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Abstract

Let R be a prime ring of characteristic different from 2, U the Utumi quotient
ring of R, C the extended centroid of R, F and G non-zero generalized deriva-
tions of R and f(x1, . . . , xn) a polynomial over C. Denote by f(R) the set
{f(r1, . . . , rn) : r1, . . . , rn ∈ R} of all the evaluations of f(x1, . . . , xn) in R.
Suppose that f(x1, . . . , xn) is not central valued on R. If R does not embed
in M2(K), the algebra of 2 × 2 matrices over a field K, and the composition
(FG) acts as a generalized derivation on the elements of f(R), then (FG) is a
generalized derivation of R and one of the following holds:

1. there exists α ∈ C such that F (x) = αx, for all x ∈ R;

2. there exists α ∈ C such that G(x) = αx, for all x ∈ R;

3. there exist a, b ∈ U such that F (x) = ax, G(x) = bx, for all x ∈ R;

4. there exist a, b ∈ U such that F (x) = xa, G(x) = xb, for all x ∈ R;

5. there exist a, b ∈ U , α, β ∈ C such that F (x) = ax + xb,
G(x) = αx+ β(ax− xb), for all x ∈ R.

Throughout this paper, R always denotes a prime ring with center Z(R), U the
Utumi quotient ring of R and C = Z(U) the center of U . We refer the reader to [3]
for the definitions and the related properties of these objects.

Let F : R −→ R be an additive mapping of R into itself. It is said to be a
derivation of R if F (xy) = F (x)y+ xF (y), for all x, y ∈ R. If F (xy) = F (x)y+ xd(y),
for all x, y ∈ R and d a derivation of R, then the mapping F is called a generalized
derivation on R. Obviously any derivation of R is a generalized derivation of R.
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A typical example of a generalized derivation is a map of the form x 7→ ax+ xb,
where a, b are fixed elements in R; such generalized derivations are called inner. The
well known Posner’s first theorem states that if δ and d are two non-zero derivations
of R, then the composition (dδ) cannot be a non-zero derivation of R ([11, Theorem 1]).
An analogue of Posner’s result for Lie derivations was proved by Lanski in [8]. More
precisely Lanski showed that if δ and d are two non-zero derivations of R and L is a
Lie ideal of R, then (dδ) cannot be a Lie derivation of L into R unless char(R) = 2
and either R satisfies s4(x1, ..., x4), the standard identity of degree 4, or d = αδ, for
α ∈ C.

In [6] Hvala initiated the algebraic study of generalized derivations. In particular,
generalized derivations whose product is again a generalized derivation was character-
ized. More precisely Hvala in ([6, Theorem 1]) proved that:

Theorem

Let R be a prime ring of characteristic different from 2, U the Utumi quotient
ring of R, C the extended centroid of R, F and G non-zero generalized derivations
of R. If the composition FG acts as a generalized derivation on R, then one of the
following holds:

1. there exists α ∈ C such that F (x) = αx, for all x ∈ R;

2. there exists α ∈ C such that G(x) = αx, for all x ∈ R;

3. there exist a, b ∈ U such that F (x) = ax, G(x) = bx, for all x ∈ R;

4. there exist a, b ∈ U such that F (x) = xa, G(x) = xb, for all x ∈ R;

5. there exist a, b ∈ U , α, β ∈ C such that F (x) = ax+xb, G(x) = αx+β(ax−xb),
for all x ∈ R.

One might wonder if it is possible that the composition of two generalized deriva-
tions with special forms may act like a generalized derivation on some subset of prime
rings. Following this line of investigation, our main theorem gives a description of the
forms of two generalized derivations F and G of a prime ring R, in the case when (FG)
acts as a generalized derivation on the elements of the subset f(R), where f(R) is a the
set of all evaluations in R of a polynomial f(x1, . . . , xn) over C in n non-commuting
variables. More precisely we assume that this means (FG)(st) = (FG)(s)t + sh(t),
for all s, t ∈ f(R) and for a derivationn h of R. The statement of our result is the
following:

Theorem 1

Let R be a prime ring of characteristic different from 2, U the Utumi quotient
ring of R, C the extended centroid of R, F and G non-zero generalized derivations
of R and f(x1, . . . , xn) a polynomial over C. Denote by f(R) the set {f(r1, . . . , rn) :
r1, . . . , rn ∈ R} of all the evaluations of f(x1, . . . , xn) in R. Suppose that f(x1, . . . , xn)
is not central valued on R. If R does not embed in M2(K), the algebra of 2 × 2
matrices over a field K, and the composition (FG) acts as a generalized derivation
on the elements of f(R), then (FG) is a generalized derivation of R and one of the
following holds:

1. there exists α ∈ C such that F (x) = αx, for all x ∈ R;
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2. there exists α ∈ C such that G(x) = αx, for all x ∈ R;
3. there exist a, b ∈ U such that F (x) = ax, G(x) = bx, for all x ∈ R;
4. there exist a, b ∈ U such that F (x) = xa, G(x) = xb, for all x ∈ R;
5. there exist a, b ∈ U , α, β ∈ C such that F (x) = ax+xb, G(x) = αx+β(ax−xb),

for all x ∈ R.

The assumption that R does not embed in M2(K), for K a field, is essential to the
main result. For example let eij be the usual matrix unit in R = M2(K) and consider
F (x) = e22x−xe22, G(x) = (e12+e21)x+x(e12+e21). Then FG([R,R]) = (0), but FG
does not act on R like a generalized derivation as described by the main theorem.

1. The matrix case and inner generalized derivations

In this section we will study the case when R = Mm(K) is the algebra of m × m
matrices over an infinite field K. Here we will assume that there exist a, b, c, q, v, w
elements of R such that a(cx+ xq) + (cx+ xq)b = vx+ xw for all x ∈ [R,R]. Notice
that the set [R,R] = {[r1, r2] : r1, r2 ∈ R} is invariant under the action of all inner
automorphisms of R. Let us denote as usual by eij the matrix unit with 1 in (i, j)-entry
and zero elsewhere, moreover let I be the identity matrix in R. In this section we will
prove that, in case m ≥ 3, one of the following holds:

• c and q are central matrices;
• a and b are central matrices;
• b, q and w are central matrices;
• a, c and v are central matrices;
• there exists η ∈ K such that a+ ηc, b− ηq are central matrices.

In order to prove this result we will make implicit use of the following easy remarks:

Remark 1.1 For any inner automorphism ϕ of Mm(K), we have that

0 = ϕ
(
a(cs+ sq) + (cs+ sq)b− vs− sw

)
= ϕ(a)

(
ϕ(c)s+ sϕ(q)

)
+
(
ϕ(c)s+ sϕ(q)

)
ϕ(b)− ϕ(v)s− sϕ(w)

for all s ∈ [R,R], since [R,R] is invariant under the action of all inner automorphisms
of R. Clearly

• c and q are central matrices if and only if ϕ(c) and ϕ(q) are central matrices;
• a and b are central matrices if and only if ϕ(a) and ϕ(b) are central matrices;
• b, q and w are central matrices if and only if ϕ(b), ϕ(q) and ϕ(w) are central

matrices;
• a, c and v are central matrices if and only if ϕ(a), ϕ(c) and ϕ(v) are central

matrices;
• a + αb, c − αq and b − ηq are central matrices if and only if ϕ(a) + αϕ(b),
ϕ(c)− αϕ(q) and ϕ(b)− ηϕ(q) are central matrices.

Hence, to prove our result, we may replace a, b, c, q, v, w respectively with ϕ(a), ϕ(b),
ϕ(c), ϕ(q), ϕ(v), ϕ(w).
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Remark 1.2 The matrix unit ekl is an element of [R,R] for all k 6= l.

We need the following:

Remark 1.3 Let R be a prime ring and a, c ∈ R such that ax+ xc = 0 for all x ∈ R.
Then a = −c ∈ Z(R).

Proof. Consider the assumed identity

ax+ xc = 0 . (1)

Left multiplying (1) by any t ∈ R, we have tax+ txc = 0 (1′). On the other hand, by
replacing x with tx in (1), we also have atx+ txc = 0 (1′′). Comparing (1′) with (1′′)
it follows [a, t]x = 0 and, by the primeness of R, a must be central. So x(a + c) = 0,
that is a = −c.

Remark 1.4 Let R be a prime ring and a, b, c ∈ R such that axb + xc = 0 for all
x ∈ R. Then either a ∈ Z(R) and c+ ab = 0, or a, b, c are central elements of R.

Proof. Consider the assumed identity

axb+ xc = 0. (2)

Right multiplying (2) by any t ∈ R, we have axbt+ xct = 0 (2′). On the other hand,
by replacing x with xt in (2), we also have axtb + xtc = 0 (2′′). Comparing (2′) with
(2′′) it follows

ax[b, t] + x[c, t] = 0. (3)

As above, left multiplying (3) by any z ∈ R, we have zax[b, t] + zx[c, t] = 0 (3′).
Moreover, by replacing x with zx in (3), we also have azx[b, t] + zx[c, t] = 0 (3′′).
Comparing (3′) with (3′′) it follows [a, z]x[b, t] = 0 and, by the primeness of R, either
a ∈ Z(R) or b ∈ Z(R). In the first case x(ab+ c) = 0, which implies ab+ c = 0. In the
second case abx+ xc = 0, and the conclusion follows from Remark 1.3.

We also need the following lemma:

Lemma 1.5

Let F be a infinite field and n ≥ 2. If A1, . . . , Ak are not scalar matrices in
Mn(F ) then there exists some invertible matrix Q ∈ Mn(F ) such that each matrix
QA1Q

−1, . . . , QAkQ
−1 has all non-zero entries.

Proof. First we show that if A ∈ Mn(F ) is not scalar then there exists a conjugate
QAQ−1 having a non-zero entry in any particular position.

Assume that A is not diagonal, hence for some i 6= j the (i, j)-entry Aij of A is non-
zero. Clearly if p 6= q then there exists a permutation σ ∈ Sn such that σ(i) = p and
σ(j) = q. We consider the automorphism ϕσ on Mn(F ) defined by ϕσ(ers) = eσ(r)σ(s),
for any matrix unit ers. Let Q ∈ Mn(F ) be the permutation matrix which induces
in Mn(F ) this automorphism ϕσ, hence the (p, q)-entry of QAQ−1 is Aij . Assume now
that p = q. By the previous argument, for s 6= p, some conjugate A′ of A has non-zero
(p, s)-entry. Let λ ∈ F , and put A′λ = (I + λesp)A

′(I − λesp). Then the (p, p)-entry of
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A′λ is A′pp − λA′ps. Of course we can choose λ in F such that A′pp − λA′ps is not zero.
This proves our claim in the case when A is not diagonal. If A is a diagonal matrix
which is not a scalar one, there exist i 6= j such that Aii 6= Ajj . The (i, j)-entry of
the conjugate A′′ = (I + eij)A(I − eij) is Ajj −Aii which is not zero. Hence A′′ is not
diagonal and by the previous case we are done.

Consider the set {xij : 1 ≤ i, j ≤ n} of n2 commutative indeterminates and let
Mn(F [xij ]) be the algebra of n × n matrices over the polynomial ring F [xij ]. Let
P =

∑
ij xijeij be the generic matrix and consider, for l = 1, . . . , k, Pl = P · Al ·

adj(P ). Any substitution of the indeterminates xij with elements cij ∈ F induces a
homomorphism ϕ : Mn(F [xij ]) −→ Mn(F ). If ϕ(P ) is an invertible matrix Q then
ϕ(Pl) is a non-zero scalar multiple of QAlQ

−1. Clearly any matrix Q ∈ Mn(F ) is
the image of P under the action of some of such homomorphisms. Now each entry
of adj(P ) is a homogeneous polynomial in {xij} so the entries of Pl are homogeneous
polynomials in {xij} without constant terms. None of these entries is zero by our
observation above: in any particular position some conjugate of Al has a non-zero
entry. Also det(P ) is a non-zero polynomial of F [xij ]. Let G(xij) be the product
of det(P ) and all entries of Pl, for l = 1, . . . , k. Clearly G(xij) is a non-zero polynomial
and, since the field F is infinite, some evaluation of G(xij) is not zero in F . As above
let ϕ be the homomorphism induced by this evaluation, then Q = ϕ(P ) is invertible
and QAlQ

−1 = 1
det(Q)ϕ(Pl) is a matrix with all non-zero entries, for l = 1, . . . , k.

We start the proof of the main theorem of this section by studying the following
case:

Lemma 1.6

Let K be an infinite field, let R = Mm(K) be the algebra of m×m matrices over
K, Z(R) the center of R and S = [R,R]. Assume that there exist a, b, c, q, v, w ∈ R
such that a(cs+ sq) + (cs+ sq)b = vs+ sw for all s ∈ S. If q ∈ Z(R) then one of the
following holds:

1. c is a central matrix;

2. b and w are central matrices.

Proof. Since q ∈ Z(R), by the assumption we have that a(c+ q)s+(c+ q)sb = vs+sw
for all s ∈ S. Clearly if c + q ∈ Z(R) we are done. Suppose that b ∈ Z(R). Then
(a+b)(c+q)s = vs+sw for all s ∈ S, in other words for all i 6= j, X = (a+b)(c+q)eij−
veij−eijw = 0. In particular the (i, i)-entry of X is −eijweii = 0, that is w is a diagonal
matrix, say w =

∑m
k=1wkekk, for wk ∈ K. Let χ be any inner automorphism of R;

of course χ(q) and χ(b) are central matrices and χ ((a+ b)(c+ q)s− vs− sw) = 0
for all s ∈ S. Thus χ(w) must be a diagonal matrix, say χ(w) =

∑m
k=1w

′
kekk, for

some w′k ∈ K. In particular for r 6= s and χ(x) = (1 + ers)x(1 − ers), we have
χ(w) = w + ersw − wers. Since the (r, s)-entry of χ(w) is zero, it follows wr = ws, for
all r 6= s. This means that w is a central matrix in R and we are done.

In light of this, we consider c + q and b both non-scalar matrices. We will prove
that in this case we get a contradiction.

By Remark 1.1 and Lemma 1.5, we can assume that c+ q and b have all non-zero
entries, say c+ q =

∑
kl tklekl and b =

∑
kl bklekl, for 0 6= tkl, 0 6= bkl ∈ K.
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Since eji ∈ S for all i 6= j, then for any i 6= j

X = a(c+ q)eji + (c+ q)ejib− veji − ejiw = 0

in particular the (i, j)-entry of X is tijbij = 0, a contradiction.

Analogously one may prove the following (we omit the proof for brevity):

Lemma 1.7

LetK be an infinite field, let R = Mm(K) be the algebra ofm×mmatrices overK,
Z(R) the center of R and S = [R,R]. Assume that there exist a, b, c, q, v, w ∈ R such
that a(cs+ sq) + (cs+ sq)b = vs+ sw for all s ∈ S = [R,R]. If c ∈ Z(R) then one of
the following holds:

1. q is a central matrix;
2. a and v are central matrices.

Lemma 1.8

LetK be an infinite field, let R = Mm(K) be the algebra ofm×mmatrices overK,
Z(R) the center of R and S = [R,R]. Assume that there exist a, b, c, q, v, w ∈ R such
that a(cs + sq) + (cs + sq)b = vs + sw for all s ∈ S. If b ∈ Z(R) then one of the
following holds:

1. a is a central matrix;
2. q and w are central matrices.

Proof. We assume both a and q non-scalar matrices and prove that a contradiction fol-
lows. Denote q =

∑
kl qklekl and a =

∑
kl aklekl, w =

∑
kl wklekl, for wkl, qkl, akl ∈ K.

By Remark 1.1 and Lemma 1.5, we may assume that q and a have all non-zero
entries. Since b ∈ Z(R), we have that (a + b)(cs + sq) = vs + sw for all s ∈ S, that
is ((a + b)c − v)s + (a + b)sq − sw = 0 for all s ∈ S, in other words for all i 6= j,
X = ((a + b)c − v)eij + (a + b)eijq − eijw = 0. In particular the (j, i)-entry of X is
ajiqji = 0, which contradicts our assumption.

In particular, in case q ∈ Z(R), by Lemma 1.6, either c is central or w is central.
If c ∈ Z(R), one has (a+ b)(c+ q)s = vs+ sw for all s ∈ S. For any i 6= j and s = eij :
0 = Y = (a + b)(c + q)eij = veij + eijw. In particular the (i, i)-entry of Y is wji = 0,
that is w is a diagonal matrix. Let χ be any inner automorphism of R; of course χ(q),
χ(b) and χ(c) are central matrices and χ ((a+ b)(c+ q)s− vs− sw) = 0 for all s ∈ S.
Thus χ(w) must be a diagonal matrix, say χ(w) =

∑m
k=1w

′
kekk, for some w′k ∈ K. In

particular for r 6= s and χ(x) = (1 + ers)x(1− ers), we have χ(w) = w + ersw − wers.
Since the (r, s)-entry of χ(w) is zero, it follows wr = ws, for all r 6= s. This means
that w is a central matrix in R and we are done.

Lemma 1.9

Let K be an infinite field, let R = Mm(K) be the algebra of m × m matrices
over K with m ≥ 3, Z(R) the center of R. Assume that there exist a, b, c, q, v, w ∈ R
such that a(cs + sq) + (cs + sq)b = vs + sw for all s ∈ S = [R,R]. If q /∈ Z(R) and
b− αq ∈ Z(R), for a suitable α ∈ K, then a+ αc is a central matrix.
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Proof. Assume that a+αc is not a scalar matrix. By Remark 1.1 and Lemma 1.5, we
can assume that a + αc and q have all non-zero entries, say a + αc =

∑
kl tklekl and

q =
∑

kl qklekl, for 0 6= tkl, 0 6= qkl ∈ K.
Since b = βI + αq, for a suitable β ∈ K, by our assumption we have that

a(cx+ xq) + (cx+ xq)(β + αq)− vx− xw = 0

that is
(ac+ βc)x+ (a+ αc)xq + x(αq2 + βq)− vx− xw = 0

for all x ∈ S, and for x = eij , with i 6= j

0 = X = (ac+ βc)eij + (a+ αc)eijq + eij(αq
2 + βq)− veij − eijw = 0.

By calculations one has that the (j, i)-entry of X is 0 = tjiqji, a contradiction.
Therefore a+ αc must be a central matrix in R and we are done.

Lemma 1.10

Let K be an infinite field, let R = Mm(K) be the algebra of m × m matrices
over K with m ≥ 3 and S = [R,R]. Suppose there exist a, b, c, q, u, p, v, w ∈ R such
that ux+ axq + cxb+ xp = vx+ xw for all x ∈ S. Denote

a =
∑
kl

aklekl, b =
∑
kl

bklekl, c =
∑
kl

cklekl, q =
∑
kl

qklekl,

for suitable akl, bkl, ckl and qkl elements of K. If there are i 6= j such that qji 6= 0,
cji 6= 0 and bji = 0, then ari = 0 and brk = 0 for all r 6= i and k 6= r (that is the only
non-zero off-diagonal elements of b fall in the i-th row).

Proof. Consider the assumption

ux+ axq + cxb+ xp− vx− xw = 0 ∀x ∈ [R,R].

In particular, for x = eij we have:

X = ueij + aeijq + ceijb+ eijp− veij − eijw = 0

and for x = eit, with t 6= i, j, we also have

Y = ueit + aeitq + ceitb+ eitp− veit − eitw = 0.

From the previous equalities it follows that:

1. for all r 6= i, the (r, i)-entry of the matrix X is 0 = ariqji + cribji = ariqji;
2. for all s 6= j, the (j, s)-entry of the matrix X is ajiqjs + cjibjs = 0;
3. the (j, i)-entry of the matrix Y is ajiqti + cjibti = 0;
4. for all k 6= i, t, the (j, k)-entry of the matrix Y is ajiqtk + cjibtk = 0 (note that

this holds also in case k = j);

From (1) and since qji 6= 0, one has ari = 0 for all r 6= i, in particular aji = 0. Thus
by (2) and since cji 6= 0, we have bjs = 0 for all s 6= j. So by (3) bti = 0 for all t 6= i.
Finally by (4), btk = 0 for all t 6= i, j and k 6= t.
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Lemma 1.11

Let K be an infinite field, let R = Mm(K) be the algebra of m × m matrices
over K with m ≥ 3 and S = [R,R]. Suppose there exist a, b, c, q, u, p, v, w ∈ R such
that ux+ axq + cxb+ xp = vx+ xw for all x ∈ S. Denote

b =
∑
kl

bklekl, c =
∑
kl

cklekl, q =
∑
kl

qklekl,

for suitable bkl, ckl and qkl elements of K. Assume there are i 6= j such that bji = 0.
If qrs 6= 0, crs 6= 0 for all r 6= s, then b is central in R.

Proof. The first step is to apply twice Lemma 1.10: this forces b to be a diagonal
matrix. In fact bji = 0, qji 6= 0 and cji 6= 0 imply that brk = 0 for all r 6= i and k 6= r,
in particular, since m ≥ 3, ther exists t 6= i such that blt = 0, for all l 6= t. Since
qlt 6= 0, clt 6= 0 we have brk = 0 for all r 6= t and k 6= r, so bik = 0 for all k 6= i, as
required. Say b =

∑
k bkkekk.

Consider now the inner automorphism of R induced by the invertible matrix
P = I + erj , for r 6= i, j: ϕ(x) = P−1xP . Of course

ϕ(u)x+ ϕ(a)xϕ(q) + ϕ(c)xϕ(b) + xϕ(p) = ϕ(v)x+ xϕ(w),

for all x ∈ R. Moreover the (j, i)-entries of ϕ(q), ϕ(c), ϕ(b) are respectively qji 6= 0,
cji 6= 0 and bji = 0. Therefore, again by Lemma 1.10, any (r, j)-entry of ϕ(b) is zero,
for all r 6= i. By calculations 0 = (ϕ(b))rj = bjj − brr, that is bjj = brr.

On the other hand, if χ is the inner automorphisms induced by the invertible
matrix Q = I+ eri, as above χ(u)x+χ(a)xχ(q) +χ(c)xχ(b) +xχ(p) = χ(v)x+xχ(w),
for all x ∈ R. Since the (i, j)-entries of χ(q), χ(c) and χ(b) are respectively qij 6= 0,
cij 6= 0 and bij = 0, again any (r, i)-entry of χ(b) is zero, for all r 6= j, that is
0 = (ϕ(b))ri = bii − brr and bii = brr = bjj = β, for all r 6= i, j. Thus b = βI is a
central matrix in R.

Now we are ready to prove the main result of this section:

Proposition 1.12

Let K be an infinite field, let R = Mm(K) be the algebra of m × m matrices
over K with m ≥ 3 and S = [R,R]. Suppose there exist a, b, c, q, v, w ∈ R such that
a(cx+ xq) + (cx+ xq)b = vx+ xw for all x ∈ S. Then one of the following holds:

1. c, q are central matrices;
2. a, b are central matrices;
3. b, q and w are central matrices;
4. a, c and v are central matrices;
5. there exists η ∈ K such that a+ ηc and b− ηq are central matrices.

Proof. Let

a =
∑
kl

aklekl, b =
∑
kl

bklekl, c =
∑
kl

cklekl, q =
∑
kl

qklekl,

for suitable akl, bkl, ckl and qkl elements of K.
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Clearly if one of q or c is a scalar matrix we are done by Lemmas 1.6 and 1.7. In
order to prove the proposition, we may assume that q and c are non-central matrices.

By Remark 1.1 and Lemma 1.5, there exists some invertible matrix Q ∈Mm(K)
such that QqQ−1 = q′ and QcQ−1 = c′ have all non-zero entries. By this conjugation
we denote

a′ =
∑
kl

a′klekl, b
′ =

∑
kl

b′klekl, c
′ =

∑
kl

c′klekl, q
′ =

∑
kl

q′klekl,

for suitable a′kl, b
′
kl, c

′
kl and q′kl elements of K, the conjugates of elements a, b, c, q.

Moreover let u′ and v′ be the conjugates of elements u and v. Of course

a′c′x+ a′xq′ + c′xb′ + xq′b′ = v′x+ xw′ for all x ∈ S.

Since q′rs 6= 0 and c′rs 6= 0 for all r 6= s, then the following holds: if for some i 6= j
there is some b′ji = 0 then by Lemma 1.11 b′ is a central matrix, that is also b is a
central matrix and we are finished by Lemma 1.8.

Hence assume that b′rs 6= 0 for all r 6= s. Let η =
b′ji
q′ji
6= 0 and a′′ = a′ + ηc′. By

replacing a′ with a′′ − ηc′ in the main equation we get

(a′′ − ηc′)c′x+ (a′′ − ηc′)xq′ + c′xb′ + xq′b′ = v′x+ x′w for all x ∈ S.

By calculations it follows that

(a′′ − ηc′)c′x+ a′′xq′ + c′x(b′ − ηq′) + xq′b′ = v′x+ x′w for all x ∈ S.

Note that the (j, i)-entry of the matrix (b′ − ηq′) is zero; since q′rs 6= 0 and c′rs 6= 0
for all r 6= s, then by Lemma 1.11 b′ − ηq′ must be a central matrix, that is b − ηq is
central in R. Let b = ηq + β for a suitable β ∈ Z(R). Thus by the main assumption
we get

acx+ axq + ηcxq + ηxq2 + βcx+ βxq = vx+ xw for all x ∈ S.

Assume finally that a+ ηc is not a scalar matrix. Since q is not a scalar matrix,
then there exists some invertible matrix P ∈ Mm(K) such that PqP−1 = q′′′ and
P (a+ ηc)P−1 = c′′′ have all non-zero entries. As above, by this conjugation we denote

a′′′ =
∑
kl

a′′′klekl, c′′′ =
∑
kl

c′′′klekl, q′′′ =
∑
kl

q′′′klekl,

for suitable a′′′kl, c
′′′
kl and q′′′kl elements of K, the conjugates of elements a, c, q, and v′′′,

w′′′ the conjugates of elements u and v. Then

a′′′c′′′x+ a′′′xq′′′ + ηc′′′xq′′′ + ηx(q′′′)2 + βc′′′x+ βxq′′′ = v′′′x+ xw′′′ for all x ∈ S.

Choose x = eji for i 6= j. Hence the matrix

a′′′c′′′eji + a′′′ejiq
′′′ + ηc′′′ejiq

′′′ + ηeji(q
′′′)2 + βc′′′eji + βejiq

′′′ − v′′′eji + ejiw
′′′

is zero. In particular the (j, i)-entry is (a′′′ij + ηc′′′ij)q
′′′
ij = 0. This contradiction shows

that also a+ ηc must be a central matrix and we are done.
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2. The proof of the Theorem 1

We begin this section by studying in detail the case when F , G and H are all inner
generalized derivations. More precisely, if F (x) = ax + xb is the inner generalized
derivation induced by the elements a, b ∈ U , G(x) = cx + xq the one induced by
c, q ∈ U , and H(x) = vx + xw the one induced by v, w ∈ U , is the composition FG
on [R,R]. Thus

Φ(x1, x2) = a
(
c[x1, x2] + [x1, x2]q

)
+
(
c[x1, x2] + [x1, x2]q

)
b− v[x1, x2]− [x1, x2]w

is a generalized polynomial identity for R.
We observe the following:

Remark 2.1 If B is a basis of U over C then any element of T = U ∗C C{x1, . . . , xn},
the free product over C of the C-algebra U and the free C-algebra C{x1, . . . , xn},
can be written in the form g =

∑
i αimi. In this decomposition the coefficients αi

are in C and the elements mi are B-monomials, that is mi = q0y1q1 · · · ·yhqh, with
qi ∈ B and yi ∈ {x1, . . . , xn}. In [4] it is shown that a generalized polynomial g =∑

i αimi is the zero element of T if and only if all αi are zero. Let a1, . . . , ak ∈ U
be linearly independent over C and a1g1(x1, . . . , xn) + . . .+ akgk(x1, . . . , xn) = 0 ∈ T ,
for some g1, . . . , gk ∈ T . If, for any i, gi(x1, . . . , xn) =

∑n
j=1 xjhj(x1, . . . , xn) and

hj(x1, . . . , xn) ∈ T , then g1(x1, . . . , xn),. . . , gk(x1, . . . , xn) are the zero element of T .
The same conclusion holds if g1(x1, . . . , xn)a1 + . . . + gk(x1, . . . , xn)ak = 0 ∈ T , and
gi(x1, . . . , xn) =

∑n
j=1 hj(x1, . . . , xn)xj for some hj(x1, . . . , xn) ∈ T . (We refer the

reader to [2] and [4] for more details on generalized polynomial identities).

We will make frequent use of the previous remark in our next result:

Lemma 2.2

If Φ(x1, x2) = 0 in T = U ∗C C{x1, x2}, then one of the following holds:

1. c, q ∈ C;
2. a, b ∈ C;
3. b, q, w ∈ C;
4. a, c, v ∈ C;
5. there exists η ∈ C such that a+ ηc ∈ C, and b− ηq ∈ C.

Proof. By our hypothesis, Φ(r1, r2) = 0 for all r1, r2 ∈ R, that is R satisfies the
generalized polynomial identity Φ(x1, x2).

If a ∈ C, then

Φ(x1, x2) =
(
c[x1, x2] + [x1, x2]q

)
(a+ b)− v[x1, x2]− [x1, x2]w.

Notice that in case c ∈ C, it follows

Φ(x1, x2) = [x1, x2](c+ q)(a+ b)− v[x1, x2]− [x1, x2]w

and this implies v ∈ C, since Φ(x1, x2) = 0 in T . In this case we are done. On the other
hand, if c /∈ C, since {c, v, 1} must be linearly C-dependent, there exist λ, µ ∈ C such
that v = λc+ µ since {c, 1} is linearly C-independent. As a consequence R satisfies

Φ(x1, x2) = c[x1, x2](a+ b− λ) + [x1, x2](q(a+ b)− w − µ),
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which is a non-trivial generalized polynomial identity for R, unless a + b = λ, which
means b ∈ C. Also in this case we are done.

Analogously is suppose b ∈ C, by using the same argument on the right of the
identity Φ(x1, x2), one may prove that either q, w ∈ C or a ∈ C.

Assume now that c ∈ C and a /∈ C, then

Φ(x1, x2) = a[x1, x2](c+ q) + [x1, x2](c+ q)b− v[x1, x2]− [x1, x2]w.

Thus {a, v, 1} is linearly C-dependent and since a /∈ C, we may write v = λa+ µ, for
suitable λ, µ ∈ C. It follows that

Φ(x1, x2) = a[x1, x2](c+ q − λ) + [x1, x2]((c+ q)b− w − µ)

which is a non-trivial generalized polynomial identity for R, unless c+ q = λ. In this
last case, it follows that q ∈ C, and we are finished.

Using a similar argument we may prove that if q ∈ C and b /∈ C, then we obtain
the conclusion c ∈ C.

Clearly in all that follows we may assume that a, b, c, q are all non-central elements
of U .

Remark that, since

Φ(x1, x2) = (ac− v)[x1, x2] + a[x1, x2]q + c[x1, x2]b+ [x1, x2](qb− w)

is the zero element in T , then {(ac−v), a, c, 1} must be C-linearly dependent, and also
{(qb− w), q, b, 1} must be C-linearly dependent.

We divide the rest of the proof into three steps:

• Suppose that {a, c, 1} is linearly C-independent. Since {(ac− v), a, c, 1} must be
C-linearly dependent, there exist α, β, γ ∈ C such that ac − v = αa + βc + γ.
Hence R satisfies

Φ(x1, x2) = (αa+ βc+ γ)[x1, x2] + a[x1, x2]q + c[x1, x2]b+ [x1, x2](qb− w)

that is

Φ(x1, x2) = a[x1, x2](α+ q) + c[x1, x2](β + b) + [x1, x2](qb− w + γ).

This implies that q = −α ∈ C, b = −β ∈ C, w = qb + γ = αβ + γ ∈ C and we
are done.
• Suppose now that {b, q, 1} is linearly C-independent.

Since {(qb−w), q, b, 1} must be C-linearly dependent, there exist α, β, γ ∈ C such that
qb− w = αb+ βq + γ. Hence R satisfies

Φ(x1, x2) = (ac− v)[x1, x2] + a[x1, x2]q + c[x1, x2]b+ [x1, x2](αb+ βq + γ)

that is

Φ(x1, x2) = (ac− v + γ)[x1, x2] + (a+ β)[x1, x2]q + (c+ α)[x1, x2]b.

This implies that c = −α ∈ C, a = −β ∈ C, v = qb+ γ = αβ+ γ ∈ C and we are done
again.
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• Finally suppose that there exist 0 6= α ∈ C, 0 6= β ∈ C and γ, η ∈ C such that
a = αc+ γ, b = βq+ η. In order to obtain the last conclusion of the Lemma, our
aim is now to prove that α = −β .

In this case R satsfies the generalized identity

(αc2 − v)[x1, x2] + c[x1, x2](αq + βq + γ + η) + [x1, x2](γq + βq2 + ηq − w).

Since Φ(x1, x2) = 0 in T , then {αc2− v, c, 1} is linearly C-dependent and, since c /∈ C,
there exist λ, µ ∈ C such that αac2 − v = λc+ µ. Therefore R satisfies

c[x1, x2](λ+ αq + βq + γ + η) + [x1, x2](γq + βq2 + ηq − w + µ) = 0 ∈ T.

Hence (α+β)q+ (λ+γ+η) = 0. Since q /∈ C, that is {q, 1} is linearly C-independent,
it follows λ+ γ + η = 0 and α+ β = 0, as required.

When R is a matrix algebra over the fieldK, then its Utumi quotient ring coincides
with R. In this case we have the following consequence of Proposition 1.12.

Proposition 2.3

Let R = Mm(K) be the algebra of m×m matrices over a field K with m ≥ 3 and
char(K) 6= 2. If there exist a, b, c, q, v, w ∈ R such that a(cs+sq)+(cs+sq)b = vs+sw
for all s ∈ [R,R], then one of the following holds:

1. c and q are central matrices;
2. a and b are central matrices;
3. b, q and w are central matrices;
4. a, c and v are central matrices;
5. there exists α ∈ K such that a+ αc and b− αq are central matrices.

Proof. Let L be an infinite extension of K and let R = Mm(L) ∼= R ⊗K L. Recall
that any multilinear generalized polynomial is an identity for R if and only if it is an
identity also for R. As in the previous lemma, we consider the generalized polynomial

Φ(x1, x2) = a
(
c[x1, x2] + [x1, x2]q

)
+
(
c[x1, x2] + [x1, x2]q

)
b− v[x1, x2]− [x1, x2]w

and we remark that Φ(x1, x2) is a generalized multilinear polynomial identity for R.
Clearly the multilinear polynomial Φ(x1, x2) is a generalized polynomial identity for
R too. We obtain Φ(r1, r2) = 0, for all r1, r2 ∈ R, and the conclusion follows from
Proposition 1.12.

In order to prove our final result in the inner case, we observe the following one,
which is a reduced version of Hvala’s theorem we recalled in the beginning of the paper
in ([6, Theorem 1]):

Proposition 2.4

Let R be a prime ring with char(R) 6= 2. If there exist a, b, c, q, v, w ∈ R such
that a(cs+ sq) + (cs+ sq)b = vs+ sw for all s ∈ R, then one of the following holds:

1. c and q are central matrices;
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2. a and b are central matrices;
3. b, q and w are central matrices;
4. a, c and v are central matrices;
5. there exists α ∈ K such that a+ αc and b− αq are central matrices.

Proof. Let F (x) = ax + xb, G(x) = cx + xq and H(x) = vx + xw be generalized
derivations of R. Our assumption is FG = H in R. From [6, Theorem 1], one of the
following possibilities holds:

1. there exists γ ∈ C such that either F (x) = ax+xb = γx or G(x) = cx+xq = γx.
Thus either (a−γ)x+xb = 0 or (c−γ)x+xq = 0, for all x ∈ R. By Remark 1.3,
either a, b ∈ C and a+ b = γ, or c, q ∈ C and c+ q = γ (conclusions 1 and 2 of
proposition).

2. there exist p, u ∈ U such that F (x) = xp and G(x) = xu. Hence ax+xb = xp and
cx+xq = xu, that is ax+x(b− p) = 0 and cx+x(q−u) = 0, for all x ∈ R. Also
in this case we apply Remark 1.3 and obtain a = p− b ∈ C and c = u− q ∈ C,
moreover H(x) = vx+ xw = FG(x) = xup implies v ∈ C (conclusion 4).

3. there exist p, u ∈ U such that F (x) = px and G(x) = ux, that is ax + xb = px
and cx+ xq = ux. As above, by applying Remark 1.3, we obtain b = p− a ∈ C,
q = u− c ∈ C and w ∈ C (conclusion 3).

4. there exist λ, µ ∈ C such that G(x) = (λ+ µa)x− x(µb). In this case cx+ xq =
(λ+µa)x−x(µb), that is c−µa−λ = −q−µb ∈ C. If µ 6= 0 we get the conclusion
5 of the proposition. On the other hand, in case µ = 0 then c − λ = −q ∈ C,
that is c, q ∈ C and we obtain the conclusion 1.

Proposition 2.5

Let R be a prime ring with char(R) 6= 2. Assume that R does not embed in
M2(L), the algebra of 2 × 2 matrices over a field L. If there exist a, b, c, q, v, w ∈ R
such that a(cs+ sq) + (cs+ sq)b = vs+ sw for all s ∈ [R,R], then one of the following
holds:

1. c and q are central matrices;
2. a and b are central matrices;
3. b, q and w are central matrices;
4. a, c and v are central matrices;
5. there exists α ∈ K such that a+ αc and b− αq are central matrices.

Proof. We consider the generalized polynomial

Φ(x1, x2) = a
(
c[x1, x2] + [x1, x2]q

)
+
(
c[x1, x2] + [x1, x2]q

)
b− v[x1, x2]− [x1, x2]w.

By Lemma 2.2 we may assume that Φ(x1, x2) is a non-trivial generalized polynomial
identity for R. By a theorem due to Beidar in ([2, Theorem 2]) this generalized
polynomial identity is also satisfied by the symmetric Martindale quotient ring Q of
R. Let K be an algebraic closure of C. By [8, Theorem 1], either Φ(x) = a(cx+xq) +
(cx + xq)b − vx − xw is a generalized polynomial identity for Q

⊗
C K, so in R, and

we are finished by Proposition 2.3, or Φ(x1, x2) is an identity Q
⊗

C K
∼= Mm(K). In

this last case the conclusion follows by Proposition 2.2.
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Before proving the main theorem of this paper, we need a well known result:

Remark 2.6 We would like to point out that in [9] Lee proves that every generalized
derivation can be uniquely extended to a generalized derivation of U and thus all
generalized derivations of R will be implicitly assumed to be defined on the whole U .
In particular Lee proves the following result:

In [9, Theorem 3 ]. Every generalized derivation g on a dense right ideal of R
can be uniquely extended to U and assumes the form g(x) = ax+d(x), for some a ∈ U
and a derivation d on U .

Finally we are able to prove our main result:

Theorem 2.7

Let R be a prime ring of characteristic different from 2, U the Utumi quotient
ring of R, C the extended centroid of R, F and G non-zero generalized derivations
of R and f(x1, . . . , xn) a polynomial over C. Denote by f(R) the set {f(r1, . . . , rn) :
r1, . . . , rn ∈ R} of all the evaluations of f(x1, . . . , xn) in R. Suppose that f(x1, . . . , xn)
is not central valued on R. If R does not embed in M2(K), the algebra of 2 × 2
matrices over a field K, and the composition (FG) acts as a generalized derivation
on the elements of f(R), then (FG) is a generalized derivation of R and one of the
following holds:

1. there exists α ∈ C such that F (x) = αx, for all x ∈ R;
2. there exists α ∈ C such that G(x) = αx, for all x ∈ R;
3. there exist a, b ∈ U such that F (x) = ax, G(x) = bx, for all x ∈ R;
4. there exist a, b ∈ U such that F (x) = xa, G(x) = xb, for all x ∈ R;
5. there exist a, b ∈ U , α, β ∈ C such that F (x) = ax+xb, G(x) = αx+β(ax−xb),

for all x ∈ R.

Proof. Let S be the additive subgroup of R generated by the set f(R). In [5] it is
proved that, if characteristic of R is not 2 and f(x1, . . . , xn) is not central-valued on
R, then S contains a non-central Lie ideal L of R. Moreover it is well known that,
in case of characteristic different from 2, there exists a non-central ideal I of R such
that [I,R] ⊆ L. Of course it is easy to see that if FG acts as a generalized derivation
on f(R), then it acts as a generalized derivation also on L and [I,R]. Therefore
there exists a generalized derivation H of R such that FG([r1, r2]) = H([r1, r2]) for all
r1, r2 ∈ I. As we said in Remark 2.6, we can write F (x) = ax+d(x), G(x) = bx+ δ(x)
and H(x) = cx+ h(x), for suitable a, b, c ∈ U and d, δ, h derivations of U . Therefore I
satisfies the differential identity

a
(
b[x1, x2] + δ([x1, x2])

)
+ d
(
b[x1, x2] + δ([x1, x2])

)
− c[x1, x2]− h

(
[x1, x2]

)
.

Since R and I satisfy the same differential identities (see [10]), then also R satisfies

a
(
b[x1, x2] + [δ(x1), x2] + [x1, δ(x2)]

)
+ d(b)[x1, x2]

+ b[d(x1), x2] + b[x1, d(x2)] + [dδ(x1), x2]

+ [δ(x1), d(x2)] + [d(x1), δ(x2)] + [x1, dδ(x2)]

− c[x1, x2]− [h(x1), x2]− [x1, h(x2)]. (4)



A product of two generalized derivations on polynomials in prime rings 317

First consider the case when {d, δ, h} is a set of linearly C-independent derivations
modulo X-inner derivations (i.e. modulo the space of inner derivations of R). In light
of Kharchenko’s theory (see [7]) and starting from (4), R satisfies:

a
(
b[x1, x2] + [y1, x2] + [x1, y2]

)
+ d(b)[x1, x2]

+ b[z1, x2] + b[x1, z2] + [t1, x2] + [y1, z2] + [z1, y2] + [x1, t2]

− c[x1, x2]− [u1, x2]− [x1, u2]

in particular R satisfies the blended component

a[y1, x2] + a[x1, y2] + b[z1, x2] + b[x1, z2] + [t1, x2]

+ [y1, z2] + [z1, y2] + [x1, t2]− [u1, x2]− [x1, u2]

and for y1 = y2 = z1 = z2 = u1 = u2 = t2 = 0 we have the contradiction that R
satisfies [t1, x2], that is R should be commutative. This conclusion contradicts the
assumption that f(x1, . . . , xn) is not central valued on R.

Hence we assume that {d, δ, h} is linearly C-dependent modulo X-inner deriva-
tions. In case d, δ and h are all inner derivations of U , then there exist p, q, v ∈ U such
that d(x) = [p, x], δ(x) = [q, x], h(x) = [v, x]. Hence

FG(x) = (a+ p) ((b+ q)x+ x(−q)) + ((b+ q)x+ x(−q)) (−p)

and

H(x) = (c+ v)x+ x(−v).

Since FG([r1, r2]) = H([r1, r2]) for all r1, r2 ∈ R, by Proposition 2.5 we have that one
of the following holds:

b, q ∈ C and G(x) = bx;

a, p ∈ C and F (x) = ax;

p, q, v ∈ C and F (x) = ax, G(x) = bx, H(x) = cx;

(a+ p), (b+ q), (c+ v) ∈ C and F (x) = xa, G(x) = xb, H(x) = xc;

there exists α ∈ C such that (a + p) + α(b + q) = η ∈ C and (−p) − α(−q) = λ ∈ C,
for suitable η, λ ∈ C. In this case it follows that: F (x) = a′x + xb′, where a′ = a + p
and b′ = −p; G(x) = µ(a′x− xb′) + νx, where µ = −α−1 and ν = α−1(η − λ).

In any case we are done.

In light of previous argument, here we may assume that there exist α, β, γ ∈ C
such that

αd+ βδ + γh = ad(p)

the inner derivation induced by some element p ∈ U , moreover at least one of {d, δ, h}
is not an inner derivation.

If {δ, h} is linearly C-independent modulo X-inner derivations, then α 6= 0 and
d cannot be an inner derivation, and so at least one of β and γ is not zero. Thus we



318 De Filippis

write d = β′δ + γ′h+ ad(p), for β′ = α−1β, γ′ = α−1γ. Starting from (4), R satisfies

a
(
b[x1, x2] + [δ(x1), x2] + [x1, δ(x2)]

)
+
(
β′δ + γ′h+ ad(p)

)
(b)[x1, x2] + b[(β′δ + γ′h+ ad(p))(x1), x2]

+ b[x1,
(
β′δ + γ′h+ ad(p)

)
(x2)] + [

(
β′δ2 + γ′hδ + ad(p)δ

)
(x1), x2]

+ [δ(x1),
(
β′δ + γ′h+ ad(p)

)
(x2)] + [

(
β′δ + γ′h+ ad(p)

)
(x1), δ(x2)]

− [x1,
(
β′δ2 + γ′hδ + ad(p)δ

)
(x2)]− c[x1, x2]− [h(x1), x2]− [x1, h(x2)].

By Kharchenko’s theory R satisfies(
b[x1, x2] + [y1, x2] + [x1, y2]

)
+
(
β′δ + γ′h+ ad(p)

)
(b)[x1, x2] + b

[
β′y1 + γ′z1 + [p, x1], x2

]
+ b
[
x1, β

′y2 + γ′z2 + [p, x2]
]

+
[
β′t1 + γ′u1 + [p, y1], x2

]
+
[
y1, β

′y2 + γ′z2 + [p, x2]
]

+
[
β′y1 + γ′z1 + [p, x1], y2

]
+
[
x1, β

′t2 + γ′u2 + [p, y2]
]
− c[x1, x2]− [z1, x2]− [x1, z2].

In particular, for x2 = y2 = z2 = 0, R satisfies [x1, β
′t2 + γ′u2], which forces R to

be commutative, since either β′ 6= 0 or γ′ 6= 0, a contradiction.
Consider now the case when there exist λ, µ ∈ C, not both zero, such that

λδ + µh = ad(q)

for some q ∈ U . We will prove that the last assumption implies a number of contra-
dictions. We divide the proof into three cases:

The case λ = 0.

For λ = 0, we have µ 6= 0 and h = ad(µ−1q), the inner derivation induced by
µ−1q. It follows that αd + βδ = ad(p − γµ−1q), with α 6= 0 and β 6= 0, since at least
one of δ, d and h must be not inner.

Then δ = α′d+ β′ad(p′), for p′ = p− γµ−1q and 0 6= α′ = −β−1α, 0 6= β′ = β−1.
By (4) R satisfies:

a
(
b[x1, x2] + [α′d(x1) + β′[p′, x1], x2] + [x1, α

′d(x2) + β′[p′, x2]]
)

+ d(b)[x1, x2] + b[d(x1), x2] + b[x1, d(x2)]

+ [d(α′)d(x1) + α′d2(x1) + d(β′)[p, x1] + β′[d(p′), x1] + β′[p′, d(x1)], x2]

+ [α′d(x1) + β′[p′, x1], d(x2)] + [d(x1), α
′d(x2) + β′[p′, x2]]

+ [x1, d(α′)d(x2) + α′d2(x2) + d(β′)[p, x2] + β′[d(p′), x2] + β′[p′, d(x2)]]

− c[x1, x2]− [[q′, x1], x2]− [x1, [q
′, x2]].

In this case, Kharchenko’s result implies that R satisfies

a
(
b[x1, x2] + [α′y1 + β′[p′, x1], x2] + [x1, α

′y2 + β′[p′, x2]]
)

+ d(b)[x1, x2] + b[y1, x2] + b[x1, y2]

+ [d(α′)y1 + α′z1 + d(β′)[p, x1] + β′[d(p′), x1] + β′[p′, y1], x2]

+ [α′y1 + β′[p′, x1], y2] + [y1, α
′y2 + β′[p′, x2]]

+ [x1, d(α′)y2 + α′z2 + d(β′)[p, x2] + β′[d(p′), x2] + β′[p′, y2]]

− c[x1, x2]− [[q′, x1], x2]− [x1, [q
′, x2]]
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in particular R satisfies the blended component α′[x1, z2], a contradiction again.

The case λ 6= 0 and µ = 0.

In this case δ = λ−1ad(q) = ad(v), for v = λ−1q.
Suppose first that {d, h} is linearly C-independent modulo X-inner derivations.

By (4) it follows that R satisfies

a
(
b[x1, x2] + [[v, x1], x2] + [x1, [v, x2]]

)
+ d(b)[x1, x2] + b[d(x1), x2] + b[x1, d(x2)] + [[d(v), x1] + [v, d(x1)], x2]

+ [[v, x1], d(x2)] + [d(x1), [v, x2]] + [x1, [d(v), x2] + [v, d(x2)]]

− c[x1, x2]− [h(x1), x2]− [x1, h(x2)]

and using Kharchenko’s theorem, R satisfies

a
(
b[x1, x2] + [[v, x1], x2] + [x1, [v, x2]]

)
+ d(b)[x1, x2] + b[y1, x2] + b[x1, y2] + [[d(v), x1] + [v, y1], x2]

+ [[v, x1], y2] + [y1, [v, x2]] + [x1, [d(v), x2] + [v, y2]]

− c[x1, x2]− [z1, x2]− [x1, z2]

and in particular R satisfies the blended component [z1, x2], a contradiction.
In the case {d, h} is linearly C-dependent modulo X-inner derivations, there are

η1, η2 ∈ C and w ∈ U such that η1d + η2h = ad(w), the inner derivation induced
by w. Of course both d and h are outer derivations, moreover at least one of η1
and η2 must be non-zero. Without loss of generality, say η1 6= 0. So we may write
d = η−11 (−η2h+ ad(w)) = ηh+ ad(u), for η = −η−11 η2 and u = η−11 w. Hence dδ(x) =
[ηh(v), x] + [v, ηh(x)] + [u, [v, x]]. So by (4), R satisfies

a
(
b[x1, x2] + [[v, x1], x2] + [x1, [v, x2]]

)
+ (ηh(b) + [u, b])[x1, x2] + b[ηh(x1) + [u, x1], x2] + b[x1, ηh(x2) + [u, x2]]

+ [[ηh(v), x1] + [v, ηh(x1)] + [u, [v, x1]], x2]

+ [[v, x1], ηh(x2) + [u, x2]] + [ηh(x1) + [u, x1], [v, x2]]

+ [x1, [ηh(v), x2] + [v, ηh(x2)] + [u, [v, x2]]]

− c[x1, x2]− [h(x1), x2]− [x1, h(x2)]

and again by Kharchenko’s result, R satisfies

a
(
b[x1, x2] + [[v, x1], x2] + [x1, [v, x2]]

)
+ (ηh(b) + [u, b])[x1, x2] + b[ηy1 + [u, x1], x2] + b[x1, ηy2 + [u, x2]]

+ [[ηh(v), x1] + [v, ηy1] + [u, [v, x1]], x2]

+ [[v, x1], ηy2 + [u, x2]] + [ηy1 + [u, x1], [v, x2]]

+ [x1, [ηh(v), x2] + [v, ηy2] + [u, [v, x2]]]

− c[x1, x2]− [y1, x2]− [x1, y2].

From this last, R satisfies

b[x1, ηy2] + [[v, x1], ηy2] + [x1, [v, ηy2]]− [x1, y2]
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which is
b[x1, ηy2] + [ηv, [x1, y2]]− [x1, y2].

For η = 0 we have that R satisfies [x1, y2] that is R is commutative, a contradiction.
Assume η 6= 0 and denote by H the following generalized derivation of R: H(x) =
(ηG)(x) = (ηb)x + [ηv, x] for all x ∈ R. Therefore [H(u), u] = 0 for all u ∈ [R,R].
By [1, Theorem 1] either both v ∈ C and b ∈ C and we obtain conclusion 2 of the
Theorem; or R satisfies the standard identity s4(x1, . . . , x4), that is U = M2(C), and
there exists γ ∈ C such that b = −2v + γ. In this last case, by calculations it follows
that R and U satisfy the identity ηv[x1, x2]+[x1, x2]ηv+ηγ[x1, x2]−[x1, x2] Now choose
x1 = eij , x2 = ejj and multiply on the right by eii, for i 6= j and i, j ∈ {1, 2}. We get
eijηveii = 0, which means that v is a diagonal matrix in M2(C). As in Lemma 1.11,
standard argument shows that v is a central matrix, as well as b. Also in this case we
are done (conclusion 2).

The case λ 6= 0 and µ 6= 0.

In this case we may write δ = µ′h+ λ′ad(q), with µ′ = −λ−1µ 6= 0, λ′ = λ−1 6= 0.
Moreover we may consider h as an outer derivation of R; in fact if h is an inner
derivation, then also d and δ should be inner.

Hence αd + βµ′h + βλ′ad(q) + γh = ad(p), with α 6= 0 and d 6= 0, since h is not
inner. Also here we show that a number of contradictions follows.

Write d = β′h+β′′ad(c), for β′ = −α−1(βµ′+γ), β′′ = α−1 6= 0 and c = p−βλ′q.
By (4), R satisfies

ab[x1, x2] + a[µ′h(x1) + λ′[q, x1], x2] + a[x1, µ
′h(x2) + λ′[q, x2]]

+ (β′h(b) + β′′[c, b])[x1, x2] + b[β′h(x1) + β′′[c, x1], x2]

+ b[x1, β
′h(x2) + β′′[c, x2]]

+
[
β′h(µ′)h(x1) + β′µ′h2(x1) + β′h(λ′)[q, x1] + β′λ′[h(q), x1]

+ β′λ′[q, h(x1)] + [c, β′′µ′h(x1)] + [c, β′′λ′[q, x1]], x2

]
+ [µ′h(x1) + λ′[q, x1], β

′h(x2) + β′′[c, x2]]

+ [β′h(x1) + β′′[c, x1], µ
′h(x2) + λ′[q, x2]]

+
[
x1, β

′h(µ′)h(x2) + β′µ′h2(x2) + β′h(λ′)[q, x2] + β′λ′[h(q), x2]

+ β′λ′[q, h(x2)] + [c, β′′µ′h(x2)] + [c, β′′λ′[q, x2]]
]

− c[x1, x2]− [h(x1), x2]− [x1, h(x2)]

and since h is outer, R satisfies
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ab[x1, x2] + a[µ′y1 + λ′[q, x1], x2] + a[x1, µ
′y2 + λ′[q, x2]]

+ (β′h(b) + β′′[c, b])[x1, x2] + b[β′y1 + β′′[c, x1], x2]

+ b[x1, β
′y2 + β′′[c, x2]]

+
[
β′h(µ′)y1 + β′µ′z1 + β′h(λ′)[q, x1] + β′λ′[h(q), x1]

+ β′λ′[q, y1] + [c, β′′µ′y1] + [c, β′′λ′[q, x1]], x2

]
+ [µ′y1 + λ′[q, x1], β

′y2 + β′′[c, x2]] + [β′y1 + β′′[c, x1], µ
′y2 + λ′[q, x2]]

+
[
x1, β

′h(µ′)y2 + β′µ′z2 + β′λ′[h(q), x2] (5)

+ β′λ′[q, y2] + [c, β′′µ′y2] +
[
c, β′′λ′[q, x2]

]]
− c[x1, x2]− [y1, x2]− [x1, y2]

in particular R satisfies the component β′µ′[z1, x2], which is a contradiction unless
when β′ = 0.

In case β′ = 0, we write (5) as follows

ab[x1, x2] + a
[
µ′y1 + λ′[q, x1], x2

]
+ a
[
x1, µ

′y2 + λ′[q, x2]
]

+ β′′[c, b][x1, x2] + b
[
β′′[c, x1], x2

]
+ b
[
x1, β

′′[c, x2]
]

+
[
[c, β′′µ′y1] + [c, β′′λ′[q, x1]

]
, x2
]

+
[
µ′y1 + λ′[q, x1], β

′′[c, x2]
]

+
[
β′′[c, x1], µ

′y2 + λ′[q, x2]
]

+
[
x1, [c, β

′′µ′y2] + [c, β′′λ′[q, x2]
]]

− c[x1, x2]− [y1, x2]− [x1, y2]

and R satisfies the component

a[µ′y1, x2] + a[x1, µ
′y2] +

[
[c, β′′µ′y1], x2

]
+
[
x1, [c, β

′′µ′y2]
]

− c[x1, x2]− [y1, x2]− [x1, y2].

For y1 = x2 and y2 = x1 = 0 it follows that R satisfies β′′µ′([c, y1]2, which implies
[c, x]2 = 0, for all x ∈ R, since µ′ 6= 0and β′′ 6= 0. Denote by ϕ = ad(c) the inner
derivation of R induced by c. Hence [ϕ(x), x] = 0 for all x ∈ R, thus by Posner’s result
in [11] it follows c ∈ C. Therefore, since β′ = 0 and c is central, it follows d = 0, which
is a contradiction again.
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