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Inequalities for Riemann–Liouville operator involving suprema
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Abstract

In the paper we obtain a characterization of an inequality for Riemann–Liouville
operator involving suprema in case of nonincreasing weights.

1. Introduction

Let b ∈ (0,∞]. Denote by M+ the class of all nonnegative Lebesgue measurable
functions on (0, b). The weighted Riemann–Liouville operator

f 7→ u(s)

∫ s

0

f(y)v(y) dy

(s− y)1−α
(1)

was studied in papers [1, 5, 6, 7, 8], where criteria under some restrictions on the
weight functions and relations on parameters p, q of the Lp − Lq boundedness (and in
some cases compactness) of the operator (1) was proved.

In various research projects some operators involving suprema have been recently
encountered (see [3, 4]). In paper [3] a Hardy-type operator involving suprema was
characterized. We study the inequality

(∫ b

0

[
(Rαf)(x)

]q
w(x) dx

)1/q
≤ C

(∫ b

0
f(x)p dx

)1/p
, f ∈M+, (2)
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where the Riemann–Liouville operator involving suprema Rα is defined by the formula

(Rαf)(t) = sup
t≤s<b

u(s)

∫ s

0

f(y)v(y) dy

(s− y)1−α
,

α ∈ (0, 1), w, v ∈ M+, u is a continuous nonnegative function and either u or v is
nonincreasing on (0, b).

Put b0 := sup{s ∈ (0, b) |u(s) 6= 0}. Since

(Rαf)(t) = sup
t≤s<b0

u(s)

∫ s

0

f(y)v(y) dy

(s− y)1−α
if 0 < t < b0

and

(Rαf)(t) = 0 if t ∈ (b0, b),

the inequality (2) is equivalent to the similar inequality with b0 instead of b. So we
assume that b0 = b.

Throughout this paper A . B and B & A means that A ≤ cB, where the constant
c depends only on p, q, α and may be different in different places. If both A . B and
A & B, then we write A ≈ B.

2. Main results

Lemma 2.1

Let α ∈ (0, 1), γ ∈ (0, 1], [c, d) ⊂ (0, b), and let v be a measurable function such

that the function V (t) :=
∫ t
0 |v(y)(t−y)α−1|p′dy is bounded on [c, d), and f ∈ Lp(0, d).

Then the integral g(t) :=
∫ γt
0 f(y)v(y)(t−y)α−1dy is continuous from the right on [c, d).

Proof. Fix an arbitrary point t ∈ [c, d). The boundedness of the function V implies
K := supx∈[c,d) |V (x)| < ∞. Let δ > 0 such that [t, t + δ) ⊂ [c, d) and h ∈ (0, δ). We
have

|g(t+ h)− g(t)| ≤
∫ γ(t+h)

γt

|f(y)v(y)| dy
(t+ h− y)1−α

+

∫ γt

0
|f(y)v(y)|

∣∣∣ 1

(t− y)1−α
− 1

(t+ h− y)1−α

∣∣∣dy =: I1(h) + I2(h).

Applying the Hölder inequality, we find

I1(h) ≤ ‖fχ[γt,γ(t+h))‖p
[ ∫ t+h

0

|v(y)|p′ dy
(t+ h− y)(1−α)p′

]1/p′
≤ K1/p′‖fχ[γt,γ(t+h))‖p → 0, h→ 0.

Remark that if s > x > 0 and λ ∈ (0, 1), then

sλ − xλ = sλ−1
(
s−

(x
s

)λ−1 · x) < sλ−1(s− x)
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and by the mean value theorem there exists ξ ∈ (x, s) such that

sλ − xλ = λ ξλ−1(s− x) > λsλ−1(s− x).

Hence for y < t we have∣∣∣ 1

(t− y)1−α
− 1

(t+ h− y)1−α

∣∣∣ =
(t+ h− y)1−α − (t− y)1−α

(t− y)1−α(t+ h− y)1−α

≈ (t+ h− y)−α((t+ h− y)− (t− y))

(t− y)1−α(t+ h− y)1−α

=
h

(t− y)1−α(t+ h− y)
,

and we get the following estimate of I2(h)

I2(h) ≈
∫ γt

0

[ h

t+ h− y

] |f(y)v(y)|dy
(t− y)1−α

.

Now for any y ∈ (0, t) the inequality |h(t + h − y)−1| ≤ 1 holds and h(t + h − y)−1

monotonically tends to 0 as h→ 0+. Besides that∫ γt

0

|f(y)v(y)|dy
(t− y)1−α

≤ K1/p′‖fχ(0,d)‖p.

Consequently, by Lebesgue’s Dominated Convergence Theorem, I2(h) → 0 as h → 0.
Thus the function g is continuous from the right on [c, d).

2.1. The case of nonincreasing function v

Let v be a nonnegative nonincreasing function. Since for any f ∈M+

(Rαf)(t) ≥
[

sup
t≤s<b

u(s)sα−1
] ∫ t

0
f(y)v(y) dy, (3)

then in case of p ∈ (0, 1) by using the result [8, Theorem 2] for integral operator we
get that the inequality (2) holds if and only if

mes
({
t ∈ (0, b)

∣∣∣w(t)1/q
[

sup
t≤s<b

u(s)sα−1
] ∫ t

0
v(y) dy 6= 0

})
= 0,

that is the left-hand side of (2) is equal 0 for any f ∈M+.

Lemma 2.2

Let

α ∈ (0, 1), 1 ≤ p ≤ 1

α
, 0 < q <∞; w ∈M+,

∫ t

0
w(y) dy > 0



266 Prokhorov

for all t ∈ (0, b), u be a continuous nonnegative function and v be a nonincreasing
nonnegative function. Put

b1 := sup
{
s ∈ (0, b)

∣∣ v(s) 6= 0
}
, b2 := inf

{
t ∈ (0, b1]

∣∣∣ ∫ b1

t
u(x) dx = 0

}
and

b3 := sup
{
t ∈ [b1, b)

∣∣∣ ∫ t

b1

u(x) dx = 0
}
.

(a) If b2 > 0, then the inequality (2) is false.

(b) If b2 = 0 and b3 > b1, then the inequality (2) holds if and only if A <∞, where

A := sup
x∈(0,b)

[([ ū(x)

x

]q ∫ x

0
w(y) dy +

∫ b

x

[ ū(t)

t

]q
w(t) dt

)1/q[ ∫ x

0
v(t)p

′
dt
]1/p′]

(4)
and ū(t) := t sup

t≤s<b
u(s)sα−1.

(c) If b2 = 0 and b1 = b3, then the inequality (2) holds if and only if max{A,A′} <∞,
where

A′ :=
[ ∫ b1

0
w(x) dx

]1/q
sup

s∈[b1,b)
u(s)

(∫ b1

0

v(y)p
′
dy

(s− y)(1−α)p′

)1/p′
.

Proof. (a) Let the inequality (2) hold and b2 > 0. Then there is the strictly increasing
sequence {tk}∞k=1 ⊂ (0, b2) such that u(tk) 6= 0 and lim

k→∞
tk = b2. Since (1 − α)p′ ≥ 1,

then gk(y) := (tk+1 − y)α−1χ(tk,tk+1)(y) does not belong to the Lp
′
(tk, tk+1). Then

there exists the function fk ∈ Lp(tk, tk+1) such that
∫ tk+1

tk
fk(x)gk(x)dx = ∞. For

instance, if α < 1
p we can take fk(y) = (tk+1 − y)−αχ(tk,tk+1)(y). Consequently, if we

put f :=
∑

k 2−kfk‖fk‖−1p , we get f ∈ Lp and (Rαf)(t) =∞ for any t ∈ (0, b2). Hence∫ b2
0 w(y) dy = 0 and we get contradiction.

(b) If b3 = b, then u = 0 a.e. in (0, b) and the statement is clear. Now let b3 < b.
Let the inequality (2) hold. The finiteness of the constant A follows directly from [3,
Theorem 4.1] in accordance with

(Rαf)(t) ≥ sup
t≤s<b

u(s)sα

s

∫ s

0
f(y)v(y) dy, f ∈M+. (5)

Conversely, we have

(Rαf)(t) = sup
max{b3,t}≤s<b

u(s)

∫ b1

0

f(y)v(y) dy

(s− y)1−α

≤
[
1− b1

b3

]α−1
sup
t≤s<b

u(s)

s1−α

∫ s

0
f(y)v(y) dy,

since s−y ≥ s−b1 = s(1− b1
s ) ≥ s(1− b1

b3
). The statement follows from [3, Theorem 4.1].
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(c) If b1 = b3 = b or b1 = b3 = 0, then the statement is clear. Now let 0 < b1 =
b3 < b.

Necessity. The finiteness of the constant A is proved the same way as in part (b).
Besides that, in this case

(Rαf)(t) = sup
max{b1,t}≤s<b

u(s)

∫ b1

0

f(y)v(y) dy

(s− y)1−α
, (6)

and the inequality (2) implies

(∫ b1

0
w(x) dx

)1/q
sup

b1≤s<b
u(s)

∫ b1

0

f(y)v(y) dy

(s− y)1−α
≤ C

(∫ b1

0
f(x)p dx

)1/p
.

Now, the sharpness of the Hölder inequality proves the finiteness of the constant A′.

Sufficiency. Since A <∞, then
∫ x
0 w(y) dy <∞ for any x ∈ (0, b). There exists a

point b′ ∈ (b1, b) such that
∫ b′
0 w(x) dx < 2

∫ b1
0 w(x) dx. In accordance with (6) and [3,

Theorem 4.1], we have

(∫ b′

0
[(Rαf)(x)]qw(x) dx

)1/q
≤
[ ∫ b′

0
w(x) dx

]1/q
sup

b1≤s<b
u(s)

∫ b1

0

f(y)v(y) dy

(s− y)1−α

≤ 21/qA′
(∫ b

0
f(x)p dx

)1/p
,

and (∫ b

b′

[
(Rαf)(x)

]q
w(x) dx

)1/q
≤
[
1− b1

b′

]α−1(∫ b

b′

(
sup
t≤s<b

u(s)

s1−α

∫ s

0
f(y)v(y) dy

)q
w(x) dx

)1/q

,

.
[
1− b1

b′

]α−1
A
(∫ b

0
f(x)p dx

)1/p
.

We also use the following Chebyshev inequality (see proof, for instance, in
book [2, 2.18]).

Lemma 2.3

Let f be nonincreasing and g be nondecreasing nonnegative functions on
(c, d), −∞ < c < d < +∞. Then∫ d

c
f(x)g(x) dx ≤ 1

d− c

∫ d

c
f(x) dx ·

∫ d

c
g(x) dx.
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Corollary 2.4

Let α ∈ (0, 1), 0 < p, q < ∞; w, u, ρ ∈ M+, M+
↓ be the class of nonincreasing

nonnegative functions on (0, b) and v ∈M+
↓ . Then the inequality[∫ b

0

[
sup
t≤s<b

u(s)

∫ s

0

f(y)v(y)dy

(s− y)1−α

]q
w(x) dx

]1/q

≤ C
[ ∫ b

0
f(x)pρ(x)dx

]1/p
, f ∈M+

↓ (7)

is equivalent to the inequality[∫ b

0

[
sup
t≤s<b

u(s)

s1−α

∫ s

0
f(y)v(y)dy

]q
w(x)dx

]1/q

≤ C
[ ∫ b

0
f(x)pρ(x)dx

]1/p
, f ∈M+

↓ . (8)

Proof. It is clear that

sα−1
∫ s

0
f(y)v(y) dy ≤

∫ s

0

f(y)v(y) dy

(s− y)1−α
.

By the Chebyshev inequality we have∫ s

0

f(y)v(y) dy

(s− y)1−α
≤ s−1

∫ s

0
f(y)v(y) dy

∫ s

0

dy

(s− y)1−α

=
sα−1

α

∫ s

0
f(y)v(y) dy.

Thus the criterion of validity of the inequality (8), which was proved in paper [3,
Theorem 3.5], is also a criterion of validity of the inequality (7).

Theorem 2.5

Let

α ∈ (0, 1),
1

α
< p ≤ q <∞; w ∈M+,

∫ t

0
w(y) dy > 0

for all t ∈ (0, b), u be a continuous nonnegative function and v be a nonincreasing
nonnegative function. Then the inequality (2) holds if and only if A <∞, where A is
defined in (4).

Proof. Necessity follows from [3, Theorem 4.1], since the estimate (5) is true.

Sufficiency. Since A <∞, then
∫ x
0 w(y) dy <∞ for any x ∈ (0, b). If there exists

x ∈ (0, b) such that
∫ x
0 v(y)p

′
dy =∞, then

∫ t
0 v(y)p

′
dy =∞ for all t ∈ (0, b) because of

monotonicity of function v. Hence, the finiteness of A implies that w(t)1/q(Rαf)(t) = 0
for arbitrary t ∈ (0, b) and f ∈M+. So in this case the inequality (2) holds.
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Let
∫ t
0 v(y)p

′
dy <∞ for all t ∈ (0, b). In particular, it implies that integral

g(t) :=

∫ γt

0
f(y)v(y)(t− y)α−1dy, γ ∈ (0, 1]

of a function f ∈ Lp(0, b) is continuous from the right on (0, b), since for any [c, d) ⊂
(0, b), by Lemma 2.3,∫ t

0

v(y)p
′
dy

(t− y)(1−α)p′
. t(α−1)p

′
∫ t

0
v(y)p

′
dy ≤ c(α−1)p′

∫ d

0
v(y)p

′
dy <∞.

Then for nonnegative f ∈ Lp(0, b) we have∫ b

0
[(Rαf)(x)]qw(x) dx .

∫ b

0
w(x)

[
sup
x≤s<b

u(s)

∫ s

s/2

f(y)v(y) dy

(s− y)1−α

]q
dx

+

∫ b

0
w(x)

[
sup
x≤s<b

u(s)sα

s

∫ s

0
f(y)v(y) dy

]q
dx =: I1 + I2.

The estimate I2 . Aq‖f‖qp follows from [3, Theorem 4.1].

Put

N :=

{
inf
{
k ∈ Z | 2k ≥ b

}
, if b <∞,

∞, otherwise.

Then I1 . I11 + I12, where

I11 =
∑
k<N

∫ 2k+1

2k
w(t) sup

t≤s<2k+1

(
u(s)

∫ s

s/2

f(y)v(y) dy

(s− y)1−α

)q
dt,

I12 =
∑
k<N

∫ 2k+1

2k
w(t) dt sup

2k+1≤s<b

(
u(s)

∫ s

s/2

f(y)v(y) dy

(s− y)1−α

)q
.

Applying the Hölder inequality, Lemma 2.3 and monotonicity of function v, we
obtain

I11≤
∑
k<N

∫ 2k+1

2k
w(t) sup

t≤s<2k+1

[
u(s)

[ ∫ s

s/2

v(y)p
′
dy

(s− y)(1−α)p′

]1/p′]q
dt
[ ∫ 2k+1

2k−1

f(y)pdy
]q/p

.
∑
k<N

∫ 2k+1

2k
w(t) sup

t≤s<2k+1

[
u(s)sα−1

[ ∫ s

s/2
v(y)p

′
dy
]1/p′]q

dt
[ ∫ 2k+1

2k−1

f(y)pdy
]q/p

≤
∑
k<N

∫ 2k+1

2k
w(t)

[
sup

t≤s<2k+1

u(s)sα−1
]q
dt
[ ∫ 2k

0
v(y)p

′
dy
]q/p′[ ∫ 2k+1

2k−1

f(y)pdy
]q/p
.

Hence I11 . Aq‖f‖qp.



270 Prokhorov

Moreover,

I12 =
∑
k<N

∫ 2k+1

2k
w(t) dt sup

k+1≤i<N
sup

2i≤s<2i+1

(
u(s)

∫ s

s/2

f(y)v(y) dy

(s− y)1−α

)q
≤
∑
k<N

∫ 2k+1

2k
w(t) dt

∑
k+1≤i<N

sup
2i≤s<2i+1

(
u(s)

∫ s

s/2

f(y)v(y) dy

(s− y)1−α

)q
=
∑
i<N

∫ 2i

0
w(t) dt sup

2i≤s<2i+1

(
u(s)

∫ s

s/2

f(y)v(y) dy

(s− y)1−α

)q
.
∑
i<N

∫ zi

0
w(t) dt

(
u(zi)

∫ zi

zi/2

f(y)v(y) dy

(zi − y)1−α

)q
,

where zi is a point in (2i, 2i+1] such that

sup
2i≤s<2i+1

(
u(s)

∫ s

s/2

f(y)v(y) dy

(s− y)1−α

)q
≤ 2
(
u(zi)

∫ zi

zi/2

f(y)v(y) dy

(zi − y)1−α

)q
.

Applying the Hölder inequality, Lemma 2.3 and monotonicity of function v, we find

I12 .
∑
i<N

∫ zi

0
w(t) dt

[ ∫ 2i+1

2i−1

f(y)p dy
]q/p(

u(zi)z
α−1
i

)q[ ∫ zi

0
v(y)p

′
dy
]q/p′

. Aq‖f‖qp.

Thus the theorem is proved.

2.2. The case of nonincreasing function u

Remark that, since u is a nonincreasing function, the assumption b0 = b (which we
made in the Introduction) implies that u(t) > 0 for all t ∈ (0, b).

By using the ideas from proof of the Theorem 4.1 of the paper [3] we get the
following result.

Denote by S the class of all strictly increasing sequences {xk}k=n2
k=n1

⊂ [0, b], where

n1, n2 ∈ Z ∪ {±∞}, n1 < n2, such that [0, b] = ∪k=n2−1
k=n1

(xk, xk+1).

Theorem 2.6

Let α ∈ (0, 1), 1 < p <∞, 0 < q <∞, 1
r = 1

q −
1
p ; w, v ∈M+, u be a continuous

and nonincreasing nonnegative function. If p ≤ q then the inequality (2) holds if and
only if the inequality(∫ b

0
w(x)u(x)q

(∫ x

0

f(y)v(y) dy

(x− y)1−α

)q
dx

)1/q

≤ C
(∫ b

0
f(x)p dx

)1/p
, f ∈M+, (9)

holds and B <∞, where

B := sup
t∈(0,b)

B(t) := sup
t∈(0,b)

u(t)
[ ∫ t

0
w(y) dy

]1/q[ ∫ t

0

v(y)p
′
dy

(t− y)(1−α)p′

]1/p′
.
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If p > q then the inequality (2) holds if and only if the inequality (9) holds and
D <∞, where

D := sup
{xk}∈S

[∑
k

[ ∫ xk+1

xk

w(t)dt
]r/q

u(xk+1)
r
[ ∫ xk+1

xk

v(y)p
′
dy

(xk+1 − y)(1−α)p′

]r/p′]1/r
.

Remark. The following simple estimate supt∈(0,b)B(t) ≤ D we will use in the proof of
the theorem. For proof of this fact for arbitrary t ∈ (0, b) we take the sequence x1 = 0,
x2 = t and x3 = b.

Proof. Necessity. Fix an arbitrary t ∈ (0, b). If
∫ t
0 v(y)p

′
(t− y)(α−1)p

′
dt = 0 or∫ t

0 w(x) dx = 0 or u(t) = 0 then B(t) = 0 ≤ C. Now let
∫ t
0 w(x) dx > 0, u(t) > 0 and∫ t

0 v(y)p
′
(t− y)(α−1)p

′
dt > 0. We take a sequence {γn}n∈N such that γn ↓ 0 as n→∞,

t+γn < b, n ∈ N and u(t+γ1) > 0 (see remark in the beginning of the Section 2.2). Sub-
stituting the function ft(y) = min{n, v(y)}p′−1(t+ γn − y)(α−1)(p

′−1)χ(0, t)(y) into (2),
we obtain

C‖ft‖p ≥
(∫ b

0
[(Rαft)(x)]qw(x) dx

)1/q
≥
(∫ t

0
w(x) dx

)1/q
sup

t+γn≤s<b
u(s)

∫ t

0

min{n, v(y)}p′ dy
(s− y)1−α(t+ γn − y)(1−α)(p′−1)

≥ u(t+ γn)
(∫ t

0
w(x) dx

)1/q ∫ t

0

min{n, v(y)}p′ dt
(t+ γn − y)(1−α)p′

.

Since

‖ft‖p =
(∫ t

0

min{n, v(y)}p′ dy
(t+ γn − y)(1−α)p′

)1/p
<∞,

we have

C ≥ u(t+ γn)
(∫ t

0
w(x) dx

)1/q(∫ t

0

min{n, v(y)}p′ dt
(t+ γn − y)(1−α)p′

)1/p′
. (10)

The Monotone Convergence Theorem implies that(∫ t

0

min{n, v(y)}p′ dt
(t+ γn − y)(1−α)p′

)1/p′
→
(∫ t

0

v(y)p
′
dt

(t− y)(1−α)p′

)1/p′
as n→∞.

From this result, relation (10) and continuity of function u we get C ≥ B(t). Since
also

(Rαf)(t) ≥ u(t)

∫ t

0

f(y)v(y)

(s− y)1−α
dy, f ∈M+, t ∈ (0, b), (11)

the necessity is proved in the case p ≤ q.
Now let q < p. Fix any sequence {xk} ∈ S and for n ∈ N put

Vk :=

∫ xk+1

xk

v(y)p
′
dy

(xk+1 − y)(1−α)p′
,

gn(y) =
∑
|k|<n

u(xk+1)
r/pV

r/(q′p)
k

(∫ xk+1

xk

w(t) dt
)r/(qp) v(y)p

′−1χ[xk,xk+1)(y)

(xk+1 − y)(1−α)(p′−1)
.



272 Prokhorov

Then

‖gn‖pp =
∑
|k|<n

(∫ xk+1

xk

w(t) dt
)r/q

u(xk+1)
rV

r/p′

k <∞

and

‖(Rαgn)w1/q‖qq ≥
∑
|k|<n

∫ xk+1

xk

w(t) dt
[

sup
xk+1≤s<b

u(s)

∫ xk+1

xk

gn(y)v(y) dy

(s− y)1−α

]q
≥
∑
|k|<n

u(xk+1)
q

∫ xk+1

xk

w(t) dt
[ ∫ xk+1

xk

gn(y)v(y) dy

(xk+1 − y)1−α

]q
=
∑
|k|<n

(∫ xk+1

xk

w(t) dt
)r/q

u(xk+1)
rV

r/p′

k .

Hence, C ≥ D.
Inequality (9) follows from (2) and (11).

Sufficiency. If
∫ b
0 w(y) dy = 0 then the inequality (2) holds. Now let∫ b

0 w(y) dy > 0. Put

N :=

inf
{
k ∈ Z | 2k ≥

∫ b
0 w(x) dx

}
, if

∫ b
0 w(x) dx <∞,

∞, otherwise,

and construct the sequence {ak}k≤N satisfying
∫ ak
0 w(x) dx = 2k, k < N ; aN = b.

Remark that for arbitrary k < N

sup
t∈[ak,ak+1]

∫ t

0
|v(y)(t− y)α−1|p′dy ≤ Bp′

(∫ ak

0
w(y) dy

)−p′/q
u(ak+1)

−p′ <∞.

Hence, by Lemma 2.1, for any f ∈ Lp(0, b), the Riemann–Liouville integral∫ t
0 f(y)v(y)(t− y)α−1dy is bounded on [ak, ak+1] and it is continuous from the right on

[ak, ak+1).
Fix a nonnegative function f ∈ Lp(0, b). We have

∫ b

0
[(Rαf)(x)]qw(x) dx ≤

∑
k<N

∫ ak+1

ak

w(t) dt
(

sup
ak≤s<b

u(s)

∫ s

0

f(y)v(y) dy

(s− y)1−α

)q
=
∑
k<N

2k
(

sup
k≤i<N

sup
ai≤s<ai+1

u(s)

∫ s

0

f(y)v(y) dy

(s− y)1−α

)q
≤
∑
k<N

2k
∑

k≤i<N
sup

ai≤s<ai+1

(
u(s)

∫ s

0

f(y)v(y) dy

(s− y)1−α

)q
≈
∑
i<N

2i−1 sup
ai≤s<ai+1

(
u(s)

∫ s

0

f(y)v(y) dy

(s− y)1−α

)q
.
∑
i<N

∫ ai

ai−1

w(t) dt
(
u(zi)

∫ zi

0

f(y)v(y) dy

(zi − y)1−α

)q
,
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where zi is a point in (ai, ai+1] such that

sup
ai≤s<ai+1

(
u(s)

∫ s

0

f(y)v(y) dy

(s− y)1−α

)q
≤ 2
(
u(zi)

∫ zi

0

f(y)v(y) dy

(zi − y)1−α

)q
.

The existence of such a point zi ∈ (ai, ai+1] follows from the continuity from the right
of the Riemann–Liouville integral. Consequently,∫ b

0
[(Rαf)(x)]qw(x) dx .

∑
i<N

∫ zi

zi−2

w(t) dt
(
u(zi)

∫ zi

0

f(y)v(y) dy

(zi − y)1−α

)q
. I1 + I2, (12)

where

I1 :=
∑
i<N

∫ zi

zi−2

w(t) dt
(
u(zi)

∫ zi

zi−2

f(y)v(y) dy

(zi − y)1−α

)q
,

I2 :=
∑
i<N

∫ zi

zi−2

w(t) dt
(
u(zi)

∫ zi−2

0

f(y)v(y) dy

(zi − y)1−α

)q
≤
∫ b

0
w(x)u(x)q

(∫ x

0

f(y)v(y) dy

(x− y)1−α

)q
dx.

Applying the Hölder inequality, we obtain

I1 ≤
∑
i<N

∫ zi

zi−2

w(t) dt
[ ∫ zi

zi−2

f(y)p dy
]q/p

u(zi)
q
[ ∫ zi

zi−2

v(y)p
′
dy

(zi − y)(1−α)p′

]q/p′
. (13)

Now, using the Jensen inequality in case of p ≤ q, we get the estimate I1 . Bq‖f‖qp.
If q < p then applying the Hölder inequality with exponents r

q , p
q in formula (13)

we obtain

I1 ≤

[∑
i<N

[ ∫ zi

zi−2

w(t) dt
]r/q

u(zi)
r
[ ∫ zi

zi−2

v(y)p
′
dy

(zi − y)(1−α)p′

]r/p′]q/r

×
[∑
i<N

∫ zi

zi−2

f(y)p dy
]q/p

.
( ∑

i<N
|i| odd

+
∑
i<N
|i| even

)q/r
‖f‖qp . Dq‖f‖qp.

Theorem 2.7

Let α ∈ (0, 1), 1 < p < ∞, 0 < q < p < ∞, 1
r = 1

q −
1
p ; w, v ∈ M+, u be a

continuous and nonincreasing nonnegative function. Then the inequality (2) holds if
and only if the inequality (9) holds, supt∈(0,b)B(t) <∞ and D <∞, where

D :=

(∫ b

0
w(t) sup

t≤s<b

{
u(s)r

(∫ s

t
w(y) dy

)r/p(∫ s

t

v(y)p
′
dy

(s− y)(1−α)p′

)r/p′}
dt

)1/r

.
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Proof. Sufficiency. Fix a nonnegative function f ∈ Lp(0, b). Using the same arguments
as in proof of Theorem 2.6, we get the estimate (12). Applying the Hölder inequality
for integral with exponents p, p′ and the Hölder inequality for sum with exponents r

q ,
p
q , we obtain

I1 ≤
∑
i<N

[ ∫ zi

zi−2

f(y)p dy
]q/p

u(zi)
q
[ ∫ zi

zi−2

w(t) dt
][ ∫ zi

zi−2

v(y)p
′
dy

(zi − y)(1−α)p′

]q/p′

.

[∑
i<N

u(zi)
r
[ ∫ zi

zi−2

w(t) dt
]r/q[ ∫ zi

zi−2

v(y)p
′
dy

(zi − y)(1−α)p′

]r/p′]q/r
‖f‖qp

.

[∑
i<N

∫ zi−2

zi−4

w(t)dt
{
u(zi)

r
[ ∫ zi

zi−2

w(y)dy
]r/p[ ∫ zi

zi−2

v(y)p
′
dy

(zi − y)(1−α)p′

]r/p′}]q/r
‖f‖qp

.

[∑
i<N

∫ zi−2

zi−4

w(t)
{
u(zi)

r
[ ∫ zi

t
w(y)dy

]r/p[ ∫ zi

t

v(y)p
′
dy

(zi − y)(1−α)p′

]r/p′}
dt

]q/r
‖f‖qp.

Hence I1 . Dq‖f‖qp.
Necessity. By Theorem 2.6 the constant D is finite. Since sup

t∈(0,b)
B(t) ≤ D (see

Remark after Theorem 2.6), then the equality
∫ t
0 w(y) dy = ∞ for some t ∈ (0, b)

implies v = 0 a.e. on (0, b) and D = 0. Also if
∫ b
0 w(y) dy = 0 then D = 0. We show

that finiteness of the constant D implies finiteness D. Let

a0 := sup
{
t ∈ (0, b) |

∫ a0

0
w(y) dy = 0

}
,

h(s, t) := u(s)r
(∫ s

t
w(y) dy

)r/p(∫ s

t

v(y)p
′
dy

(s− y)(1−α)p′

)r/p′
,

b̃ := sup
{
t ∈ (0, b) | sup

t≤s<b
h(s, t) > 0

}
and a0 < b̃. Fix an arbitrary a ∈ (a0, b̃) and ε > 0. Then, for any t ∈ [a, b̃),

0 < sup
t≤s<b

h(s, t) ≤ sup
t≤s<b

B(s)r
(∫ s

0
w(y) dy

)−1
≤ Dr

[ ∫ a

0
w(y) dy

]−1
<∞.

Put a1 := a, c1 := a for k ∈ N we take

ak+1 := sup
{
t ∈ (ak, b̃]

∣∣ sup
ak≤s<b

h(s, ak) ≤ 2h(t, ak)
}
,

and ck+1 ∈ (ak, ak+1] such that

sup
ak≤s<b

h(s, ak) ≤ 2h(ck+1, ak) and

∫ ak+1

ck+1

w(y) dy < ε
(

2k sup
ak≤s<b

h(s, ak)
)−1

.

There are two opportunities: 1) there exists a number N ∈ N such that aN = b̃ or 2)
ak < b̃ for any k ∈ N and in this case we put N =∞ and ã := lim

k→∞
ak.
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Let N =∞. By the definition of sequence {ak}k∈N the inequality

h(t, ak) ≤ 2−1 sup
ak≤s<b

h(s, ak)

holds for any t > ak+1. Together with the facts that the function s 7→ h(s, ak+1) is
right continuous and that the function t 7→ h(s, t) is non-increasing, the last inequality
implies that

sup
ak+1≤s<b

h(s, ak+1) = sup
ak+1<s<b

h(s, ak+1)

≤ sup
ak+1<s<b

h(s, ak) ≤ 2−1 sup
ak≤s<b

h(s, ak).

Hence,

sup
ã≤s<b

h(s, ã) ≤ sup
ak≤s<b

h(s, ak) ≤ 2−(k−1) sup
a1≤s<b

h(s, a1)→ 0 as k →∞

and ã = b̃.
In both cases we have

I(a) :=

∫ b

a
w(t) sup

t≤s<b
h(s, t) dt =

∫ b̃

a
w(t) sup

t≤s<b
h(s, t) dt

≤
∑

1≤k<N

∫ ak+1

ak

w(y) dy sup
ak≤s<b

h(s, ak) = I1 + I2,

where

I1 :=
∑

1≤k<N

∫ ck+1

ak

w(y) dy sup
ak≤s<b

h(s, ak),

I2 :=
∑

1≤k<N

∫ ak+1

ck+1

w(y) dy sup
ak≤s<b

h(s, ak) ≤
∑

1≤k<N
ε 2−k ≤ ε.

Besides that,

I1 ≤ 2
∑

1≤k<N

∫ ck+1

ak

w(y) dy h(ck+1, ak)

≤ 2
∑

1≤k<N

∫ ck+1

ck

w(y) dy h(ck+1, ck) ≤ 2Dr.

Thus, for arbitrary ε > 0 we obtain I(a) ≤ 2Dr + ε that is I(a) ≤ 2Dr. Since
D = lim

a→a0+0
I(a)1/r, we get the estimate D ≤ 21/rD.

Using results of the papers [1, 5, 6, 7, 8], where the inequality (9) was character-
ized, and Theorems 2.6, 2.7 we obtain criteria of validity of the inequality (2). For
example, if w is a nonincreasing nonnegative function, by using [8, Theorem 5], we get
the following ctiterion.
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Theorem 2.8

Let 1 < p ≤ q < ∞, 1 − p
q < α < 1, 1 − γ := (1−α)q

p ; v ∈ M+, let u,w be
nonincreasing nonnegative functions and u be a continuous function, also. Then the
inequality (2) holds if and only if∫ t

0

v(y)p
′
dy

(t− y)1−α
< +∞ for almost all t ∈ (0, b);

ess sup
0<t<b

[∫ t

0

w(x)u(x)q dx

(t− x)1−γ

[ ∫ x

0

v(y)p
′
dy

(x− y)1−α

]q]1/q[ ∫ t

0

v(y)p
′
dy

(t− y)1−α

]−1/p
<∞;

and B <∞.
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