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Abstract

Let (Ω,Σ, µ) be a σ-finite measure space and let L(X,Y ) stand for the space
of all bounded linear operators between Banach spaces (X, ‖ · ‖X) and
(Y, ‖ · ‖Y ). We study the problem of integral representation of linear
operators from an Orlicz-Bochner space Lϕ(µ,X) to Y with respect to
operator measures m : Σ → L(X,Y ). It is shown that a linear operator
T : Lϕ(µ,X) → Y has the integral representation T (f) =

∫
Ω
f(ω)dm with

respect to a ϕ∗-variationally µ-continuous operator measure m if and only if
T is (γϕ, ‖ · ‖Y )-continuous, where γϕ stands for a natural mixed topology
on Lϕ(µ,X). As an application, we derive Vitali-Hahn-Saks type theorems for
families of operator measures.

1. Introduction

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real Banach spaces and let BX stand for the closed
unit ball in X. Let L(X,Y ) stand for the space of all bounded linear operators from
X to Y . We denote by σ(L,K) and τ(L,K) the weak topology and the Mackey
topology on L with respect to a dual pair 〈L,K〉. Given a Hausdorff locally convex
space (L, ξ) by L∗ξ we will denote its topological dual. Let N stand for the set of all
natural numbers.

Throughout the paper we assume that (Ω,Σ, µ) is a σ-finite, complete measure
space. By Σf (µ) we denote the δ-ring of the sets A ∈ Σ with µ(A) <∞. By S(Σ, X)
we denote the set of all X-valued Σ-simple functions s = Σ (1Ai ⊗ xi), where (Ai) is
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a finite disjoint sequence in Σ, xi ∈ X, and (1Ai ⊗ xi)(ω) = 1Ai(ω)xi for ω ∈ Ω. By
L0(µ,X) we denote the set of the µ-equivalence classes of all strongly Σ-measurable
functions f : Ω → X. Then L0(µ,X) can be provided with the complete metrizable
topology T0 of convergence in measure on all A ∈ Σf (µ). Then fn → 0 for T0 if and
only if µ({ω ∈ A : ‖fn(ω)‖X ≥ ε}) −→ 0 for every A ∈ Σf (µ) and all ε > 0. By
S(µ,X) we denote the subspace of L0(µ,X) consisting of the µ-equivalence classes
of all s ∈ S(Σ, X).

Now we recall terminology concerning Orlicz-Bochner spaces (see [24, 18] for
more details). By a Young function we mean here a left continuous convex mapping
ϕ : [0,∞) → [0,∞] vanishing and continuous at 0 such that ϕ(t)/t → ∞ as t → ∞.
For a Young function ϕ we denote by ϕ∗ the complementary Young function. The
Orlicz-Bochner space

Lϕ(µ,X) =
{
f ∈ L0(µ,X) :

∫
Ω
ϕ(λ‖f(ω)‖X)dµ <∞ for some λ > 0

}
is equipped with the topology Tϕ of the norm

‖f‖ϕ = inf
{
λ > 0 :

∫
Ω
ϕ(‖f(ω)‖X/λ)dµ ≤ 1

}
.

Then ‖f‖ϕ ≤ 1 if and only if
∫

Ω ϕ(‖f(ω)‖X)dµ ≤ 1. For r > 0 let

Bϕ(r) = {f ∈ Lϕ(µ,X) : ‖f‖ϕ ≤ r}.

Note that the space L∞(µ,X) is included but the space L1(µ,X) is excluded.

A subset H of Lϕ(µ,X) is said to be solid whenever ‖f1(ω)‖X ≤ ‖f2(ω)‖X
µ-a.e. and f1 ∈ Lϕ(µ,X), f2 ∈ H imply f1 ∈ H. A linear topology τ on Lϕ(µ,X)
is said to be locally solid if it has a local base at zero consisting of solid sets. A linear
topology τ on Lϕ(µ,X) that is at the same time locally solid and locally convex will
be called a locally convex-solid topology on Lϕ(µ,X). A seminorm % on Lϕ(µ,X) is
called solid if %(f1) ≤ ϕ(f2) whenever f1, f2 ∈ Lϕ(µ,X) and ‖f1(ω)‖X ≤ ‖f2(ω)‖X
µ-a.e. It is known that a locally convex topology τ on Lϕ(µ,X) is locally solid if
and only if it is generated by some family of solid seminorms defined on Lϕ(µ,X)
(see [15]).

In this paper the mixed topology γ[Tϕ, T0|Lϕ(µ,X)] (briefly γϕ ) on Lϕ(µ,X) is of
importance (see [25, 7, 16] for more details). γϕ is a locally convex-solid topology such
that T0|Lϕ(µ,X) ⊂ γϕ ⊂ Tϕ (see [16, § 3]) and it is the finest locally convex topology
on Lϕ(µ,X) which agrees with T0 on ‖ · ‖ϕ-bounded sets (see [25, 2.2.2]). Then a
sequence (fn) in Lϕ(µ,X) is γϕ-convergent to f ∈ Lϕ(µ,X) if and only if fn → f
for T0 and supn ‖fn‖ϕ <∞ (see [25, Theorem 2.6.1], [16, Theorem 3.1]).

It is well known that for each strongly Σ-measurable function f : Ω → X there
exists a sequence (sn) of X-valued Σ-simple functions such that ‖f(ω)− sn(ω)‖X→ 0
for ω ∈ Ω and ‖sn(ω)‖X ≤ ‖f(ω)‖X for all n ∈ N and ω ∈ Ω (see [14, Theorem 1.6]).
It follows that for each f ∈ Lϕ(µ,X) there exists a sequence (sn) in S(µ,X) such that
sn → f for T0 and ‖sn‖ϕ ≤ ‖f‖ϕ for all n ∈ N; that is, sn → f for γϕ. Hence using
the Lebesgue dominated convergence theorem we easily derive that Lϕ(µ,X)∩S(Σ, X)
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is dense in (Eϕ(µ,X), ‖ · ‖ϕ), where

Eϕ(µ,X) =
{
f ∈ L0(µ,X) :

∫
Ω
ϕ
(
λ‖f(ω)‖X

)
dµ <∞ for all λ > 0

}
.

The following characterization of (γϕ, ‖ · ‖Y )-continuous linear operators from
Lϕ(µ,X) to Y will be of importance (see [25, Theorem 2.2.4], [16, Proposition 2.3]).

Proposition 1.1

For a (‖ · ‖ϕ, ‖ · ‖Y )-continuous linear operator T : Lϕ(µ,X) → Y the following
statements are equivalent:

(i) T is (γϕ, ‖ · ‖Y )-continuous.

(ii) ‖T (fn)‖Y → 0 whenever fn → 0 for T0 and supn ‖fn‖ϕ <∞.

(iii) T is (T0|Bϕ(r), ‖ · ‖Y )-continuous for each r > 0.

Now we recall basic terminology concerning operator measures (see [8, 12, 13,
14, 4, 19, 20]). A finitely additive mapping m : Σ → L(X,Y ) is called an operator
measure. Following [8] for a Young function ϕ we define a ϕ∗-semivariation m̃ϕ∗(A)
of m on A ∈ Σ by

m̃ϕ∗(A) = sup ‖Σ aim(Ai)(xi)‖Y ,

where the supremum is taken over all finite disjoint sequences (Ai) in Σ with Ai ⊂ A
and ai ≥ 0, xi ∈ BX for each i with Σϕ(ai)µ(Ai) ≤ 1. By fasvϕ∗,µ(Σ,L(X,Y ))
we denote the set of all operator measures m : Σ → L(X,Y ) with a finite ϕ∗-semi-
variation (i.e., m̃ϕ∗(Ω) < ∞), which vanish on µ-null sets, i.e., m(A) = 0 whenever
µ(A) = 0. Note that if m ∈ fasvϕ∗,µ(Σ,L(X,Y )), then m̃ϕ∗ : Σ → [0,∞) is a
submeasure i.e., m̃ϕ∗(∅) = 0, m̃ϕ∗(A1) ≤ m̃ϕ∗(A2) for A1, A2 ∈ Σ with A1 ⊂ A2 and
m̃ϕ∗(A1 ∪A2) ≤ m̃ϕ∗(A1) + m̃ϕ∗(A2) for any A1, A2 ∈ Σ.

For a sequence (An) in Σ we will write An ↘µ ∅ if An ↓ and µ(An ∩ A) → 0
for all A ∈ Σf (µ).

Now we distinguish some class of operator measures.

Definition 1.2 A measure m ∈ fasvϕ∗, µ(Σ,L(X,Y )) is said to be ϕ∗-variationally
µ-continuous if m̃ϕ∗(An)→ 0 whenever An ↘µ ∅, (An) ⊂ Σ.

It is known that if 1 ≤ p < ∞, µ(Ω) < ∞ and an operator measure m : Σ →
L(X,Y ) vanishes on µ-null sets and has the finite q-semivariation m̃q(Ω) (1 < q ≤ ∞,
1
p + 1

q = 1), then using the fact that S(µ,X) is dense in (Lp(µ,X), ‖ · ‖p) one can

define the integral
∫

Ω f(ω)dm for all f ∈ Lp(µ,X). Moreover, if T : Lp(µ,X) → Y
is a bounded linear operator, then the associated operator measure m : Σ→ L(X,Y )
has the finite q-semivariation m̃q(Ω) and T (f) =

∫
Ω f(ω)dm for all f ∈ Lp(µ,X)

(see [12, § 13, Theorem 3.1], [13, Theorem 4], [14, § 8B]). The relationships of the
q-semivariation m̃q to the properties of operators from Lp(µ,X) to Y were studied
in [3]. Diestel found the integral representation of bounded linear operators from an
Orlicz-Bochner space Lϕ(µ,X) to Banach spaces whenever µ(Ω) < ∞ and a Young
function ϕ satisfies the ∆2-condition, i.e., lim supϕ(2t)/ϕ(t) <∞ as t→∞ (see [8,
Theorem 2]). Note that S(µ,X) is dense in (Lϕ(µ,X), ‖·‖ϕ) whenever ϕ satisfies the
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∆2-condition and µ(Ω) < ∞. Dinculeanu [10, 11] studied the integral representation
of a certain linear transformation of an Orlicz vector field into a Banach space.

In this paper we study the problem of integral representation of linear operators
T : Lϕ(µ,X) → Y (ϕ is an arbitrary Young function) with respect to an opera-
tor measure m : Σ → L(X,Y ). It is shown that T has an integral representation
T (f) =

∫
Ω f(ω)dm for f ∈ Lϕ(µ,X) with respect to a ϕ∗-variationally µ-continuous

measure m if and only if T is (γϕ, ‖ · ‖Y )-continuous (see Corollary 2.7 below). As an
application, we derive Vitali-Hahn-Saks type theorems for families of operator mea-
sures (see Theorem 3.6 and Corollary 3.7 below).

2. Integral representation of linear operators on Orlicz-Bochner spaces

From now on we assume that ϕ is a Young function. Let m : Σ → L(X,Y ) be a
finite additive measure. Then for every s =

∑n
i=1(1Ai ⊗ xi) ∈ S(Σ, X) we can define

the integral with respect to m by∫
Ω
s(ω)dm :=

n∑
i=1

m(Ai)(xi).

For A ∈ Σ let ∫
A
s(ω)dm :=

∫
Ω
1A(ω)s(ω)dm.

Proposition 2.1

Assume that m : Σ→ L(X,Y ) is a finite additive measure. Then for A ∈ Σ we
have

m̃ϕ∗(A) = sup

{∥∥∥∫
A
s(ω)dm

∥∥∥
Y

: s ∈ S(Σ, X),

∫
Ω
ϕ
(
‖s(ω)‖X

)
dµ ≤ 1

}
.

Proof. Let A ∈ Σ be given. Assume that s =
∑n

i=1(1Ai ⊗ xi) ∈ S(Σ, X) with∫
Ω ϕ(‖s(ω)‖X)dµ ≤ 1. Then

n∑
i=1

ϕ
(
‖xi‖X

)
µ(A ∩Ai) ≤

∫
Ω
ϕ
(
‖s(ω)‖X

)
dµ ≤ 1,

so we get ∥∥∥∫
A
s(ω)dm

∥∥∥
Y

=
∥∥∥∫

Ω
1A(ω)s(ω)dm

∥∥∥
Y

=

∥∥∥∥ n∑
i=1

‖xi‖X m(A ∩Ai)
( xi
‖xi‖X

)∥∥∥∥
Y

≤ m̃ϕ∗(A).

It follows that

sup

{∥∥∥∫
A
s(ω)dm

∥∥∥
Y

: s ∈ S(Σ, X),

∫
Ω
ϕ
(
‖s(ω)‖X

)
dµ ≤ 1

}
≤ m̃ϕ∗(A).
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For the converse, let (Ai)
n
i=1 be a disjoint sequence in Σ with Ai ⊂ A and xi ∈

BX , ai ≥ 0 for i = 1, 2, . . . , n and
∑n

i=1 ϕ(ai)µ(Ai) ≤ 1. Let s0 =
∑n

i=1(1Ai ⊗ aixi).
Then ∫

Ω
ϕ
(
‖s0(ω)‖X

)
dµ =

n∑
i=1

ϕ
(
ai‖xi‖X

)
µ(Ai) ≤ 1.

Hence∥∥∥ n∑
i=1

aim(Ai)(xi)
∥∥∥
Y

=
∥∥∥∫

Ω
s0(ω)dm

∥∥∥
Y

=
∥∥∥∫

A
s0(ω)dm

∥∥∥
Y

≤ sup

{∥∥∥∫
A
s(ω)dm

∥∥∥
Y

: s ∈ S(Σ, X),

∫
Ω
ϕ(‖s(ω)‖X)dµ ≤ 1

}
,

which completes the proof.

Now assume that m ∈ fasvϕ∗,µ(Σ,L(X,Y )). Let s =
∑n

i=1(1Ai ⊗ xi) ∈ S(Σ, X).
Then for every set A0 ∈ Σ with µ(A0) = 0, we have m(A0) = 0, so we get∫

Ω
s(ω)dm =

n∑
i=1

m(Ai)(xi) =

n∑
i=1

m
(
Ai ∩ (Ω rA0

)
)(xi) =

∫
Ω
1ΩrA0(ω)s(ω)dm.

Hence, in view of Proposition 2.1 we get

Corollary 2.2

Assume that m ∈ fasvϕ∗,µ(Σ,L(X,Y )). Then for A ∈ Σ we have

m̃ϕ∗(A) = sup

{∥∥∥∫
A
s(ω)dm

∥∥∥
Y

: s ∈ Lϕ(µ,X) ∩ S(µ,X), ‖s‖ϕ ≤ 1

}
.

It follows that if m ∈ fasvϕ∗,µ(Σ,L(X,Y )), then the integration operator

Tm : Lϕ(µ,X) ∩ S(µ,X) −→ Y

defined by Tm(s) =
∫

Ω s(ω)dm is linear and (‖ · ‖ϕ, ‖ · ‖Y )-continuous.
Now we shall show that if m ∈ fasvϕ∗,µ(Σ,L(X,Y )) is ϕ∗-variationally µ-con-

tinuous, then Tm can be uniquely extended to a (γϕ, ‖·‖Y )-continuous linear operator
Tm : Lϕ(µ,X)→ Y with ‖Tm‖ = ‖Tm‖.

Since for m ∈ fasvϕ∗,µ(Σ,L(X,Y )) its semivariation m̃ϕ∗ : Σ → [0,∞) is a
submeasure, using the standard argument one can obtain the following characterization
of ϕ∗-variationally µ-continuous operator measures.

Proposition 2.3

For m ∈ fasvϕ∗,µ(Σ,L(X,Y )) the following statements are equivalent:

(i) m is ϕ∗-variationally µ-continuous.
(ii) For every ε > 0 there exist δ > 0 and A0 ∈ Σf (µ) such that m̃ϕ∗(A) ≤ ε for

all A ∈ Σ with µ(A) ≤ δ and m̃ϕ∗(Ω rA0) ≤ ε.

For every r > 0 by T rm we denote the restriction of Tm : Lϕ(µ,X)∩ S(µ,X)→ Y
to Bϕ(r) ∩ S(µ,X).
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Proposition 2.4

Assume that m ∈ fasvϕ∗,µ(Σ,L(X,Y )) is ϕ∗-variationally µ-continuous. Then
for each r > 0 the mapping

T rm : Bϕ(r) ∩ S(µ,X) −→ Y

is (T0|Bϕ(r) ∩S(µ,X), ‖ · ‖Y )-uniformly continuous.

Proof. For η > 0 and A ∈ Σf (µ) let

V (A, η) =
{
f ∈ L0(µ,X) : µ

(
{ω ∈ A : ‖f(ω)‖X ≥ η}

)
< η

}
.

Then the family B0 = {V (A, η) : η > 0, A ∈ Σf (µ)} is a local base at 0 for T0.
Let us fix r > 0 and let ε > 0 be given. Then in view of Proposition 2.3 there

exist A0 ∈ Σf (µ) and δ > 0 such that m̃ϕ∗(Ω \ A0) ≤ ε
8r and m̃ϕ∗(A) ≤ ε

8r for
every A ∈ Σ with µ(A) ≤ δ. Choose η ∈ (0, δ) such that ϕ(

√
η)µ(A0) ≤ 1 and√

η ≤ ε
2m̃ϕ∗ (A0)+1 .

Take s1, s2 ∈ Bϕ(r) ∩ S(µ,X) such that s1−s2 ∈ V (A0, η). Then ‖ s1−s22r ‖ϕ ≤ 1.
Let A(η) = {ω ∈ Ω : ‖s1(ω) − s2(ω)‖X ≥ η}. Since µ(A(η) ∩ A0) < η, we have
m̃ϕ∗(A(η)∩A0) ≤ ε

8r . We have s1 − s2 =
∑k

i=1(1Ai ⊗ xi), where (Ai)
k
i=1 is a disjoint

sequence in Σ and xi ∈ X for 1 ≤ i ≤ k. Let

I =
{
i ∈ {1, . . . , k} : ‖xi‖X ≥ η

}
and J =

{
i ∈ {1, . . . , k} : ‖xi‖X < η

}
.

Then

∑
i∈I

ϕ
(‖xi‖X

2r

)
µ(Ai) ≤

k∑
i=1

ϕ
(‖xi‖X

2r

)
µ(Ai)

=

∫
Ω
ϕ
(‖s1(ω)− s2(ω)‖X

2r

)
dµ ≤ 1,

so ∥∥∥∥∑
i∈I

‖xi‖X
2r

m(Ai ∩A0)
( xi
‖xi‖X

)∥∥∥∥
Y

≤ m̃ϕ∗(A(η) ∩A0),

and ∥∥∥∥ k∑
i=1

‖xi‖X
2r

m(Ai ∩ (Ω rA0))
( xi
‖xi‖X

)∥∥∥∥
Y

≤ m̃ϕ∗(Ω rA0).

Moreover, ∥∥∥∥∑
i∈J

‖xi‖X√
η
m(Ai ∩A0)

(
xi
‖xi‖X

)∥∥∥∥
Y

≤ m̃ϕ∗(A0),

because ∑
i∈J

ϕ
‖xi‖X√

η
µ(Ai ∩A0) ≤

∑
i∈J

ϕ(
√
η)µ(Ai ∩A0)

= ϕ(
√
η)µ

(
A0 ∩

⋃
i∈J

Ai

)
≤ ϕ(

√
η)µ(A0) ≤ 1.
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Hence we have

‖T rm(s1)− T rm(s2)‖Y =
∥∥∥∫

Ω
s1(ω)dm−

∫
Ω
s2(ω)dm

∥∥∥
Y

=
∥∥∥∫

Ω
(s1(ω)− s2(ω)) dm

∥∥∥
Y

=
∥∥∥ k∑
i=1

m(Ai)(xi)
∥∥∥
Y

=
∥∥∥∑
i∈I

m(Ai ∩A0)(xi) +
∑
i∈J

m(Ai ∩A0)(xi)

+
k∑
i=1

m(Ai ∩ (Ω rA0))(xi)
∥∥∥
Y

≤ 2r

∥∥∥∥∑
i∈I

‖xi‖X
2r

m(Ai ∩A0)
( xi
‖xi‖X

)∥∥∥∥
Y

+
√
η

∥∥∥∥∑
i∈J

‖xi‖X√
η

m(Ai ∩A0)
( xi
‖xi‖X

)∥∥∥∥
Y

+ 2r

∥∥∥∥ k∑
i=1

‖xi‖X
2r

m(Ai ∩ (Ω rA0))
( xi
‖xi‖X

)∥∥∥∥
Y

≤ 2r m̃ϕ∗
(
A(η) ∩A0

)
+
√
η m̃ϕ∗(A0) + 2r m̃ϕ∗(Ω rA0)

≤ ε

4
+
ε

2
+
ε

4
= ε.

This means that T rm is (T0|Bϕ(r)∩S(µ,X), ‖ · ‖Y )-uniformly continuous.

Now we are in position to state our main result.

Theorem 2.5

Assume that m ∈ fasvϕ∗,µ(Σ,L(X,Y )) is ϕ∗-variationally µ-continuous. Then
Tm : Lϕ(µ,X) ∩ S(µ,X) → Y has a unique (γϕ, ‖ · ‖Y )-continuous linear extension
Tm : Lϕ(µ,X)→ Y and ‖Tm‖ = m̃ϕ∗(Ω).

Proof. From Proposition 2.4 it follows that for every r > 0 there exists a unique
(T0|cl(Bϕ(r)∩S(µ,X)), ‖ · ‖Y )-uniformly continuous extension

T
r
m : cl

(
Bϕ(r) ∩ S(µ,X)

)
→ Y

of the mapping T rm : Bϕ(r)∩S(µ,X)→ Y (the closure is taken in T0|Lϕ(µ,X)) (see [2,
Theorem 2.6]). Since Bϕ(r) ⊂ cl(Bϕ(r) ∩ S(µ,X)) for r > 0, the restricted mapping
T
r
m|Bϕ(r) : Bϕ(r)→ Y is (T0|Bϕ(r), ‖ · ‖Y )-uniformly continuous. Then for f ∈ Bϕ(r)

we have

T
r
m(f) = limT rm(sn) = lim

∫
Ω
sn(ω)dm,

where (sn) is a sequence in Bϕ(r) ∩ S(µ,X) such that sn → f for T0. Note that
for 0 < r1 < r2 we have T

r2
m |Bϕ(r1) = T

r1
m |Bϕ(r1). Define the linear operator Tm :

Lϕ(µ,X)→ Y by
Tm(f) = T

r
m(f) for f ∈ Bϕ(r), r > 0.
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Then Tm|Lϕ(µ,X)∩S(µ,X) = Tm, and in view of Proposition 1.1 Tm is (γϕ, ‖ · ‖Y )-con-
tinuous.

Note that by Corollary 2.2

m̃ϕ∗(Ω) = sup
{
‖Tm(s)‖Y : s ∈ Lϕ(µ,X) ∩ S(µ,X), ‖s‖ϕ ≤ 1

}
≤ sup

{
‖Tm(f)‖Y : f ∈ Lϕ(µ,X), ‖f‖ϕ ≤ 1

}
= ‖Tm‖.

Now let f ∈ Lϕ(µ,X) and ‖f‖ϕ ≤ 1. Then there exists a sequence (sn) in
Lϕ(µ,X) ∩ S(µ,X) such that sn → f for T0 and ‖sn‖ϕ ≤ ‖f‖ϕ ≤ 1 for n ∈ N.
Hence Tm(f) = limTm(sn). Let ε > 0 be given. Then there exists nε ∈ N such
‖Tm(f)− Tm(snε)‖Y ≤ ε. Hence

‖Tm(f)‖Y ≤ ‖Tm(f)− Tm(snε)‖Y + ‖Tm(snε)‖Y

≤ ε+
∥∥∥∫

Ω
snε(ω)dm

∥∥∥
Y
≤ ε+ m̃ϕ∗(Ω).

It follows that ‖Tm‖ ≤ m̃ϕ∗(Ω).

In view of Theorems 2.4 and 2.5 we have

Definition 2.6 Assume that m ∈ fasvϕ∗,µ(Σ,L(X,Y )) is ϕ∗-variationally µ-continuous.
For every f ∈ Lϕ(µ,X) we define the integral

∫
Ω f(ω)dm by the equality:∫

Ω
f(ω)dm := Tm(f).

Assume now that T : Lϕ(µ,X)→ Y is a (‖·‖ϕ, ‖·‖Y )-continuous linear operator
and let m : Σ→ L(X,Y ) be its representing measure defined by

m(A)(x) := T (1A ⊗ x) for A ∈ Σ and x ∈ X.

Then by Corollary 2.2 we get

m̃ϕ∗(Ω) = sup
{
‖T (s)‖Y : s ∈ Lϕ(µ,X) ∩ S(µ,X), ‖s‖ϕ ≤ 1

}
≤ ‖T‖ <∞,

and m(A) = 0 whenever µ(A) = 0. This means that m ∈ fasvϕ∗,µ(Σ,L(X,Y )).

Theorem 2.7

Let Lϕ(µ,X) → Y be a (γϕ, ‖ · ‖Y )-continuous linear operator. Then its repre-
senting measure m ∈ fasvϕ∗,µ(Σ,L(X,Y )) is ϕ∗-variationally µ-continuous and

T (f) = Tm(f) =

∫
Ω
f(ω)dm for all f ∈ Lϕ(µ,X).
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Proof. Note that T is (‖ · ‖ϕ, ‖ · ‖)-continuous because γϕ ⊂ Tϕ. Hence m ∈
fasvϕ∗,µ(Σ,L(X,Y )). To show that m is ϕ∗-variationally µ-continuous, assume that
An ↘µ ∅, (An) ⊂ Σ. Then for each n ∈ N there exist a sequence (An,i)

kn
i=1 in Σ

with An,i ⊂ An and an,i ≥ 0, xn,i ∈ BX for 1 ≤ i ≤ kn with
∑kn

i=1 ϕ(an,i)µ(An,i) ≤ 1
such that

m̃ϕ∗(An) ≤
∥∥∥∥ kn∑
i=1

an,im(An,i)(xn,i)

∥∥∥∥
Y

+
1

n
.

Let sn =
∑kn

i=1(1An,i ⊗ an,i xn,i) for n ∈ N. Then

∫
Ω
ϕ
(
‖sn(ω)‖X

)
dµ =

kn∑
i=1

ϕ
(
‖an,i xn,i‖X

)
µ(An,i) ≤

kn∑
i=1

ϕ(an,i)µ(An,i) ≤ 1,

so ‖sn‖ϕ ≤ 1 for n ∈ N. Moreover, for every A ∈ Σf (µ) and ε > 0 we have {ω ∈ A :
‖sn(ω)‖X ≥ ε} ⊂ An ∩ A for all n ∈ N. Thus µ({ω ∈ A : ‖sn(ω)‖X ≥ ε}) → 0, i.e.,
sn → 0 for T0. Hence sn → 0 for γϕ, so∥∥∥∥ kn∑

i=1

an,i m(An,i)(xn,i)

∥∥∥∥
Y

= ‖T (sn)‖Y −→ 0.

It follows that m̃ϕ∗(An)→ 0, i.e., m is ϕ∗-variationally µ-continuous.
Now let f ∈ Lϕ(µ,X). Then there exists a sequence (sn) in Lϕ(µ,X) ∩ S(µ,X)

such that sn → f for γϕ. Since T and the integration operator Tm are (γϕ, ‖ · ‖Y )-con-
tinuous (see Theorem 2.5) we have

T (f) = limT (sn) = limTm(sn) = Tm(f) =

∫
Ω
f(ω)dm.

As a consequence of Theorems 2.5 and 2.7 we get

Corollary 2.8

Let T : Lϕ(µ,X) → Y be a (‖ · ‖ϕ, ‖ · ‖Y )-continuous linear operator and let
m ∈ fasvϕ∗,µ(Σ,L(X,Y )) be its representing measure. Then the following statements
are equivalent:
(i) T is (γϕ, ‖ · ‖Y )-continuous.

(ii) m is ϕ∗-variationally µ-continuous.

Note that the Lebesgue-Bochner space L∞(µ,X) is equal to the Orlicz-Bochner
space Lϕ∞(µ,X), where

ϕ∞(t) =

{
0 if 0 ≤ t ≤ 1,

∞ if t > 1.

The space L∞(µ,X) is provided with the norm ‖f‖∞ = ess supω∈Ω ‖f(ω)‖X . Then
ϕ∗∞(t) = t1 for all t ≥ 0. Hence for a measure m : Σ→ L(X,Y ) and A ∈ Σ we have

m̃(A) = m̃ϕ∗∞(A) = sup ‖Σm(Ai)(xi) ‖Y ,
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where the supremum is taken over all finite disjoint sequences (Ai) in Σ with Ai ⊂ A
and xi ∈ BX for each i. We will briefly write fasvµ(Σ,L(X,Y )) instead of
fasvϕ∗∞, µ(Σ,L(X,Y )). We will say that fasvµ(Σ,L(X,Y )) is variationally µ-continuous
if m̃(An) → 0 as An ↘µ ∅, (An) ⊂ Σ. By γ∞ (= γϕ∞) we will denote the mixed
topology on L∞(µ,X).

For each y∗ ∈ Y ∗ let my∗ : Σ→ X∗ be a measure defined by

my∗(A)(x) = 〈m(A)(x), y∗〉 for every A ∈ Σ and x ∈ X.

It is well known that for A ∈ Σ,

m̃(A) = sup
{
|my∗ |(A) : y∗ ∈ BY ∗

}
,

where |my∗ | stands for the variation of a measure my∗ (see [4, Theorem 5]). It follows
that m ∈ fasvµ(Σ,L(X,Y )) is variationally µ-continuous if and only if the family
{|my∗ | : y∗ ∈ BY ∗} is uniformly µ-continuous.

Recall that a continuous finite valued Young function ϕ is said to be an
N -function if ϕ vanishes only at 0 and ϕ(t)/t→ 0 as t→ 0, ϕ(t)/t→∞ as t→∞
(see [18]). Note that if µ(Ω) <∞, then S(µ,X) ⊂ L∞(µ,X) ⊂ Eϕ(µ,X) ⊂ Lϕ(µ,X)
for any N -function ϕ. The following characterization of γ∞ will be useful (see [21,
Theorem 4.5]).

Theorem 2.9

Assume that (Ω,Σ, µ) is a finite measure space. Then γ∞ is generated by a
family of norms ‖ · ‖ϕ|L∞(µ,X), where ϕ runs over the family of all N -functions.

Now we are ready to present a characterization of variationally µ-continuous
measures m ∈ fasvµ(Σ,L(X,Y )).

Corollary 2.10

Assume that (Ω,Σ, µ) is a finite measure space. Then for m ∈ fasvµ(Σ,L(X,Y ))
the following statements are equivalent:
(i) m is variationally µ-continuous.

(ii) There exists an N-function ϕ such that m̃ϕ∗(Ω) <∞.

Proof. (i)=⇒(ii) Assume that m is variationally µ-continuous. Then in view of Theo-
rem 2.5 the integration operator Tm : L∞(µ,X)→ Y is (γ∞, ‖·‖Y )-continuous. Hence
by Theorem 2.9 there exists an N -function ϕ such that Tm is (‖ · ‖ϕ|L∞(µ,X), ‖ · ‖Y )-
continuous. Hence in view of Corollary 2.2 we get

m̃ϕ∗(Ω) = sup
{
‖Tm(s)‖Y : s ∈ S(µ,X), ‖s‖ϕ ≤ 1

}
<∞.

(ii)=⇒(i) Assume that ϕ is an N -function such that m̃ϕ∗(Ω) <∞. Let Tm(s) =∫
Ω s(ω)dm for s ∈ S(µ,X). Then by Corollary 2.2 for every s ∈ S(µ,X) we have
‖Tm(s)‖Y ≤ m̃ϕ∗(Ω) · ‖s‖ϕ. This means that the operator Tm : S(µ,X) → Y is
(‖ · ‖ϕ, ‖ · ‖Y )-continuous. Since S(µ,X) ⊂ L∞(µ,X) ⊂ Eϕ(µ,X) and S(µ,X) is
dense in (Eϕ(µ,X), ‖ · ‖ϕ), we see that S(µ,X) is dense in (L∞(µ,X), ‖ · ‖ϕ|L∞(µ,X)).

Hence there exists a (‖ · ‖ϕ|L∞(µ,X), ‖ · ‖Y )-continuous extension Tm : L∞(µ,X)→ Y

of Tm. In view of Theorem 2.9 Tm is (γ∞, ‖ · ‖Y )-continuous, and by Theorem 2.7 m
is variationally µ-continuous.
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3. Vitali-Hahn-Saks type theorems for operator measures

It is known that if the Banach dual X∗ of X has the Radon-Nikodym property
(i.e., X is an Asplund space; see [9, p. 213]), then

L∞(µ,X)∗γ∞ =
{
Fg : g ∈ L1(µ,X∗)

}
,

where Fg(f) =
∫

Ω〈f(ω), g(ω)〉dµ for all f ∈ L∞(µ,X) (see [5, Theorem 4.1] [6, Theo-
rem 4.3]). The following characterization of γ∞ will be needed (see [22, Corollary 4.3]).

Theorem 3.1

Assume that X∗ has the Radon-Nikodym property. Then γ∞ is a Mackey topo-
logy, i.e.,

γ∞ = τ
(
L∞(µ,X), L∞(µ,X)∗γ∞

)
= τ(L∞(µ,X), L1(µ,X∗)).

We will need the following general result.

Proposition 3.2

Assume the X∗ has the Radon-Nikodym property. Let T : L∞(µ,X)→ Y be a
(‖·‖∞, ‖·‖Y )-continuous linear operator and m ∈ fasvµ(Σ,L(X,Y )) be its representing
measure. Then the following statements are equivalent:

(i) m is variationally µ-continuous.

(ii) T is (τ(L∞(µ,X), L1(µ,X∗)), ‖ · ‖Y )-continuous.

(iii) T is (σ(L∞(µ,X), L1(µ,X∗)), σ(Y, Y ∗))-continuous.

(iv) y∗ ◦ T ∈ L∞(µ,X)∗γ∞ for each y∗ ∈ Y ∗.

Proof. (i)⇐⇒(ii) It follows from Corollary 2.8 and Theorem 3.1.

(ii)⇐⇒(iii) See [1, Example 11, p. 149].

(iii)⇐⇒(iv) See [1, Theorem 9.26].

Let L(L∞(µ,X), Y ) stand for the space of all bounded linear operators from
L∞(µ,X) to a Banach space Y . The strong operator topology (briefly SOT) is a locally
convex topology on L(L∞(µ,X), Y ) defined by the family of seminorms {pf : f ∈
L∞(µ,X)}, where pf (T ) = ‖T (f)‖Y for all T ∈ L(L∞(µ,X), Y ). The weak operator
topology (briefly WOT) is a locally convex topology on L(L∞(µ,X), Y ) defined by the
family of seminorms {pf,y∗ : f ∈ L∞(µ,X), y∗ ∈ Y ∗}, where pf,y∗(T ) = |〈T (f), y∗〉|
for all T ∈ L(L∞(µ,X), Y ). In view of the Banach-Steinhaus theorem the space
L(L∞(µ,X), Y ) provided with SOT is sequentially complete. By Lγ∞(L∞(µ,X), Y )
we denote the subspace of L(L∞(µ,X), Y ) consisting of all those T ∈ L(L∞(µ,X), Y )
which are (γ∞, ‖ · ‖Y )-continuous.

Proposition 3.3

Assume that X∗ has the Radon-Nikodym property. Then Lγ∞(L∞(µ,X), Y ) is
a sequentially closed subspace of L(L∞(µ,X), Y ) for WOT.
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Proof. Let (Tn) be a sequence in Lγ∞(L∞(µ,X), Y ) such that Tn → T for WOT,
where T ∈ L(L∞(µ,X), Y ). Let y∗0 ∈ Y ∗ be given. Then for every f ∈ L∞(µ,X)
we have (y∗0 ◦ T )(f) = lim(y∗0 ◦ Tn)(f), where y∗0 ◦ Tn ∈ L∞(µ,X)∗γ∞ for n ∈ N
(see Theorem 3.1 and Proposition 3.2) and y∗0 ◦ T ∈ L∞(µ,X)∗ (= the Banach dual
of L∞(µ,X)). It follows that (y∗0 ◦ Tn) is a σ(L∞(µ,X)∗γ∞ , L

∞(µ,X))-Cauchy se-
quence in L∞(µ,X)∗γ∞ . Since the space (L∞(µ,X)∗γ∞ , σ(L∞(µ,X)∗γ∞ , L

∞(µ,X))) is
sequentially complete (see [22, Corollary 4.3]), there exists F0 ∈ L∞(µ,X)∗γ∞ such that
F0(f) = lim(y∗0◦Tn)(f) for each f ∈ L∞(µ,X), so F0 = y∗0◦T ∈ L∞(µ,X)∗γ∞ . Making
use of Proposition 3.2 and Theorem 3.1 we derive that T ∈ Lγ∞(L∞(µ,X), Y ).

Corollary 3.4

Assume that X∗ has the Radon-Nikodym property. Then

(i) Lγ∞(L∞(µ,X), Y ) is a sequentially closed subspace of L(L∞(µ,X), Y ) for SOT.
(ii) The space (Lγ∞(L∞(µ,X), Y ),SOT) is sequentially complete

Proof. (i) It follows from Proposition 3.3 because WOT ⊂ SOT.
(ii) It follows from (i) because the space (L(L∞(µ,X), Y ),SOT) is sequentially

complete.

The following result will be of importance (see [22, Theorem 5.5]).

Theorem 3.5

Assume that X∗ has the Radon-Nikodym property. Let K be a SOT-compact
subset of Lγ∞(L∞(µ,X), Y ). Then K is (γ∞, ‖ · ‖Y )-equicontinuous.

Now we are in position to prove a modification and correction of [23, Theorems 4.3
and 4.4] concerning Vitali-Hahn-Saks type theorems for families of operator measures.

Theorem 3.6

Assume that X∗ has the Radon-Nikodym property. Let M be a subset of
fasvµ(Σ,L(X,Y )) consisting of variationally µ-continuous measures such that the set
of the corresponding integration operators {Tm : m ∈ M} is a SOT-compact subset
of Lγ∞(L∞(µ,X), Y ). Then the set M is uniformly variationally µ-continuous, i.e.,
supm∈M m̃(An)→ 0 whenever An ↘µ ∅, (An) ⊂ Σ.

Proof. In view of Theorem 3.5 the family {Tm : m ∈M} is (γ∞, ‖·‖Y )-equicontinuous.
We know that γ∞ is generated by a family {%α : α ∈ A} of solid seminorms on
L∞(µ,X).

Let ε > 0 be given. Then there exist αi ∈ A for i = 1, . . . , i0 ∈ N and δ > 0
such that

sup
m∈M

‖Tm(f)‖Y ≤
ε

2
whenever max

1≤i≤i0
%αi(f) ≤ δ. (1)

Assume now that An ↘µ ∅, (An) ⊂ Σ. For a fixed x0 ∈ X with ‖x0‖X = 1
let fn = 1An ⊗ x0 for n ∈ N. Then for A ∈ Σf (µ) we have {ω ∈ An ∩ A :
‖fn(ω)‖X ≥ ε} ⊂ An ∩ A for n ∈ N and µ(An ∩ A) → 0. Hence fn → 0 for
T0. Since supn ‖fn‖∞ ≤ 1 we have fn → 0 for γ∞. It follows that there exists
n0 ∈ N such that max1≤i≤i0 %αi(fn) ≤ δ for n ≥ n0.
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Now let n ∈ N be fixed. Then for every m ∈ M there exist a finite sequence

(Amn,j)
km,n

j=1 in Σ with A
km,n

n,j ⊂ An and xmn,j ∈ BX for 1 ≤ i ≤ km,n such that

m̃(An) ≤
∥∥∥ km,n∑
j=1

m(Amn,j)(x
m
n,j)
∥∥∥
Y

+
ε

2
. (2)

Let smn =
∑km,n

j=1 (1Am
n,j
⊗ xmn,j) for m ∈ M. Then ‖smn (ω)‖X ≤ ‖fn(ω)‖X for

ω ∈ Ω and every m ∈M, and hence max1≤i≤i0 %αi(s
m
n ) ≤ max1≤i≤i0 %αi(fn) for every

m ∈M. Hence by (1) and (2) for n ≥ n0 we get

sup
m∈M

m̃(An) ≤ sup
m∈M

∥∥Tm(smn )
∥∥
Y

+
ε

2
≤ ε

2
+
ε

2
= ε.

This means that supm∈M m̃(An) −→n 0, as desired.

As a consequence of Theorem 3.6 we have

Corollary 3.7

Assume that X∗ has the Radon-Nikodym property. Let mk ∈ fasvµ(Σ,L(X,Y ))
be variationally µ-continuous measures for k ∈ N. Assume that for every
f ∈ L∞(µ,X),

T (f) := lim
k
Tmk

(f) = lim
k

∫
Ω
f(ω)dmk

exists in (Y, ‖ · ‖Y ). Then the operator T : L∞(µ,X) → Y is (γ∞, ‖ · ‖Y )-conti-
nuous and the family {mk : k ∈ N} is uniformly variationally µ-continuous, i.e.,
supk m̃k(An)→ 0 as An ↘µ ∅, (An) ⊂ Σ.

Proof. By Theorem 2.5 and Corollary 3.4 T ∈ Lγ∞(L∞(µ,X), Y ). Then Tmk
→ T

in Lγ∞(L∞(µ,X), Y ) for SOT, so {Tmk
: k ∈ N} ∪ {T} is a compact subset of

Lγ∞(L∞(µ,X), Y ) for SOT. Hence by Theorem 3.6 the set {mk : k ∈ N} is uniformly
variationally µ-continuous.
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