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Abstract

In this paper, we obtain a new characterization of Hilbert spaces by means of
polynomial mappings, extending the linear result of Kwapień.

Introduction

Let X be a Banach space. Kwapień [9] has shown that: X is isomorphic to a Hilbert
space if, and only if, for every Banach spaces Y and every absolutely 2-summing
operators u from X into Y , the conjugate operator u∗ is absolutely 2-summing, i.e., u is
strongly 2-summing in the sense of Cohen [4]. This theorem of Kwapień is a response to
a question posed by J.S. Cohen [5] who had previously established an isometric version.
In this note, we will give a polynomial version of this characterization of Hilbert space.
For this, we will introduce and study Cohen strongly summing polynomials, extending
the definition given by Cohen for linear operators and by Achour and Mezrag [1] for
multilinear mappings. We show, for instance, that a polynomial is Cohen strongly
p-summing if, and only if, its associated symmetric multilinear mapping is Cohen
strongly p-summing, if and only if, its linearization is strongly p-summing linear ope-
rator. As consequence, certain inclusion theorems are given.
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This paper is organized as follows.

In Section 1, we recall some facts about polynomial mappings. In Section 2, we
study the space of Cohen strongly p-summing polynomials between Banach spaces.
We give a natural analog of Pietsch Domination Theorem similar to the m-linear
case. In Section 3, we discuss the relationships between the classes of Cohen strongly
p-summing polynomials, multilinear and linear operators. As consequence, we compare
this notion with strongly p-summing polynomials (in the sense of Dimant), where
the rang space is an Lp∗-space. We end this section by comparing Cohen strongly
p-summing and p-dominated polynomials when the domain is a Hilbert space.

In Section 4, we give our main result, that is: the Banach space X is isomorphic
to a Hilbert space if, and only if, for all Banach spaces Y and for every 2-dominated
polynomials P from X into Y , P is Cohen strongy 2-summing polynomial.

1. Definitions and general results

The notation and terminology used in this paper are standard in Banach space theory.
However, we shall recall some terminology: Let X be a Banach space and 1 ≤ p ≤ ∞,
p∗ is the conjugate of p, i.e., 1

p + 1
p∗ = 1. We denote by lnp (X) the space of all sequences(

xi
)n
i=1

in X equipped with the norm

∥∥ (xi)1≤i≤n
∥∥
lnp (X)

=
( n∑
i=1
‖xi‖p

)1/p

and by ln ω
p (X) the space of all sequences (xi)

n
i=1 in X equipped with the norm

∥∥(xn)∥∥ln ω
p (X)

= sup
‖x∗‖X∗=1

( n∑
i=1
|〈xi, x∗〉|p

)1/p
,

where X∗ denotes the topological dual of X. The closed unit ball of X will be denoted
by BX . The vector space of bounded linear operators from X to Y will be noted by
B(X,Y ).

A map P : X → Y is an m-homogeneous polynomial if there exists a unique
symmetric m-linear operator P̂ : X × ... ×X → Y such that P

(
x
)

= P̂
(
x, (m)... , x

)
for

every x ∈ X. Both are related by the polarization formula [11, Theorem 1.10]

P̂
(
x1, ..., xm

)
=

1

m!2m

∑
εi=±1
1≤i≤m

ε1...εmP
( m∑
j=1

εjx
j
)
. (1.1)

P is bounded on the unit ball of X if and only if P̂ is bounded on the unit ball of
X × ...×X. The norms are related by the inequalities [11, Theorem 1.10]

‖P‖ ≤
∥∥∥P̂∥∥∥ ≤ mm

m!
‖P‖ . (1.2)
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We denote by P (mX,Y ) , the Banach space of all continuous m-homogeneous
polynomials from X into Y endowed with the norm

‖P‖= sup
{
‖P (x)‖ : ‖x‖ ≤ 1

}
= inf

{
C: ‖P (x)‖ ≤ C ‖x‖m , x ∈ X

}
. (1.3)

If Y = K, we write simply P (mX). For the general theory of polynomials on Ba-
nach spaces, we refer to [7] and [11]. By X1⊗̂π...⊗̂πXm we denote the completed
projective tensor product of X1, ..., Xm. If X = X1 = ... = Xm we write ⊗̂mπ X. By

⊗ms X := X ⊗s (m)... ⊗sX we denote the m fold symmetric tensor product of X, that is,
the set of all elements u ∈ ⊗mX of the form

u =

n∑
i=1

xi ⊗ (m)... ⊗ xi, (n ∈ N, xi ∈ X, 1 ≤ i ≤ n) .

By ⊗̂mπ,sX we denote the closure of ⊗ms X in ⊗̂mπ X. For symmetric tensor products, we

refer to [8]. If P ∈ P (mX,Y ) we define its linearization P̃ : ⊗ms X → Y by

P̃
( n∑
i=1

xi ⊗ (m)... ⊗ xi
)

=

n∑
i=1

P (xi)

for all xi ∈ X, 1 ≤ i ≤ n. Consider the canonical polynomial δm : X → ⊗̂mπ,sX define
by

δm (x) = x⊗ (m)... ⊗ x.
We have the next diagram which is commute

X
P−→ Y

↘ δm ↑ P̃
⊗̂mπ,sX

in the other words P = P̃ ◦ δm.
A Banach space X is an Lp,λ-space if every finite dimensional subspace E ⊂ X is

contained in a finite dimensional subspace F ⊂ X for which there is an isomorphism
u : F −→ ldimF

p with ‖u‖
∥∥u−1

∥∥ < λ. X is an Lp-space if it is an Lp,λ-space for
some λ > 1. The space Lp(Ω, µ) is an Lp-space for all λ > 1 (1 ≤ p < ∞) and every
Lp,λ-space is isomorphic to a subspace of some Lp(Ω, µ). If K is a compact Hausdorff
space, then C(K) is an L∞,λ-space for every λ > 1.

The definition of strongly p-summing polynomial was introduced by V. Dimant
in [6].

Definition 1.1 Let 1 ≤ p ≤ ∞ and P ∈ P (mX,Y ) . The polynomial P is strongly
p-summing if there exists a constant C ≥ 0 such that for, every x1, ..., xn ∈ X,( n∑

i=1

‖P (xi)‖p
)1/p

≤ C sup
Φ∈BP(mX)

( n∑
i=1

|Φ (xi)|p
)1/p

. (1.4)

The class of strongly p-summing m-homogeneous polynomials from X into Y , which
is denoted by Ppss(mX,Y ) is a Banach space for the norm ‖P‖ss,p , i.e. the smallest
constant C such that inequality (1.4) holds.

We also recall the definition of p-dominated plynomials.
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Definition 1.2 [10] Given 1 ≤ p <∞, a polynomial P ∈ P(mX,Y ) is p-dominated if
there exists a constant C > 0 such that, for all n ∈ N and for every x1, ..., xn ∈ X,( n∑

i=1

‖P (xi)‖p/m
)m/p

≤ C sup
x∗∈BX∗

( n∑
i=1

|x∗ (xi)|p
)m/p

.

We denote by Ppd (mX,Y ) the space of p-dominated polynomials P : X → Y and by
δp(P ) the infimum of all C verifying the above inequality. For p ≥ m, δp(P ) is a norm
on Ppd (mX,Y ), but for p < m it is only a quasinorm. Such polynomials are sometimes
called absolutely (p/m, p)-summing polynomials.

2. Cohen strongly p-summing m-homogeneous polynomials

We give in this section a natural generalization of strongly p-summing linear operators.
We extend “Pietsch Domination Theorem” to the category of polynomials mappings.
In the linear case, Cohen easily got it by duality because the adjoint of a strongly
p-summing operator is absolutely p∗-summing. In the multilinear case, the proof in [1]
is direct induces applying Ky Fan’s lemma.

Before giving the definition for polynomials mappings, we start by recalling the
definition of Cohen strongly p-summing multilinear operators which is introduced as
an extension of strongly p-summing operators.

Definition 2.1 [1] Let 1 ≤ p ≤ ∞. An m-linear operator T : X1 × ... × Xm −→ Y
(Xj , Y are arbitrary Banach spaces and m ∈ N) is Cohen strongly p-summing if and

only if there is a constant C > 0 such that for any xj1, ..., x
j
n ∈ Xj , (j = 1, ...,m) and

any y∗1, ..., y
∗
n ∈ Y ∗,

n∑
i=1

∣∣〈T (x1
i , ..., x

m
i

)
, y∗i
〉∣∣ ≤ C( n∑

i=1

m∏
j=1

∥∥∥xji∥∥∥p
Xj

)1/p
sup
y∈BY

‖(y∗i (y))‖ln
p∗
. (2.1)

The class of Cohen strongly p-summing m-linear operators from X1 × ... × Xm into
Y , which is denoted by Dmp (X1, ..., Xm;Y ), is a Banach space for the norm dmp (T ), i.e.
the smallest constant C such that inequality (2.1) holds.

Definition 2.2 Fix m ∈ N. Let 1 < p ≤ ∞ and let X,Y be Banach spaces. An
m-homogeneous polynomial P : X −→ Y is Cohen strongly p-summing, if there is a
constant C > 0 such that for any x1, ..., xn ∈ X and y∗1, ..., y

∗
n ∈ Y ∗,

n∑
i=1

|〈P (xi) , y
∗
i 〉| ≤ C

( n∑
i=1

‖xi‖mp
)1/p

sup
y∈BY

∥∥ (y∗i (y))
∥∥
ln
p∗
. (2.2)

The class of such polynomials is denoted by PpCoh(mX,Y ); it is equipped with the norm
dp(P ), i.e. the smallest constant C such that inequality (2.2) holds. For p = 1 we have
P1
Coh(mX,Y ) = P(mX,Y ).

Let us first give an example of a Cohen strongly p-summing polynomial.
Let m ∈ N, 1 ≤ p ≤ ∞ and u : X → Y be a Cohen strongly p-summing linear
operator and ϕ ∈ X∗. The polynomial

P : X → Y : P (x) = ϕm−1 (x)u (x)

is Cohen strongly p-summing. Indeed, for x1, ..., xn ∈ X, y∗1, ..., y∗n ∈ Y ∗,
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n∑
i=1

|〈P (xi) , y
∗
i 〉| =

n∑
i=1

∣∣〈ϕm−1 (xi)u (xi) , y
∗
i

〉∣∣
=

n∑
i=1

∣∣〈u (ϕm−1 (xi)xi
)
, y∗i
〉∣∣

≤ dp(u) ‖ϕ‖m−1
( n∑
i=1

‖xi‖mp
)1/p

sup
y∈BY

( n∑
i=1

|y∗i (y)|p
∗
)1/p∗

.

So, P is Cohen strongly p-summing and dp(P ) ≤ ‖ϕ‖m−1 dp(u).
The polynomial version of “Pietsch Domination Theorem” goes as follows. Its

proof is an adaptation of the proof for the multilinear case (see [1]).

Theorem 2.3

Let m ∈ N. An m-homogeneous polynomial P ∈ P(mX,Y ) is Cohen strongly
p-summing (1 < p ≤ ∞) if and only if there is a Radon probability measure µ on BY ∗∗

and C > 0 such that, for allx ∈ X and y∗ ∈ Y ∗

|〈P (x) , y∗〉| ≤ C ‖x‖m
(∫

BY ∗∗
|y∗(y∗∗)|p

∗
dµ(y∗∗)

)1/p∗

. (2.3)

Moreover, in this case dp(P ) = min {C : C verifies (2.3)}.
An immediate consequence of Theorem 2.3 is the following.

Corollary 2.4

Let 1 ≤ p1 ≤ p2 <∞. If P ∈ Pp2Coh(mX,Y ) then P ∈ Pp1Coh(mX,Y ) and dp1(P ) ≤
dp2(P ).

3. Characterization and inclusion theorems

In this section, we investigate connections between the class of Cohen strongly sum-
ming polynomials and other classes of polynomials mappings, such as p-dominated and
strongly summing polynomials (in the sense of Dimant). First, we give the relation
between P and its associated symmetric m-linear operator P̂ concerning the notion of
Cohen strongly p-summing. A similar characterization holds for p-dominated polyno-
mials (see [10]).

Theorem 3.1

The polynomial P ∈ P(mX,Y ) is Cohen strongly p-summing if, and only if, its

associated symmetric m-linear operator P̂ ∈ L(mX,Y ) is Cohen strongly p-summing.

Proof. Let us first assume that P̂ is Cohen strongly p-summing. Let x1, ..., xn be in
X and y∗1, ..., y

∗
n be in Y ∗; then

n∑
i=1

∣∣〈P (xi) , y
∗
i

〉∣∣ =
n∑
i=1

∣∣〈P̂ (xi, ..., xi) , y
∗
i

〉∣∣
≤ dmp (P̂ )

( n∑
i=1

‖xi‖mp
)1/p

sup
y∈BY

∥∥ (y∗i (y))
∥∥
ln
p∗
.

Hence, P is Cohen strongly p-summing and dp(P ) ≤ dmp (P̂ ).
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Conversely, let P ∈ PpCoh(mX,Y ). Let xj ∈ X such that
∥∥xj∥∥ ≤ 1 (1 ≤ j ≤ m)

and y∗ ∈ Y ∗. Using the polarization formula (1.1), we obtain

∣∣〈P̂ (x1, ..., xm
)
, y∗
〉∣∣ =

∣∣∣ < 1

m!2m

∑
ε1,...,εm=±1

ε1...εmP
( m∑
j=1

εjx
j
)
, y∗ >

∣∣∣
≤ 1

m!2m

∑
ε1,...,εm=±1

∣∣∣ < P
( m∑
j=1

εjx
j
)
, y∗ >

∣∣∣
≤ 1

m!2m

∑
ε1,...,εm=±1

dp(P )
∥∥∥ m∑
j=1

εjx
j
∥∥∥m

×
(∫

BY ∗∗
|y∗(y∗∗)|p

∗
dµ(y∗∗)

)1/p∗

≤ 1

m!2m
dp(P )

∑
ε1,...,εm=±1

( m∑
j=1

∥∥xj∥∥)m
×
(∫

BY ∗∗
|y∗(y∗∗)|p

∗
dµ(y∗∗)

)1/p∗

≤ 1

m!2m
dp(P )2mmm

(∫
BY ∗∗

|y∗(y∗∗)|p
∗
dµ(y∗∗)

)1/p∗

≤ mm

m!
dp(P )

(∫
BY ∗∗

|y∗(y∗∗)|p
∗
dµ(y∗∗)

)1/p∗

.

So, for every xj ∈ BX (1 ≤ j ≤ m), we have∣∣〈P̂ (x1, ..., xm
)
, y∗
〉∣∣ ≤ mm

m!
dp(P )

(∫
BY ∗∗

|y∗(y∗∗)|p
∗
dµ(y∗∗)

)1/p∗

and for xj ∈ X (xj 6= 0),

∣∣〈P̂ ( x1

‖x1‖
, ...,

xm

‖xm‖

)
, y∗
〉∣∣ ≤ mm

m!
dp(P )

(∫
BY ∗∗

|y∗(y∗∗)|p
∗
dµ(y∗∗)

)1/p∗

.

Thus ∣∣〈P̂ (x1, ..., xm
)
, y∗
〉∣∣ ≤ mm

m!
dp(P )

m∏
j=1

∥∥xj∥∥(∫
BY ∗∗

|y∗(y∗∗)|p
∗
dµ(y∗∗)

)1/p∗

.

Therefore, by [1, Theorem 2.4], P̂ is Cohen strongly p-summing and dmp
(
P̂
)

≤ mm

m! dp(P ).

The following characterization of Cohen strongly p-summing polynomials is useful
and will be used later.

Proposition 3.2

Let 1 < p ≤ ∞. Let P : X → Y be a m-homogeneous polynomial and P̃ its
linearization. The following properties are equivalent
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(a) The polynomial P belongs to PpCoh(mX,Y ).

(b) The operator P̃ belongs to Dp
(
⊗̂mπ,sX,Y

)
.

Proof. Suppose that P̃ ∈ Dp
(
⊗̂mπ,sX,Y

)
. For x1, ..., xn ∈ X and y∗1, ..., y

∗
n ∈ Y ∗, we

have
n∑
i=1

∣∣〈P (xi) , y
∗
i

〉∣∣ =
n∑
i=1

∣∣〈P̃ (xi ⊗ ...⊗ xi), y∗i 〉∣∣
≤ dp

(
P̃
)( n∑

i=1
‖xi ⊗ ...⊗ xi‖p

)1/p
sup
y∈BY

‖(y∗i (y))‖ln
p∗

≤ dp
(
P̃
)( n∑

i=1
‖xi‖mp

)1/p
sup
y∈BY

‖(y∗i (y))‖ln
p∗
.

Conversely, suppose that P is Cohen strongly p-summing. Let v ∈ ⊗̂mπ,sX such that

v 6= 0 and y∗ ∈ Y ∗. Suppose that v =
n∑
i=1

xi ⊗ ...⊗ xi. Then

∣∣〈P̃ (v) , y∗
〉∣∣ ≤ n∑

i=1

∣∣〈P (xi) , y
∗〉∣∣

≤
n∑
i=1

dmp (P ) ‖xi‖m
(∫

BY ∗∗
|y∗∗(y∗)|p

∗
dµ(y∗∗)

)1/p∗

= dmp (P )
( n∑
i=1

‖xi‖m
)(∫

BY ∗∗
|y∗∗(y∗)|p

∗
dµ(y∗∗)

)1/p∗

.

Taking the infimum over all represents of v we get∣∣〈P̃ (v) , y∗
〉∣∣ ≤ dmp (P ) ‖v‖

(∫
BY ∗∗

|y∗∗(y∗)|p
∗
dµ(y∗∗)

)1/p∗

.

Therefore, by [4, Theorem 2.3.1], P̃ is Cohen strongly p-summing and dmp (P ) = dp
(
P̃
)
.

Corollary 3.3

The following are equivalent for P ∈ P(mX,Y ).

(1) The polynomial P is Cohen strongly p-summing.
(2) The operator P̃ is Cohen strongly p-summing from ⊗̂mπ,sXinto Y.
(3) There exist a Cohen strongly p-summing operator u and a polynomial Q such

that P = u ◦Q.

Proof. (1)⇔ (2) Proposition 3.2.
(2)⇒ (3) We have the result directly from the factorization P = P̃ ◦ δm.
(3) ⇒ (1) There is a Banach space Z, a linear operator u in Dp (Z, Y ) and a

polynomial Q in P(mX,Z) such that P = u◦Q. For x1, ..., xn ∈ X and y∗1, ..., y
∗
n ∈ Y ∗,

we have
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n∑
i=1

|〈P (xi) , y
∗
i 〉| =

n∑
i=1

|〈u ◦Q (xi) , y
∗
i 〉|

≤ dp (u)
( n∑
i=1

‖Q (xi)‖p
)1/p

sup
y∈BY

‖(y∗i (y))‖ln
p∗

≤ dp (u) ‖Q‖
( n∑
i=1

‖xi‖mp
)1/p

sup
y∈BY

‖(y∗i (y))‖ln
p∗
.

Hence, P is Cohen strongly p-summing.

If Y is an Lp∗-space, we have the following inclusion.

Corollary 3.4

Let 1 < p <∞. If Y is an Lp∗-space then

PpCoh(mX,Y ) ⊂ Pp∗ss (mX,Y ).

Proof. Let P ∈ PpCoh(mX,Y ). By Corollary 3.3, there exist a Cohen strongly p-
summing operator u : Z → Y and a polynomial Q : X → Z such that P = u ◦ Q.
Since Y is an Lp∗-space the operator u : Z → Y is p∗-summing by [4, Theorem 3.2.3].
Now, for xi ∈ X (1 ≤ i ≤ n)( n∑

i=1

‖P (xi)‖p
∗
)1/p∗

=
( n∑
i=1

‖u ◦Q (xi)‖p
∗
)1/p∗

≤ πp∗ (u) sup
z∗∈BZ∗

( n∑
i=1

|z∗ (Q (xi))|p
∗
)1/p∗

since the polynomial z∗ ◦Q belongs to P (mX) we have( n∑
i=1

‖P (xi)‖p
∗
)1/p∗

≤ πp∗ (u)

‖Q‖
sup

Φ∈BP(mX)

( n∑
i=1

|Φ (xi)|p
∗
)1/p∗

i.e., P is strongly p∗-summing polynomial.

Next, we give an inclusion between the class of p-dominated and Cohen strongly
q-summing polynomials. The linear version of this inclusion is due to Cohen [4] for
p = q = 2 and to Bu [3] for all p and q. The reader can see [1] for more details about
the multilinear version.

Corollary 3.5

Let m ∈ N and 1 < p, q < ∞. Let H be a Hilbert space and Y be a Banach
space. Let P ∈ P (mH,Y ). If P is p-dominated polynomial, then P is Cohen strongly
q-summing polynomial.

Proof. Fix 1 < p, q < ∞. Let P ∈ P (mH,Y ) and P̂ ∈ L (mH,Y ) the associated
symmetric m-linear. Assume that P is p-dominated polynomial. By [10, Theorem 6],
P̂ is p-dominated and by [1, Theorem 3.2], P̂ is a Cohen strongly q-summing m-linear
operator. So, Theorem 3.1. concludes the proof.
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4. Main result

Given m ∈ N and X be a Banach space. In this section, we show that: X is isomorphic
to a Hilbert space if, and only if, for every Banach space Y and every m-homogeneous
2-dominated polynomial from X into Y, u is Cohen strongly 2-summing. We start by
a preparatory result.

Theorem 4.1

Let m ∈ N, 1 < p, q < ∞ and X,Y be Banach spaces such that Ppd (mX,Y ) ⊆
PqCoh(mX,Y ). Then Πp(X,Y ) ⊆ Dq(X,Y ).

Proof. Let u ∈ Πp (X,Y ) , we will show that u ∈ Dq (X,Y ) . Fix x0 ∈ BX and x∗0 ∈ BX∗
such that x∗0 (x0) = 1. Define the operator πj : ⊗̂j+1

π,s X → ⊗̂
j
π,sX (1 ≤ j ≤ m− 1) by

πj

( n∑
i=1

xi ⊗ (j+1)... ⊗ xi
)

=

n∑
i=1

x∗0(xi)xi ⊗ (j)... ⊗ xi.

Let δm : X → ⊗̂mπ,sX be the canonical polynomial. We show that the polynomial
P := u ◦ π1 ◦ ... ◦ πm−1 ◦ δm : X → Y is p-dominated. We reason by induction on m.
For m = 1, the statement is trivial. We suppose now that

u ◦ π1 ◦ ... ◦ πm−2 ◦ δm−1 : X → Y

is p-dominated. Let xi ∈ X (1 ≤ i ≤ n) . Then

n∑
i=1

‖P (xi)‖p/m =
n∑
i=1

‖u ◦ π1 ◦ ... ◦ πm−1 ◦ δm (xi)‖p/m

=

n∑
i=1

∥∥u ◦ π1 ◦ ... ◦ πm−1

(
xi ⊗ (m)... ⊗ xi

)∥∥p/m
=

n∑
i=1

|x∗0(xi)|p/m
∥∥u ◦ π1 ◦ ... ◦ πm−2

(
xi ⊗ (m−1)... ⊗ xi

)∥∥p/m.
By Hölder’s inequality

n∑
i=1

‖P (xi)‖p/m

≤
( n∑
i=1

|x∗0(xi)|p
)1/m( n∑

i=1

‖u ◦ π1 ◦ ... ◦ πm−2 ◦ δm−1 (xi)‖p/(m−1)
)(m−1)/m

.

We obtain by the induction hypothesis and the fact that x∗0 ∈ BX∗
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n∑
i=1

‖P (xi)‖p/m ≤
( n∑
i=1

∣∣x∗0(xi)
∣∣p)1/m(

C sup
x∗∈BX∗

( n∑
i=1

∣∣x∗(xi∣∣p)(m−1)/p
)p/m

= Cp/m
( n∑
i=1

∣∣x∗0(xi)
∣∣p)1/m

sup
x∗∈BX∗

( n∑
i=1

∣∣x∗(xi)∣∣p)(m−1)/m

≤ Cp/m sup
x∗∈BX∗

n∑
i=1

∣∣x∗(xi)∣∣p.
Therefore, P is p-dominated and hence Cohen strongly q-summing. By the decompo-
sition P = P̃ ◦ δm we have P̃ = u ◦ π1 ◦ ... ◦ πm−1 which is Cohen strongly q-summing
by the Proposition 3.2. Now, as it has been shown in the proof of [2, Theorem 3], there

are operators kj : ⊗̂jπ,sX → ⊗̂
j+1
π,s X (1 ≤ j ≤ m−1) defined in terms of x∗0 and x0 such

that πj ◦ kj is the identity map on ⊗̂jπ,sX. We have

u = u ◦ π1 ◦ ... ◦ πm−1 ◦ kj−1 ◦ ... ◦ k1 : X → Y

which is, by the ideal property, Cohen strongly q-summing.

Theorem 4.2

Let X be a Banach space. The following properties are equivalent.

(1) The space X is isomorphic to a Hilbert space.
(2) For all m ∈ N, 1 < p, q <∞, and every Banach space Y.

Ppd (mX,Y ) ⊆ PqCoh(mX,Y )

(3) For all m ∈ N and every Banach space Y.

P2
d(mX,Y ) ⊆ P2

Coh(mX,Y )

Proof. (1)⇒ (2) Immediate by Corollary 3.5.
(2)⇒ (3) Obviously.
(3)⇒ (1) It is enough to apply Theorem 4.1 and Kwapień’s theorem.
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