-inner derivations (i.e. modulo the space of inner derivations of R). In light of Kharchenko's theory (see [7]) and starting from (4), R satisfies:

$$
\begin{aligned}
a\left(b\left[x_{1}, x_{2}\right]+\right. & {\left.\left[y_{1}, x_{2}\right]+\left[x_{1}, y_{2}\right]\right)+d(b)\left[x_{1}, x_{2}\right] } \\
& +b\left[z_{1}, x_{2}\right]+b\left[x_{1}, z_{2}\right]+\left[t_{1}, x_{2}\right]+\left[y_{1}, z_{2}\right]+\left[z_{1}, y_{2}\right]+\left[x_{1}, t_{2}\right] \\
& -c\left[x_{1}, x_{2}\right]-\left[u_{1}, x_{2}\right]-\left[x_{1}, u_{2}\right]
\end{aligned}
$$

in particular R satisfies the blended component

$$
\begin{aligned}
a\left[y_{1}, x_{2}\right]+ & a\left[x_{1}, y_{2}\right]+b\left[z_{1}, x_{2}\right]+b\left[x_{1}, z_{2}\right]+\left[t_{1}, x_{2}\right] \\
& +\left[y_{1}, z_{2}\right]+\left[z_{1}, y_{2}\right]+\left[x_{1}, t_{2}\right]-\left[u_{1}, x_{2}\right]-\left[x_{1}, u_{2}\right]
\end{aligned}
$$

and for $y_{1}=y_{2}=z_{1}=z_{2}=u_{1}=u_{2}=t_{2}=0$ we have the contradiction that R satisfies $\left[t_{1}, x_{2}\right]$, that is R should be commutative. This conclusion contradicts the assumption that $f\left(x_{1}, \ldots, x_{n}\right)$ is not central valued on R.

Hence we assume that $\{d, \delta, h\}$ is linearly C-dependent modulo X-inner derivations. In case d, δ and h are all inner derivations of U, then there exist $p, q, v \in U$ such that $d(x)=[p, x], \delta(x)=[q, x], h(x)=[v, x]$. Hence

$$
F G(x)=(a+p)((b+q) x+x(-q))+((b+q) x+x(-q))(-p)
$$

and

$$
H(x)=(c+v) x+x(-v) .
$$

Since $F G\left(\left[r_{1}, r_{2}\right]\right)=H\left(\left[r_{1}, r_{2}\right]\right)$ for all $r_{1}, r_{2} \in R$, by Proposition 2.5 we have that one of the following holds:
$b, q \in C$ and $G(x)=b x ;$
$a, p \in C$ and $F(x)=a x ;$
$p, q, v \in C$ and $F(x)=a x, G(x)=b x, H(x)=c x$;
$(a+p),(b+q),(c+v) \in C$ and $F(x)=x a, G(x)=x b, H(x)=x c ;$
there exists $\alpha \in C$ such that $(a+p)+\alpha(b+q)=\eta \in C$ and $(-p)-\alpha(-q)=\lambda \in C$, for suitable $\eta, \lambda \in C$. In this case it follows that: $F(x)=a^{\prime} x+x b^{\prime}$, where $a^{\prime}=a+p$ and $b^{\prime}=-p ; G(x)=\mu\left(a^{\prime} x-x b^{\prime}\right)+\nu x$, where $\mu=-\alpha^{-1}$ and $\nu=\alpha^{-1}(\eta-\lambda)$.

In any case we are done.

In light of previous argument, here we may assume that there exist $\alpha, \beta, \gamma \in C$ such that

$$
\alpha d+\beta \delta+\gamma h=a d(p)
$$

the inner derivation induced by some element $p \in U$, moreover at least one of $\{d, \delta, h\}$ is not an inner derivation.

If $\{\delta, h\}$ is linearly C-independent modulo X-inner derivations, then $\alpha \neq 0$ and d cannot be an inner derivation, and so at least one of β and γ is not zero. Thus we
write $d=\beta^{\prime} \delta+\gamma^{\prime} h+a d(p)$, for $\beta^{\prime}=\alpha^{-1} \beta, \gamma^{\prime}=\alpha^{-1} \gamma$. Starting from (4), R satisfies

$$
\begin{aligned}
a\left(b\left[x_{1}, x_{2}\right]+\right. & {\left.\left[\delta\left(x_{1}\right), x_{2}\right]+\left[x_{1}, \delta\left(x_{2}\right)\right]\right) } \\
+ & \left(\beta^{\prime} \delta+\gamma^{\prime} h+a d(p)\right)(b)\left[x_{1}, x_{2}\right]+b\left[\left(\beta^{\prime} \delta+\gamma^{\prime} h+a d(p)\right)\left(x_{1}\right), x_{2}\right] \\
& +b\left[x_{1},\left(\beta^{\prime} \delta+\gamma^{\prime} h+a d(p)\right)\left(x_{2}\right)\right]+\left[\left(\beta^{\prime} \delta^{2}+\gamma^{\prime} h \delta+a d(p) \delta\right)\left(x_{1}\right), x_{2}\right] \\
& +\left[\delta\left(x_{1}\right),\left(\beta^{\prime} \delta+\gamma^{\prime} h+a d(p)\right)\left(x_{2}\right)\right]+\left[\left(\beta^{\prime} \delta+\gamma^{\prime} h+a d(p)\right)\left(x_{1}\right), \delta\left(x_{2}\right)\right] \\
& -\left[x_{1},\left(\beta^{\prime} \delta^{2}+\gamma^{\prime} h \delta+a d(p) \delta\right)\left(x_{2}\right)\right]-c\left[x_{1}, x_{2}\right]-\left[h\left(x_{1}\right), x_{2}\right]-\left[x_{1}, h\left(x_{2}\right)\right] .
\end{aligned}
$$

By Kharchenko's theory R satisfies

$$
\begin{aligned}
\left(b\left[x_{1}, x_{2}\right]+\left[y_{1}, x_{2}\right]+\right. & {\left.\left[x_{1}, y_{2}\right]\right) } \\
& +\left(\beta^{\prime} \delta+\gamma^{\prime} h+a d(p)\right)(b)\left[x_{1}, x_{2}\right]+b\left[\beta^{\prime} y_{1}+\gamma^{\prime} z_{1}+\left[p, x_{1}\right], x_{2}\right] \\
& +b\left[x_{1}, \beta^{\prime} y_{2}+\gamma^{\prime} z_{2}+\left[p, x_{2}\right]\right]+\left[\beta^{\prime} t_{1}+\gamma^{\prime} u_{1}+\left[p, y_{1}\right], x_{2}\right] \\
& +\left[y_{1}, \beta^{\prime} y_{2}+\gamma^{\prime} z_{2}+\left[p, x_{2}\right]\right]+\left[\beta^{\prime} y_{1}+\gamma^{\prime} z_{1}+\left[p, x_{1}\right], y_{2}\right] \\
& +\left[x_{1}, \beta^{\prime} t_{2}+\gamma^{\prime} u_{2}+\left[p, y_{2}\right]\right]-c\left[x_{1}, x_{2}\right]-\left[z_{1}, x_{2}\right]-\left[x_{1}, z_{2}\right] .
\end{aligned}
$$

In particular, for $x_{2}=y_{2}=z_{2}=0, R$ satisfies $\left[x_{1}, \beta^{\prime} t_{2}+\gamma^{\prime} u_{2}\right]$, which forces R to be commutative, since either $\beta^{\prime} \neq 0$ or $\gamma^{\prime} \neq 0$, a contradiction.

Consider now the case when there exist $\lambda, \mu \in C$, not both zero, such that

$$
\lambda \delta+\mu h=a d(q)
$$

for some $q \in U$. We will prove that the last assumption implies a number of contradictions. We divide the proof into three cases:

The case $\lambda=0$.
For $\lambda=0$, we have $\mu \neq 0$ and $h=a d\left(\mu^{-1} q\right)$, the inner derivation induced by $\mu^{-1} q$. It follows that $\alpha d+\beta \delta=a d\left(p-\gamma \mu^{-1} q\right)$, with $\alpha \neq 0$ and $\beta \neq 0$, since at least one of δ, d and h must be not inner.

Then $\delta=\alpha^{\prime} d+\beta^{\prime} a d\left(p^{\prime}\right)$, for $p^{\prime}=p-\gamma \mu^{-1} q$ and $0 \neq \alpha^{\prime}=-\beta^{-1} \alpha, 0 \neq \beta^{\prime}=\beta^{-1}$. By (4) R satisfies:

$$
\begin{aligned}
a\left(b\left[x_{1}, x_{2}\right]+\right. & {\left.\left[\alpha^{\prime} d\left(x_{1}\right)+\beta^{\prime}\left[p^{\prime}, x_{1}\right], x_{2}\right]+\left[x_{1}, \alpha^{\prime} d\left(x_{2}\right)+\beta^{\prime}\left[p^{\prime}, x_{2}\right]\right]\right) } \\
& +d(b)\left[x_{1}, x_{2}\right]+b\left[d\left(x_{1}\right), x_{2}\right]+b\left[x_{1}, d\left(x_{2}\right)\right] \\
& +\left[d\left(\alpha^{\prime}\right) d\left(x_{1}\right)+\alpha^{\prime} d^{2}\left(x_{1}\right)+d\left(\beta^{\prime}\right)\left[p, x_{1}\right]+\beta^{\prime}\left[d\left(p^{\prime}\right), x_{1}\right]+\beta^{\prime}\left[p^{\prime}, d\left(x_{1}\right)\right], x_{2}\right] \\
& +\left[\alpha^{\prime} d\left(x_{1}\right)+\beta^{\prime}\left[p^{\prime}, x_{1}\right], d\left(x_{2}\right)\right]+\left[d\left(x_{1}\right), \alpha^{\prime} d\left(x_{2}\right)+\beta^{\prime}\left[p^{\prime}, x_{2}\right]\right] \\
& +\left[x_{1}, d\left(\alpha^{\prime}\right) d\left(x_{2}\right)+\alpha^{\prime} d^{2}\left(x_{2}\right)+d\left(\beta^{\prime}\right)\left[p, x_{2}\right]+\beta^{\prime}\left[d\left(p^{\prime}\right), x_{2}\right]+\beta^{\prime}\left[p^{\prime}, d\left(x_{2}\right)\right]\right] \\
& -c\left[x_{1}, x_{2}\right]-\left[\left[q^{\prime}, x_{1}\right], x_{2}\right]-\left[x_{1},\left[q^{\prime}, x_{2}\right]\right] .
\end{aligned}
$$

In this case, Kharchenko's result implies that R satisfies

$$
\begin{aligned}
a\left(b\left[x_{1}, x_{2}\right]+\right. & {\left.\left[\alpha^{\prime} y_{1}+\beta^{\prime}\left[p^{\prime}, x_{1}\right], x_{2}\right]+\left[x_{1}, \alpha^{\prime} y_{2}+\beta^{\prime}\left[p^{\prime}, x_{2}\right]\right]\right) } \\
& +d(b)\left[x_{1}, x_{2}\right]+b\left[y_{1}, x_{2}\right]+b\left[x_{1}, y_{2}\right] \\
& +\left[d\left(\alpha^{\prime}\right) y_{1}+\alpha^{\prime} z_{1}+d\left(\beta^{\prime}\right)\left[p, x_{1}\right]+\beta^{\prime}\left[d\left(p^{\prime}\right), x_{1}\right]+\beta^{\prime}\left[p^{\prime}, y_{1}\right], x_{2}\right] \\
& +\left[\alpha^{\prime} y_{1}+\beta^{\prime}\left[p^{\prime}, x_{1}\right], y_{2}\right]+\left[y_{1}, \alpha^{\prime} y_{2}+\beta^{\prime}\left[p^{\prime}, x_{2}\right]\right] \\
& +\left[x_{1}, d\left(\alpha^{\prime}\right) y_{2}+\alpha^{\prime} z_{2}+d\left(\beta^{\prime}\right)\left[p, x_{2}\right]+\beta^{\prime}\left[d\left(p^{\prime}\right), x_{2}\right]+\beta^{\prime}\left[p^{\prime}, y_{2}\right]\right] \\
& -c\left[x_{1}, x_{2}\right]-\left[\left[q^{\prime}, x_{1}\right], x_{2}\right]-\left[x_{1},\left[q^{\prime}, x_{2}\right]\right]
\end{aligned}
$$

in particular R satisfies the blended component $\alpha^{\prime}\left[x_{1}, z_{2}\right]$, a contradiction again.
The case $\lambda \neq 0$ and $\mu=0$.
In this case $\delta=\lambda^{-1} a d(q)=a d(v)$, for $v=\lambda^{-1} q$.
Suppose first that $\{d, h\}$ is linearly C-independent modulo X-inner derivations.
By (4) it follows that R satisfies

$$
\begin{aligned}
a\left(b\left[x_{1}, x_{2}\right]+\right. & {\left.\left[\left[v, x_{1}\right], x_{2}\right]+\left[x_{1},\left[v, x_{2}\right]\right]\right) } \\
& +d(b)\left[x_{1}, x_{2}\right]+b\left[d\left(x_{1}\right), x_{2}\right]+b\left[x_{1}, d\left(x_{2}\right)\right]+\left[\left[d(v), x_{1}\right]+\left[v, d\left(x_{1}\right)\right], x_{2}\right] \\
& +\left[\left[v, x_{1}\right], d\left(x_{2}\right)\right]+\left[d\left(x_{1}\right),\left[v, x_{2}\right]\right]+\left[x_{1},\left[d(v), x_{2}\right]+\left[v, d\left(x_{2}\right)\right]\right] \\
& -c\left[x_{1}, x_{2}\right]-\left[h\left(x_{1}\right), x_{2}\right]-\left[x_{1}, h\left(x_{2}\right)\right]
\end{aligned}
$$

and using Kharchenko's theorem, R satisfies

$$
\begin{aligned}
a\left(b\left[x_{1}, x_{2}\right]+\right. & {\left.\left[\left[v, x_{1}\right], x_{2}\right]+\left[x_{1},\left[v, x_{2}\right]\right]\right) } \\
& +d(b)\left[x_{1}, x_{2}\right]+b\left[y_{1}, x_{2}\right]+b\left[x_{1}, y_{2}\right]+\left[\left[d(v), x_{1}\right]+\left[v, y_{1}\right], x_{2}\right] \\
& +\left[\left[v, x_{1}\right], y_{2}\right]+\left[y_{1},\left[v, x_{2}\right]\right]+\left[x_{1},\left[d(v), x_{2}\right]+\left[v, y_{2}\right]\right] \\
& -c\left[x_{1}, x_{2}\right]-\left[z_{1}, x_{2}\right]-\left[x_{1}, z_{2}\right]
\end{aligned}
$$

and in particular R satisfies the blended component $\left[z_{1}, x_{2}\right]$, a contradiction.
In the case $\{d, h\}$ is linearly C-dependent modulo X-inner derivations, there are $\eta_{1}, \eta_{2} \in C$ and $w \in U$ such that $\eta_{1} d+\eta_{2} h=a d(w)$, the inner derivation induced by w. Of course both d and h are outer derivations, moreover at least one of η_{1} and η_{2} must be non-zero. Without loss of generality, say $\eta_{1} \neq 0$. So we may write $d=\eta_{1}^{-1}\left(-\eta_{2} h+a d(w)\right)=\eta h+a d(u)$, for $\eta=-\eta_{1}^{-1} \eta_{2}$ and $u=\eta_{1}^{-1} w$. Hence $d \delta(x)=$ $[\eta h(v), x]+[v, \eta h(x)]+[u,[v, x]]$. So by (4), R satisfies

$$
\begin{aligned}
a\left(b\left[x_{1}, x_{2}\right]+\right. & {\left.\left[\left[v, x_{1}\right], x_{2}\right]+\left[x_{1},\left[v, x_{2}\right]\right]\right) } \\
& +(\eta h(b)+[u, b])\left[x_{1}, x_{2}\right]+b\left[\eta h\left(x_{1}\right)+\left[u, x_{1}\right], x_{2}\right]+b\left[x_{1}, \eta h\left(x_{2}\right)+\left[u, x_{2}\right]\right] \\
& +\left[\left[\eta h(v), x_{1}\right]+\left[v, \eta h\left(x_{1}\right)\right]+\left[u,\left[v, x_{1}\right]\right], x_{2}\right] \\
& +\left[\left[v, x_{1}\right], \eta h\left(x_{2}\right)+\left[u, x_{2}\right]\right]+\left[\eta h\left(x_{1}\right)+\left[u, x_{1}\right],\left[v, x_{2}\right]\right] \\
& +\left[x_{1},\left[\eta h(v), x_{2}\right]+\left[v, \eta h\left(x_{2}\right)\right]+\left[u,\left[v, x_{2}\right]\right]\right] \\
& -c\left[x_{1}, x_{2}\right]-\left[h\left(x_{1}\right), x_{2}\right]-\left[x_{1}, h\left(x_{2}\right)\right]
\end{aligned}
$$

and again by Kharchenko's result, R satisfies

$$
\begin{aligned}
a\left(b\left[x_{1}, x_{2}\right]+\right. & {\left.\left[\left[v, x_{1}\right], x_{2}\right]+\left[x_{1},\left[v, x_{2}\right]\right]\right) } \\
& +(\eta h(b)+[u, b])\left[x_{1}, x_{2}\right]+b\left[\eta y_{1}+\left[u, x_{1}\right], x_{2}\right]+b\left[x_{1}, \eta y_{2}+\left[u, x_{2}\right]\right] \\
& +\left[\left[\eta h(v), x_{1}\right]+\left[v, \eta y_{1}\right]+\left[u,\left[v, x_{1}\right]\right], x_{2}\right] \\
& +\left[\left[v, x_{1}\right], \eta y_{2}+\left[u, x_{2}\right]\right]+\left[\eta y_{1}+\left[u, x_{1}\right],\left[v, x_{2}\right]\right] \\
& +\left[x_{1},\left[\eta h(v), x_{2}\right]+\left[v, \eta y_{2}\right]+\left[u,\left[v, x_{2}\right]\right]\right] \\
& -c\left[x_{1}, x_{2}\right]-\left[y_{1}, x_{2}\right]-\left[x_{1}, y_{2}\right] .
\end{aligned}
$$

From this last, R satisfies

$$
b\left[x_{1}, \eta y_{2}\right]+\left[\left[v, x_{1}\right], \eta y_{2}\right]+\left[x_{1},\left[v, \eta y_{2}\right]\right]-\left[x_{1}, y_{2}\right]
$$

which is

$$
b\left[x_{1}, \eta y_{2}\right]+\left[\eta v,\left[x_{1}, y_{2}\right]\right]-\left[x_{1}, y_{2}\right] .
$$

For $\eta=0$ we have that R satisfies $\left[x_{1}, y_{2}\right]$ that is R is commutative, a contradiction. Assume $\eta \neq 0$ and denote by H the following generalized derivation of $R: H(x)=$ $(\eta G)(x)=(\eta b) x+[\eta v, x]$ for all $x \in R$. Therefore $[H(u), u]=0$ for all $u \in[R, R]$. By [1, Theorem 1] either both $v \in C$ and $b \in C$ and we obtain conclusion 2 of the Theorem; or R satisfies the standard identity $s_{4}\left(x_{1}, \ldots, x_{4}\right)$, that is $U=M_{2}(C)$, and there exists $\gamma \in C$ such that $b=-2 v+\gamma$. In this last case, by calculations it follows that R and U satisfy the identity $\eta v\left[x_{1}, x_{2}\right]+\left[x_{1}, x_{2}\right] \eta v+\eta \gamma\left[x_{1}, x_{2}\right]-\left[x_{1}, x_{2}\right]$ Now choose $x_{1}=e_{i j}, x_{2}=e_{j j}$ and multiply on the right by $e_{i i}$, for $i \neq j$ and $i, j \in\{1,2\}$. We get $e_{i j} \eta v e_{i i}=0$, which means that v is a diagonal matrix in $M_{2}(C)$. As in Lemma 1.11, standard argument shows that v is a central matrix, as well as b. Also in this case we are done (conclusion 2).

The case $\lambda \neq 0$ and $\mu \neq 0$.
In this case we may write $\delta=\mu^{\prime} h+\lambda^{\prime} a d(q)$, with $\mu^{\prime}=-\lambda^{-1} \mu \neq 0, \lambda^{\prime}=\lambda^{-1} \neq 0$. Moreover we may consider h as an outer derivation of R; in fact if h is an inner derivation, then also d and δ should be inner.

Hence $\alpha d+\beta \mu^{\prime} h+\beta \lambda^{\prime} a d(q)+\gamma h=a d(p)$, with $\alpha \neq 0$ and $d \neq 0$, since h is not inner. Also here we show that a number of contradictions follows.

Write $d=\beta^{\prime} h+\beta^{\prime \prime} a d(c)$, for $\beta^{\prime}=-\alpha^{-1}\left(\beta \mu^{\prime}+\gamma\right), \beta^{\prime \prime}=\alpha^{-1} \neq 0$ and $c=p-\beta \lambda^{\prime} q$. By (4), R satisfies

$$
\begin{aligned}
a b\left[x_{1}, x_{2}\right]+ & a\left[\mu^{\prime} h\left(x_{1}\right)+\lambda^{\prime}\left[q, x_{1}\right], x_{2}\right]+a\left[x_{1}, \mu^{\prime} h\left(x_{2}\right)+\lambda^{\prime}\left[q, x_{2}\right]\right] \\
& +\left(\beta^{\prime} h(b)+\beta^{\prime \prime}[c, b]\right)\left[x_{1}, x_{2}\right]+b\left[\beta^{\prime} h\left(x_{1}\right)+\beta^{\prime \prime}\left[c, x_{1}\right], x_{2}\right] \\
& +b\left[x_{1}, \beta^{\prime} h\left(x_{2}\right)+\beta^{\prime \prime}\left[c, x_{2}\right]\right] \\
& +\left[\beta^{\prime} h\left(\mu^{\prime}\right) h\left(x_{1}\right)+\beta^{\prime} \mu^{\prime} h^{2}\left(x_{1}\right)+\beta^{\prime} h\left(\lambda^{\prime}\right)\left[q, x_{1}\right]+\beta^{\prime} \lambda^{\prime}\left[h(q), x_{1}\right]\right. \\
& \left.+\beta^{\prime} \lambda^{\prime}\left[q, h\left(x_{1}\right)\right]+\left[c, \beta^{\prime \prime} \mu^{\prime} h\left(x_{1}\right)\right]+\left[c, \beta^{\prime \prime} \lambda^{\prime}\left[q, x_{1}\right]\right], x_{2}\right] \\
& +\left[\mu^{\prime} h\left(x_{1}\right)+\lambda^{\prime}\left[q, x_{1}\right], \beta^{\prime} h\left(x_{2}\right)+\beta^{\prime \prime}\left[c, x_{2}\right]\right] \\
& +\left[\beta^{\prime} h\left(x_{1}\right)+\beta^{\prime \prime}\left[c, x_{1}\right], \mu^{\prime} h\left(x_{2}\right)+\lambda^{\prime}\left[q, x_{2}\right]\right] \\
& +\left[x_{1}, \beta^{\prime} h\left(\mu^{\prime}\right) h\left(x_{2}\right)+\beta^{\prime} \mu^{\prime} h^{2}\left(x_{2}\right)+\beta^{\prime} h\left(\lambda^{\prime}\right)\left[q, x_{2}\right]+\beta^{\prime} \lambda^{\prime}\left[h(q), x_{2}\right]\right. \\
& \left.+\beta^{\prime} \lambda^{\prime}\left[q, h\left(x_{2}\right)\right]+\left[c, \beta^{\prime \prime} \mu^{\prime} h\left(x_{2}\right)\right]+\left[c, \beta^{\prime \prime} \lambda^{\prime}\left[q, x_{2}\right]\right]\right] \\
& -c\left[x_{1}, x_{2}\right]-\left[h\left(x_{1}\right), x_{2}\right]-\left[x_{1}, h\left(x_{2}\right)\right]
\end{aligned}
$$

and since h is outer, R satisfies

$$
\begin{align*}
a b\left[x_{1}, x_{2}\right]+ & a\left[\mu^{\prime} y_{1}+\lambda^{\prime}\left[q, x_{1}\right], x_{2}\right]+a\left[x_{1}, \mu^{\prime} y_{2}+\lambda^{\prime}\left[q, x_{2}\right]\right] \\
& +\left(\beta^{\prime} h(b)+\beta^{\prime \prime}[c, b]\right)\left[x_{1}, x_{2}\right]+b\left[\beta^{\prime} y_{1}+\beta^{\prime \prime}\left[c, x_{1}\right], x_{2}\right] \\
& +b\left[x_{1}, \beta^{\prime} y_{2}+\beta^{\prime \prime}\left[c, x_{2}\right]\right] \\
& +\left[\beta^{\prime} h\left(\mu^{\prime}\right) y_{1}+\beta^{\prime} \mu^{\prime} z_{1}+\beta^{\prime} h\left(\lambda^{\prime}\right)\left[q, x_{1}\right]+\beta^{\prime} \lambda^{\prime}\left[h(q), x_{1}\right]\right. \\
& \left.+\beta^{\prime} \lambda^{\prime}\left[q, y_{1}\right]+\left[c, \beta^{\prime \prime} \mu^{\prime} y_{1}\right]+\left[c, \beta^{\prime \prime} \lambda^{\prime}\left[q, x_{1}\right]\right], x_{2}\right] \\
& +\left[\mu^{\prime} y_{1}+\lambda^{\prime}\left[q, x_{1}\right], \beta^{\prime} y_{2}+\beta^{\prime \prime}\left[c, x_{2}\right]\right]+\left[\beta^{\prime} y_{1}+\beta^{\prime \prime}\left[c, x_{1}\right], \mu^{\prime} y_{2}+\lambda^{\prime}\left[q, x_{2}\right]\right] \\
& +\left[x_{1}, \beta^{\prime} h\left(\mu^{\prime}\right) y_{2}+\beta^{\prime} \mu^{\prime} z_{2}+\beta^{\prime} \lambda^{\prime}\left[h(q), x_{2}\right]\right. \tag{5}\\
& \left.+\beta^{\prime} \lambda^{\prime}\left[q, y_{2}\right]+\left[c, \beta^{\prime \prime} \mu^{\prime} y_{2}\right]+\left[c, \beta^{\prime \prime} \lambda^{\prime}\left[q, x_{2}\right]\right]\right] \\
& -c\left[x_{1}, x_{2}\right]-\left[y_{1}, x_{2}\right]-\left[x_{1}, y_{2}\right]
\end{align*}
$$

in particular R satisfies the component $\beta^{\prime} \mu^{\prime}\left[z_{1}, x_{2}\right]$, which is a contradiction unless when $\beta^{\prime}=0$.

In case $\beta^{\prime}=0$, we write (5) as follows

$$
\begin{aligned}
a b\left[x_{1}, x_{2}\right] & +a\left[\mu^{\prime} y_{1}+\lambda^{\prime}\left[q, x_{1}\right], x_{2}\right]+a\left[x_{1}, \mu^{\prime} y_{2}+\lambda^{\prime}\left[q, x_{2}\right]\right] \\
& +\beta^{\prime \prime}[c, b]\left[x_{1}, x_{2}\right]+b\left[\beta^{\prime \prime}\left[c, x_{1}\right], x_{2}\right]+b\left[x_{1}, \beta^{\prime \prime}\left[c, x_{2}\right]\right] \\
& +\left[\left[c, \beta^{\prime \prime} \mu^{\prime} y_{1}\right]+\left[c, \beta^{\prime \prime} \lambda^{\prime}\left[q, x_{1}\right]\right], x_{2}\right] \\
& +\left[\mu^{\prime} y_{1}+\lambda^{\prime}\left[q, x_{1}\right], \beta^{\prime \prime}\left[c, x_{2}\right]\right]+\left[\beta^{\prime \prime}\left[c, x_{1}\right], \mu^{\prime} y_{2}+\lambda^{\prime}\left[q, x_{2}\right]\right] \\
& +\left[x_{1},\left[c, \beta^{\prime \prime} \mu^{\prime} y_{2}\right]+\left[c, \beta^{\prime \prime} \lambda^{\prime}\left[q, x_{2}\right]\right]\right] \\
& -c\left[x_{1}, x_{2}\right]-\left[y_{1}, x_{2}\right]-\left[x_{1}, y_{2}\right]
\end{aligned}
$$

and R satisfies the component

$$
\begin{aligned}
a\left[\mu^{\prime} y_{1}, x_{2}\right] & +a\left[x_{1}, \mu^{\prime} y_{2}\right]+\left[\left[c, \beta^{\prime \prime} \mu^{\prime} y_{1}\right], x_{2}\right]+\left[x_{1},\left[c, \beta^{\prime \prime} \mu^{\prime} y_{2}\right]\right] \\
& -c\left[x_{1}, x_{2}\right]-\left[y_{1}, x_{2}\right]-\left[x_{1}, y_{2}\right] .
\end{aligned}
$$

For $y_{1}=x_{2}$ and $y_{2}=x_{1}=0$ it follows that R satisfies $\beta^{\prime \prime} \mu^{\prime}\left(\left[c, y_{1}\right]_{2}\right.$, which implies $[c, x]_{2}=0$, for all $x \in R$, since $\mu^{\prime} \neq 0$ and $\beta^{\prime \prime} \neq 0$. Denote by $\varphi=a d(c)$ the inner derivation of R induced by c. Hence $[\varphi(x), x]=0$ for all $x \in R$, thus by Posner's result in [11] it follows $c \in C$. Therefore, since $\beta^{\prime}=0$ and c is central, it follows $d=0$, which is a contradiction again.

References

1. N. Argac, L. Carini, and V. De Filippis, An Engel condition with generalized derivations on Lie ideals, Taiwanese J. Math. 12 (2008), 419-433.
2. K.I. Beidar, Rings with generalized identities, Moscow Univ. Math. Bull. 33 (1978), 53-58.
3. K.I. Beidar, W.S. Martindale, and A.V. Mikhalev, Rings with Generalized Identities, Monographs and Textbooks in Pure and Applied Mathematics 196, Marcel Dekker, Inc., New York, 1996.
4. C.L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), 723-728.
5. C.L. Chuang, The additive subgroup generated by a polynomial, Israel J. Math. 59 (1987), 98106.
6. B. Hvala, Generalized derivations in rings, Comm. Algebra 26 (1998), 1147-1166.
7. V.K. Kharchenko, Differential identities of prime rings, Algebra i Logika 17 (1978), 155-168.
8. C. Lanski, Differential identities, Lie ideals and Posner's theorems, Pacific J. Math. 134 (1988), 275-297.
9. T.K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27 (1999), 4057-4073.
10. T.K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992), 27-38.
11. E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
