Collectanea Mathematica (electronic version): http://www.collectanea.ub.edu

Collect. Math. 61, 3 (2010), 263-276
(c) 2010 Universitat de Barcelona

DOI 10.1344/cmv61i3.5376

Inequalities for Riemann-Liouville operator involving suprema

Dmitry V. Prokhorov ${ }^{1}$
Kim Yu Chen 65, Khabarovsk 680000, Russia
E-mail: prohorov@as.khb.ru

Received July 13, 2009. Revised November 24, 2009.

Abstract

In the paper we obtain a characterization of an inequality for Riemann-Liouville operator involving suprema in case of nonincreasing weights.

1. Introduction

Let $b \in(0, \infty]$. Denote by \mathfrak{M}^{+}the class of all nonnegative Lebesgue measurable functions on $(0, b)$. The weighted Riemann-Liouville operator

$$
\begin{equation*}
f \mapsto u(s) \int_{0}^{s} \frac{f(y) v(y) d y}{(s-y)^{1-\alpha}} \tag{1}
\end{equation*}
$$

was studied in papers $[1,5,6,7,8]$, where criteria under some restrictions on the weight functions and relations on parameters p, q of the $L^{p}-L^{q}$ boundedness (and in some cases compactness) of the operator (1) was proved.

In various research projects some operators involving suprema have been recently encountered (see [3, 4]). In paper [3] a Hardy-type operator involving suprema was characterized. We study the inequality

$$
\begin{equation*}
\left(\int_{0}^{b}\left[\left(R_{\alpha} f\right)(x)\right]^{q} w(x) d x\right)^{1 / q} \leq C\left(\int_{0}^{b} f(x)^{p} d x\right)^{1 / p}, \quad f \in \mathfrak{M}^{+} \tag{2}
\end{equation*}
$$

[^0]where the Riemann-Liouville operator involving suprema R_{α} is defined by the formula
$$
\left(R_{\alpha} f\right)(t)=\sup _{t \leq s<b} u(s) \int_{0}^{s} \frac{f(y) v(y) d y}{(s-y)^{1-\alpha}}
$$
$\alpha \in(0,1), w, v \in \mathfrak{M}^{+}, u$ is a continuous nonnegative function and either u or v is nonincreasing on $(0, b)$.

Put $b_{0}:=\sup \{s \in(0, b) \mid u(s) \neq 0\}$. Since

$$
\left(R_{\alpha} f\right)(t)=\sup _{t \leq s<b_{0}} u(s) \int_{0}^{s} \frac{f(y) v(y) d y}{(s-y)^{1-\alpha}} \quad \text { if } \quad 0<t<b_{0}
$$

and

$$
\left(R_{\alpha} f\right)(t)=0 \quad \text { if } t \in\left(b_{0}, b\right)
$$

the inequality (2) is equivalent to the similar inequality with b_{0} instead of b. So we assume that $b_{0}=b$.

Throughout this paper $A \lesssim B$ and $B \gtrsim A$ means that $A \leq c B$, where the constant c depends only on p, q, α and may be different in different places. If both $A \lesssim B$ and $A \gtrsim B$, then we write $A \approx B$.

2. Main results

Lemma 2.1

Let $\alpha \in(0,1), \gamma \in(0,1],[c, d) \subset(0, b)$, and let v be a measurable function such that the function $V(t):=\int_{0}^{t}\left|v(y)(t-y)^{\alpha-1}\right| p^{p^{\prime}} d y$ is bounded on $[c, d)$, and $f \in L^{p}(0, d)$. Then the integral $g(t):=\int_{0}^{\gamma t} f(y) v(y)(t-y)^{\alpha-1} d y$ is continuous from the right on $[c, d)$.

Proof. Fix an arbitrary point $t \in[c, d)$. The boundedness of the function V implies $K:=\sup _{x \in[c, d)}|V(x)|<\infty$. Let $\delta>0$ such that $[t, t+\delta) \subset[c, d)$ and $h \in(0, \delta)$. We have

$$
\begin{aligned}
|g(t+h)-g(t)| \leq & \int_{\gamma t}^{\gamma(t+h)} \frac{|f(y) v(y)| d y}{(t+h-y)^{1-\alpha}} \\
& +\int_{0}^{\gamma t}|f(y) v(y)|\left|\frac{1}{(t-y)^{1-\alpha}}-\frac{1}{(t+h-y)^{1-\alpha}}\right| d y=: I_{1}(h)+I_{2}(h)
\end{aligned}
$$

Applying the Hölder inequality, we find

$$
\begin{aligned}
I_{1}(h) & \leq\left\|f \chi_{[\gamma t, \gamma(t+h))}\right\|_{p}\left[\int_{0}^{t+h} \frac{|v(y)|^{p^{\prime}} d y}{(t+h-y)^{(1-\alpha) p^{\prime}}}\right]^{1 / p^{\prime}} \\
& \leq K^{1 / p^{\prime}}\left\|f \chi_{[\gamma t, \gamma(t+h))}\right\|_{p} \rightarrow 0, \quad h \rightarrow 0
\end{aligned}
$$

Remark that if $s>x>0$ and $\lambda \in(0,1)$, then

$$
s^{\lambda}-x^{\lambda}=s^{\lambda-1}\left(s-\left(\frac{x}{s}\right)^{\lambda-1} \cdot x\right)<s^{\lambda-1}(s-x)
$$

and by the mean value theorem there exists $\xi \in(x, s)$ such that

$$
s^{\lambda}-x^{\lambda}=\lambda \xi^{\lambda-1}(s-x)>\lambda s^{\lambda-1}(s-x)
$$

Hence for $y<t$ we have

$$
\begin{aligned}
\left|\frac{1}{(t-y)^{1-\alpha}}-\frac{1}{(t+h-y)^{1-\alpha}}\right| & =\frac{(t+h-y)^{1-\alpha}-(t-y)^{1-\alpha}}{(t-y)^{1-\alpha}(t+h-y)^{1-\alpha}} \\
& \approx \frac{(t+h-y)^{-\alpha}((t+h-y)-(t-y))}{(t-y)^{1-\alpha}(t+h-y)^{1-\alpha}} \\
& =\frac{h}{(t-y)^{1-\alpha}(t+h-y)}
\end{aligned}
$$

and we get the following estimate of $I_{2}(h)$

$$
I_{2}(h) \approx \int_{0}^{\gamma t}\left[\frac{h}{t+h-y}\right] \frac{|f(y) v(y)| d y}{(t-y)^{1-\alpha}}
$$

Now for any $y \in(0, t)$ the inequality $\left|h(t+h-y)^{-1}\right| \leq 1$ holds and $h(t+h-y)^{-1}$ monotonically tends to 0 as $h \rightarrow 0_{+}$. Besides that

$$
\int_{0}^{\gamma t} \frac{|f(y) v(y)| d y}{(t-y)^{1-\alpha}} \leq K^{1 / p^{\prime}}\left\|f \chi_{(0, d)}\right\|_{p}
$$

Consequently, by Lebesgue's Dominated Convergence Theorem, $I_{2}(h) \rightarrow 0$ as $h \rightarrow 0$. Thus the function g is continuous from the right on $[c, d)$.

2.1. The case of nonincreasing function v

Let v be a nonnegative nonincreasing function. Since for any $f \in \mathfrak{M}^{+}$

$$
\begin{equation*}
\left(R_{\alpha} f\right)(t) \geq\left[\sup _{t \leq s<b} u(s) s^{\alpha-1}\right] \int_{0}^{t} f(y) v(y) d y \tag{3}
\end{equation*}
$$

then in case of $p \in(0,1)$ by using the result [8, Theorem 2] for integral operator we get that the inequality (2) holds if and only if

$$
\operatorname{mes}\left(\left\{t \in(0, b) \mid w(t)^{1 / q}\left[\sup _{t \leq s<b} u(s) s^{\alpha-1}\right] \int_{0}^{t} v(y) d y \neq 0\right\}\right)=0
$$

that is the left-hand side of (2) is equal 0 for any $f \in \mathfrak{M}^{+}$.

Lemma 2.2

Let

$$
\alpha \in(0,1), 1 \leq p \leq \frac{1}{\alpha}, 0<q<\infty ; w \in \mathfrak{M}^{+}, \int_{0}^{t} w(y) d y>0
$$

for all $t \in(0, b)$, u be a continuous nonnegative function and v be a nonincreasing nonnegative function. Put

$$
b_{1}:=\sup \{s \in(0, b) \mid v(s) \neq 0\}, b_{2}:=\inf \left\{t \in\left(0, b_{1}\right] \mid \int_{t}^{b_{1}} u(x) d x=0\right\}
$$

and

$$
b_{3}:=\sup \left\{t \in\left[b_{1}, b\right) \mid \int_{b_{1}}^{t} u(x) d x=0\right\}
$$

(a) If $b_{2}>0$, then the inequality (2) is false.
(b) If $b_{2}=0$ and $b_{3}>b_{1}$, then the inequality (2) holds if and only if $A<\infty$, where

$$
\begin{equation*}
A:=\sup _{x \in(0, b)}\left[\left(\left[\frac{\bar{u}(x)}{x}\right]^{q} \int_{0}^{x} w(y) d y+\int_{x}^{b}\left[\frac{\bar{u}(t)}{t}\right]^{q} w(t) d t\right)^{1 / q}\left[\int_{0}^{x} v(t)^{p^{\prime}} d t\right]^{1 / p^{\prime}}\right] \tag{4}
\end{equation*}
$$

and $\bar{u}(t):=t \sup _{t \leq s<b} u(s) s^{\alpha-1}$.
(c) If $b_{2}=0$ and $b_{1}=b_{3}$, then the inequality (2) holds if and only if $\max \left\{A, A^{\prime}\right\}<\infty$, where

$$
A^{\prime}:=\left[\int_{0}^{b_{1}} w(x) d x\right]^{1 / q} \sup _{s \in\left[b_{1}, b\right)} u(s)\left(\int_{0}^{b_{1}} \frac{v(y)^{p^{\prime}} d y}{(s-y)^{(1-\alpha) p^{\prime}}}\right)^{1 / p^{\prime}}
$$

Proof. (a) Let the inequality (2) hold and $b_{2}>0$. Then there is the strictly increasing sequence $\left\{t_{k}\right\}_{k=1}^{\infty} \subset\left(0, b_{2}\right)$ such that $u\left(t_{k}\right) \neq 0$ and $\lim _{k \rightarrow \infty} t_{k}=b_{2}$. Since $(1-\alpha) p^{\prime} \geq 1$, then $g_{k}(y):=\left(t_{k+1}-y\right)^{\alpha-1} \chi_{\left(t_{k}, t_{k+1}\right)}(y)$ does not belong to the $L^{p^{\prime}}\left(t_{k}, t_{k+1}\right)$. Then there exists the function $f_{k} \in L^{p}\left(t_{k}, t_{k+1}\right)$ such that $\int_{t_{k}}^{t_{k+1}} f_{k}(x) g_{k}(x) d x=\infty$. For instance, if $\alpha<\frac{1}{p}$ we can take $f_{k}(y)=\left(t_{k+1}-y\right)^{-\alpha} \chi_{\left(t_{k}, t_{k+1}\right)}(y)$. Consequently, if we put $f:=\sum_{k} 2^{-k} f_{k}\left\|f_{k}\right\|_{p}^{-1}$, we get $f \in L^{p}$ and $\left(R_{\alpha} f\right)(t)=\infty$ for any $t \in\left(0, b_{2}\right)$. Hence $\int_{0}^{b_{2}} w(y) d y=0$ and we get contradiction.
(b) If $b_{3}=b$, then $u=0$ a.e. in $(0, b)$ and the statement is clear. Now let $b_{3}<b$. Let the inequality (2) hold. The finiteness of the constant A follows directly from $[3$, Theorem 4.1] in accordance with

$$
\begin{equation*}
\left(R_{\alpha} f\right)(t) \geq \sup _{t \leq s<b} \frac{u(s) s^{\alpha}}{s} \int_{0}^{s} f(y) v(y) d y, \quad f \in \mathfrak{M}^{+} \tag{5}
\end{equation*}
$$

Conversely, we have

$$
\begin{aligned}
\left(R_{\alpha} f\right)(t) & =\sup _{\max \left\{b_{3}, t\right\} \leq s<b} u(s) \int_{0}^{b_{1}} \frac{f(y) v(y) d y}{(s-y)^{1-\alpha}} \\
& \leq\left[1-\frac{b_{1}}{b_{3}}\right]^{\alpha-1} \sup _{t \leq s<b} \frac{u(s)}{s^{1-\alpha}} \int_{0}^{s} f(y) v(y) d y
\end{aligned}
$$

since $s-y \geq s-b_{1}=s\left(1-\frac{b_{1}}{s}\right) \geq s\left(1-\frac{b_{1}}{b_{3}}\right)$. The statement follows from [3, Theorem 4.1].
(c) If $b_{1}=b_{3}=b$ or $b_{1}=b_{3}=0$, then the statement is clear. Now let $0<b_{1}=$ $b_{3}<b$.

Necessity. The finiteness of the constant A is proved the same way as in part (b). Besides that, in this case

$$
\begin{equation*}
\left(R_{\alpha} f\right)(t)=\sup _{\max \left\{b_{1}, t\right\} \leq s<b} u(s) \int_{0}^{b_{1}} \frac{f(y) v(y) d y}{(s-y)^{1-\alpha}}, \tag{6}
\end{equation*}
$$

and the inequality (2) implies

$$
\left(\int_{0}^{b_{1}} w(x) d x\right)^{1 / q} \sup _{b_{1} \leq s<b} u(s) \int_{0}^{b_{1}} \frac{f(y) v(y) d y}{(s-y)^{1-\alpha}} \leq C\left(\int_{0}^{b_{1}} f(x)^{p} d x\right)^{1 / p}
$$

Now, the sharpness of the Hölder inequality proves the finiteness of the constant A^{\prime}.
Sufficiency. Since $A<\infty$, then $\int_{0}^{x} w(y) d y<\infty$ for any $x \in(0, b)$. There exists a point $b^{\prime} \in\left(b_{1}, b\right)$ such that $\int_{0}^{b^{\prime}} w(x) d x<2 \int_{0}^{b_{1}} w(x) d x$. In accordance with (6) and [3, Theorem 4.1], we have

$$
\begin{aligned}
\left(\int_{0}^{b^{\prime}}\left[\left(R_{\alpha} f\right)(x)\right]^{q} w(x) d x\right)^{1 / q} & \leq\left[\int_{0}^{b^{\prime}} w(x) d x\right]^{1 / q} \sup _{b_{1} \leq s<b} u(s) \int_{0}^{b_{1}} \frac{f(y) v(y) d y}{(s-y)^{1-\alpha}} \\
& \leq 2^{1 / q} A^{\prime}\left(\int_{0}^{b} f(x)^{p} d x\right)^{1 / p}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\int_{b^{\prime}}^{b}\left[\left(R_{\alpha} f\right)(x)\right]^{q} w(x) d x\right)^{1 / q} \\
& \quad \leq\left[1-\frac{b_{1}}{b^{\prime}}\right]^{\alpha-1}\left(\int_{b^{\prime}}^{b}\left(\sup _{t \leq s<b} \frac{u(s)}{s^{1-\alpha}} \int_{0}^{s} f(y) v(y) d y\right)^{q} w(x) d x\right)^{1 / q} \\
& \quad \lesssim\left[1-\frac{b_{1}}{b^{\prime}}\right]^{\alpha-1} A\left(\int_{0}^{b} f(x)^{p} d x\right)^{1 / p} .
\end{aligned}
$$

We also use the following Chebyshev inequality (see proof, for instance, in book [2, 2.18]).

Lemma 2.3

Let f be nonincreasing and g be nondecreasing nonnegative functions on $(c, d),-\infty<c<d<+\infty$. Then

$$
\int_{c}^{d} f(x) g(x) d x \leq \frac{1}{d-c} \int_{c}^{d} f(x) d x \cdot \int_{c}^{d} g(x) d x
$$

Corollary 2.4

Let $\alpha \in(0,1), 0<p, q<\infty ; w, u, \rho \in \mathfrak{M}^{+}, \mathfrak{M}_{\downarrow}^{+}$be the class of nonincreasing nonnegative functions on $(0, b)$ and $v \in \mathfrak{M}_{\downarrow}^{+}$. Then the inequality

$$
\begin{align*}
& {\left[\int_{0}^{b}\left[\sup _{t \leq s<b} u(s) \int_{0}^{s} \frac{f(y) v(y) d y}{(s-y)^{1-\alpha}}\right]^{q} w(x) d x\right]^{1 / q}} \\
& \quad \leq C\left[\int_{0}^{b} f(x)^{p} \rho(x) d x\right]^{1 / p}, f \in \mathfrak{M}_{\downarrow}^{+} \tag{7}
\end{align*}
$$

is equivalent to the inequality

$$
\begin{align*}
& {\left[\int_{0}^{b}\left[\sup _{t \leq s<b} \frac{u(s)}{s^{1-\alpha}} \int_{0}^{s} f(y) v(y) d y\right]^{q} w(x) d x\right]^{1 / q}} \\
& \quad \leq C\left[\int_{0}^{b} f(x)^{p} \rho(x) d x\right]^{1 / p}, f \in \mathfrak{M}_{\downarrow}^{+} \tag{8}
\end{align*}
$$

Proof. It is clear that

$$
s^{\alpha-1} \int_{0}^{s} f(y) v(y) d y \leq \int_{0}^{s} \frac{f(y) v(y) d y}{(s-y)^{1-\alpha}}
$$

By the Chebyshev inequality we have

$$
\begin{aligned}
\int_{0}^{s} \frac{f(y) v(y) d y}{(s-y)^{1-\alpha}} & \leq s^{-1} \int_{0}^{s} f(y) v(y) d y \int_{0}^{s} \frac{d y}{(s-y)^{1-\alpha}} \\
& =\frac{s^{\alpha-1}}{\alpha} \int_{0}^{s} f(y) v(y) d y
\end{aligned}
$$

Thus the criterion of validity of the inequality (8), which was proved in paper [3, Theorem 3.5], is also a criterion of validity of the inequality (7).

Theorem 2.5

Let

$$
\alpha \in(0,1), \frac{1}{\alpha}<p \leq q<\infty ; w \in \mathfrak{M}^{+}, \int_{0}^{t} w(y) d y>0
$$

for all $t \in(0, b), u$ be a continuous nonnegative function and v be a nonincreasing nonnegative function. Then the inequality (2) holds if and only if $A<\infty$, where A is defined in (4).

Proof. Necessity follows from [3, Theorem 4.1], since the estimate (5) is true.
Sufficiency. Since $A<\infty$, then $\int_{0}^{x} w(y) d y<\infty$ for any $x \in(0, b)$. If there exists $x \in(0, b)$ such that $\int_{0}^{x} v(y)^{p^{\prime}} d y=\infty$, then $\int_{0}^{t} v(y)^{p^{\prime}} d y=\infty$ for all $t \in(0, b)$ because of monotonicity of function v. Hence, the finiteness of A implies that $w(t)^{1 / q}\left(R_{\alpha} f\right)(t)=0$ for arbitrary $t \in(0, b)$ and $f \in \mathfrak{M}^{+}$. So in this case the inequality (2) holds.

Let $\int_{0}^{t} v(y)^{p^{\prime}} d y<\infty$ for all $t \in(0, b)$. In particular, it implies that integral

$$
g(t):=\int_{0}^{\gamma t} f(y) v(y)(t-y)^{\alpha-1} d y, \gamma \in(0,1]
$$

of a function $f \in L^{p}(0, b)$ is continuous from the right on $(0, b)$, since for any $[c, d) \subset$ $(0, b)$, by Lemma 2.3,

$$
\int_{0}^{t} \frac{v(y)^{p^{\prime}} d y}{(t-y)^{(1-\alpha) p^{\prime}}} \lesssim t^{(\alpha-1) p^{\prime}} \int_{0}^{t} v(y)^{p^{\prime}} d y \leq c^{(\alpha-1) p^{\prime}} \int_{0}^{d} v(y)^{p^{\prime}} d y<\infty
$$

Then for nonnegative $f \in L^{p}(0, b)$ we have

$$
\begin{aligned}
\int_{0}^{b}\left[\left(R_{\alpha} f\right)(x)\right]^{q} w(x) d x \lesssim & \int_{0}^{b} w(x)\left[\sup _{x \leq s<b} u(s) \int_{s / 2}^{s} \frac{f(y) v(y) d y}{(s-y)^{1-\alpha}}\right]^{q} d x \\
& +\int_{0}^{b} w(x)\left[\sup _{x \leq s<b} \frac{u(s) s^{\alpha}}{s} \int_{0}^{s} f(y) v(y) d y\right]^{q} d x=: I_{1}+I_{2}
\end{aligned}
$$

The estimate $I_{2} \lesssim A^{q}\|f\|_{p}^{q}$ follows from [3, Theorem 4.1].
Put

$$
N:= \begin{cases}\inf \left\{k \in \mathbb{Z} \mid 2^{k} \geq b\right\}, & \text { if } b<\infty \\ \infty, & \text { otherwise }\end{cases}
$$

Then $I_{1} \lesssim I_{11}+I_{12}$, where

$$
\begin{aligned}
& I_{11}=\sum_{k<N} \int_{2^{k}}^{2^{k+1}} w(t) \sup _{t \leq s<2^{k+1}}\left(u(s) \int_{s / 2}^{s} \frac{f(y) v(y) d y}{(s-y)^{1-\alpha}}\right)^{q} d t \\
& I_{12}=\sum_{k<N} \int_{2^{k}}^{2^{k+1}} w(t) d t \sup _{2^{k+1} \leq s<b}\left(u(s) \int_{s / 2}^{s} \frac{f(y) v(y) d y}{(s-y)^{1-\alpha}}\right)^{q} .
\end{aligned}
$$

Applying the Hölder inequality, Lemma 2.3 and monotonicity of function v, we obtain

$$
\begin{aligned}
I_{11} & \leq \sum_{k<N} \int_{2^{k}}^{2^{k+1}} w(t) \sup _{t \leq s<2^{k+1}}\left[u(s)\left[\int_{s / 2}^{s} \frac{v(y)^{p^{\prime}} d y}{(s-y)^{(1-\alpha) p^{\prime}}}\right]^{1 / p^{\prime}}\right]^{q} d t\left[\int_{2^{k-1}}^{2^{k+1}} f(y)^{p} d y\right]^{q / p} \\
& \lesssim \sum_{k<N} \int_{2^{k}}^{2^{k+1}} w(t) \sup _{t \leq s<2^{k+1}}\left[u(s) s^{\alpha-1}\left[\int_{s / 2}^{s} v(y)^{p^{\prime}} d y\right]^{1 / p^{\prime}}\right]^{q} d t\left[\int_{2^{k-1}}^{2^{k+1}} f(y)^{p} d y\right]^{q / p} \\
& \leq \sum_{k<N} \int_{2^{k}}^{2^{k+1}} w(t)\left[\sup _{t \leq s<2^{k+1}} u(s) s^{\alpha-1}\right]^{q} d t\left[\int_{0}^{2^{k}} v(y)^{p^{\prime}} d y\right]^{q / p^{\prime}}\left[\int_{2^{k-1}}^{2^{k+1}} f(y)^{p} d y\right]^{q / p}
\end{aligned}
$$

Hence $I_{11} \lesssim A^{q}\|f\|_{p}^{q}$.

Moreover,

$$
\begin{aligned}
I_{12} & =\sum_{k<N} \int_{2^{k}}^{2^{k+1}} w(t) d t \sup _{k+1 \leq i<N} \sup _{2^{i} \leq s<2^{i+1}}\left(u(s) \int_{s / 2}^{s} \frac{f(y) v(y) d y}{(s-y)^{1-\alpha}}\right)^{q} \\
& \leq \sum_{k<N} \int_{2^{k}}^{2^{k+1}} w(t) d t \sum_{k+1 \leq i<N} \sup _{2^{i} \leq s<2^{i+1}}\left(u(s) \int_{s / 2}^{s} \frac{f(y) v(y) d y}{(s-y)^{1-\alpha}}\right)^{q} \\
& =\sum_{i<N} \int_{0}^{2^{i}} w(t) d t \sup _{2^{i} \leq s<2^{i+1}}\left(u(s) \int_{s / 2}^{s} \frac{f(y) v(y) d y}{(s-y)^{1-\alpha}}\right)^{q} \\
& \lesssim \sum_{i<N} \int_{0}^{z_{i}} w(t) d t\left(u\left(z_{i}\right) \int_{z_{i} / 2}^{z_{i}} \frac{f(y) v(y) d y}{\left(z_{i}-y\right)^{1-\alpha}}\right)^{q}
\end{aligned}
$$

where z_{i} is a point in $\left(2^{i}, 2^{i+1}\right]$ such that

$$
\sup _{2^{i} \leq s<2^{i+1}}\left(u(s) \int_{s / 2}^{s} \frac{f(y) v(y) d y}{(s-y)^{1-\alpha}}\right)^{q} \leq 2\left(u\left(z_{i}\right) \int_{z_{i} / 2}^{z_{i}} \frac{f(y) v(y) d y}{\left(z_{i}-y\right)^{1-\alpha}}\right)^{q}
$$

Applying the Hölder inequality, Lemma 2.3 and monotonicity of function v, we find

$$
\begin{aligned}
I_{12} & \lesssim \sum_{i<N} \int_{0}^{z_{i}} w(t) d t\left[\int_{2^{i-1}}^{2^{i+1}} f(y)^{p} d y\right]^{q / p}\left(u\left(z_{i}\right) z_{i}^{\alpha-1}\right)^{q}\left[\int_{0}^{z_{i}} v(y)^{p^{\prime}} d y\right]^{q / p^{\prime}} \\
& \lesssim A^{q}\|f\|_{p}^{q}
\end{aligned}
$$

Thus the theorem is proved.

2.2. The case of nonincreasing function u

Remark that, since u is a nonincreasing function, the assumption $b_{0}=b$ (which we made in the Introduction) implies that $u(t)>0$ for all $t \in(0, b)$.

By using the ideas from proof of the Theorem 4.1 of the paper [3] we get the following result.

Denote by S the class of all strictly increasing sequences $\left\{x_{k}\right\}_{k=n_{1}}^{k=n_{2}} \subset[0, b]$, where $n_{1}, n_{2} \in \mathbb{Z} \cup\{ \pm \infty\}, n_{1}<n_{2}$, such that $[0, b]=\overline{\cup_{k=n_{1}}^{k=n_{2}-1}\left(x_{k}, x_{k+1}\right)}$.

Theorem 2.6

Let $\alpha \in(0,1), 1<p<\infty, 0<q<\infty, \frac{1}{r}=\frac{1}{q}-\frac{1}{p} ; w, v \in \mathfrak{M}^{+}, u$ be a continuous and nonincreasing nonnegative function. If $p \leq q$ then the inequality (2) holds if and only if the inequality

$$
\begin{equation*}
\left(\int_{0}^{b} w(x) u(x)^{q}\left(\int_{0}^{x} \frac{f(y) v(y) d y}{(x-y)^{1-\alpha}}\right)^{q} d x\right)^{1 / q} \leq C\left(\int_{0}^{b} f(x)^{p} d x\right)^{1 / p}, \quad f \in \mathfrak{M}^{+} \tag{9}
\end{equation*}
$$

holds and $B<\infty$, where

$$
B:=\sup _{t \in(0, b)} B(t):=\sup _{t \in(0, b)} u(t)\left[\int_{0}^{t} w(y) d y\right]^{1 / q}\left[\int_{0}^{t} \frac{v(y)^{p^{\prime}} d y}{(t-y)^{(1-\alpha) p^{\prime}}}\right]^{1 / p^{\prime}}
$$

If $p>q$ then the inequality (2) holds if and only if the inequality (9) holds and $D<\infty$, where

$$
D:=\sup _{\left\{x_{k}\right\} \in S}\left[\sum_{k}\left[\int_{x_{k}}^{x_{k+1}} w(t) d t\right]^{r / q} u\left(x_{k+1}\right)^{r}\left[\int_{x_{k}}^{x_{k+1}} \frac{v(y)^{p^{\prime}} d y}{\left(x_{k+1}-y\right)^{(1-\alpha) p^{\prime}}}\right]^{r / p^{\prime}}\right]^{1 / r} .
$$

Remark. The following simple estimate $\sup _{t \in(0, b)} B(t) \leq D$ we will use in the proof of the theorem. For proof of this fact for arbitrary $t \in(0, b)$ we take the sequence $x_{1}=0$, $x_{2}=t$ and $x_{3}=b$.
Proof. Necessity. Fix an arbitrary $t \in(0, b)$. If $\int_{0}^{t} v(y)^{p^{\prime}}(t-y)^{(\alpha-1) p^{\prime}} d t=0$ or $\int_{0}^{t} w(x) d x=0$ or $u(t)=0$ then $B(t)=0 \leq C$. Now let $\int_{0}^{t} w(x) d x>0, u(t)>0$ and $\int_{0}^{t} v(y)^{p^{\prime}}(t-y)^{(\alpha-1) p^{\prime}} d t>0$. We take a sequence $\left\{\gamma_{n}\right\}_{n \in \mathbb{N}}$ such that $\gamma_{n} \downarrow 0$ as $n \rightarrow \infty$, $t+\gamma_{n}<b, n \in \mathbb{N}$ and $u\left(t+\gamma_{1}\right)>0$ (see remark in the beginning of the Section 2.2). Substituting the function $f_{t}(y)=\min \{n, v(y)\}^{p^{\prime}-1}\left(t+\gamma_{n}-y\right)^{(\alpha-1)\left(p^{\prime}-1\right)} \chi_{(0, t)}(y)$ into (2), we obtain

$$
\begin{aligned}
C\left\|f_{t}\right\|_{p} & \geq\left(\int_{0}^{b}\left[\left(R_{\alpha} f_{t}\right)(x)\right]^{q} w(x) d x\right)^{1 / q} \\
& \geq\left(\int_{0}^{t} w(x) d x\right)^{1 / q} \sup _{t+\gamma_{n} \leq s<b} u(s) \int_{0}^{t} \frac{\min \{n, v(y)\}^{p^{\prime}} d y}{(s-y)^{1-\alpha}\left(t+\gamma_{n}-y\right)^{(1-\alpha)\left(p^{\prime}-1\right)}} \\
& \geq u\left(t+\gamma_{n}\right)\left(\int_{0}^{t} w(x) d x\right)^{1 / q} \int_{0}^{t} \frac{\min \{n, v(y)\}^{p^{\prime}} d t}{\left(t+\gamma_{n}-y\right)^{(1-\alpha) p^{\prime}}}
\end{aligned}
$$

Since

$$
\left\|f_{t}\right\|_{p}=\left(\int_{0}^{t} \frac{\min \{n, v(y)\}^{p^{\prime}} d y}{\left(t+\gamma_{n}-y\right)^{(1-\alpha) p^{\prime}}}\right)^{1 / p}<\infty
$$

we have

$$
\begin{equation*}
C \geq u\left(t+\gamma_{n}\right)\left(\int_{0}^{t} w(x) d x\right)^{1 / q}\left(\int_{0}^{t} \frac{\min \{n, v(y)\}^{p^{\prime}} d t}{\left(t+\gamma_{n}-y\right)^{(1-\alpha) p^{\prime}}}\right)^{1 / p^{\prime}} \tag{10}
\end{equation*}
$$

The Monotone Convergence Theorem implies that

$$
\left(\int_{0}^{t} \frac{\min \{n, v(y))^{p^{\prime}} d t}{\left(t+\gamma_{n}-y\right)^{(1-\alpha) p^{\prime}}}\right)^{1 / p^{\prime}} \rightarrow\left(\int_{0}^{t} \frac{v(y)^{p^{\prime}} d t}{(t-y)^{(1-\alpha) p^{\prime}}}\right)^{1 / p^{\prime}} \quad \text { as } n \rightarrow \infty
$$

From this result, relation (10) and continuity of function u we get $C \geq B(t)$. Since also

$$
\begin{equation*}
\left(R_{\alpha} f\right)(t) \geq u(t) \int_{0}^{t} \frac{f(y) v(y)}{(s-y)^{1-\alpha}} d y, \quad f \in \mathfrak{M}^{+}, t \in(0, b) \tag{11}
\end{equation*}
$$

the necessity is proved in the case $p \leq q$.
Now let $q<p$. Fix any sequence $\left\{x_{k}\right\} \in S$ and for $n \in \mathbb{N}$ put

$$
\begin{aligned}
V_{k} & :=\int_{x_{k}}^{x_{k+1}} \frac{v(y)^{p^{\prime}} d y}{\left(x_{k+1}-y\right)^{(1-\alpha) p^{\prime}}}, \\
g_{n}(y) & =\sum_{|k|<n} u\left(x_{k+1}\right)^{r / p} V_{k}^{r /\left(q^{\prime} p\right)}\left(\int_{x_{k}}^{x_{k+1}} w(t) d t\right)^{r /(q p)} \frac{v(y)^{p^{\prime}-1} \chi_{\left[x_{k}, x_{k+1}\right)}(y)}{\left(x_{k+1}-y\right)^{(1-\alpha)\left(p^{\prime}-1\right)}} .
\end{aligned}
$$

Then

$$
\left\|g_{n}\right\|_{p}^{p}=\sum_{|k|<n}\left(\int_{x_{k}}^{x_{k+1}} w(t) d t\right)^{r / q} u\left(x_{k+1}\right)^{r} V_{k}^{r / p^{\prime}}<\infty
$$

and

$$
\begin{aligned}
\left\|\left(R_{\alpha} g_{n}\right) w^{1 / q}\right\|_{q}^{q} & \geq \sum_{|k|<n} \int_{x_{k}}^{x_{k+1}} w(t) d t\left[\sup _{x_{k+1} \leq s<b} u(s) \int_{x_{k}}^{x_{k+1}} \frac{g_{n}(y) v(y) d y}{(s-y)^{1-\alpha}}\right]^{q} \\
& \geq \sum_{|k|<n} u\left(x_{k+1}\right)^{q} \int_{x_{k}}^{x_{k+1}} w(t) d t\left[\int_{x_{k}}^{x_{k+1}} \frac{g_{n}(y) v(y) d y}{\left(x_{k+1}-y\right)^{1-\alpha}}\right]^{q} \\
& =\sum_{|k|<n}\left(\int_{x_{k}}^{x_{k+1}} w(t) d t\right)^{r / q} u\left(x_{k+1}\right)^{r} V_{k}^{r / p^{\prime}}
\end{aligned}
$$

Hence, $C \geq D$.
Inequality (9) follows from (2) and (11).
Sufficiency. If $\int_{0}^{b} w(y) d y=0$ then the inequality (2) holds. Now let $\int_{0}^{b} w(y) d y>0$. Put

$$
N:= \begin{cases}\inf \left\{k \in \mathbb{Z} \mid 2^{k} \geq \int_{0}^{b} w(x) d x\right\}, & \text { if } \int_{0}^{b} w(x) d x<\infty \\ \infty, & \text { otherwise }\end{cases}
$$

and construct the sequence $\left\{a_{k}\right\}_{k \leq N}$ satisfying $\int_{0}^{a_{k}} w(x) d x=2^{k}, k<N ; a_{N}=b$. Remark that for arbitrary $k<N$

$$
\sup _{t \in\left[a_{k}, a_{k+1}\right]} \int_{0}^{t}\left|v(y)(t-y)^{\alpha-1}\right|^{p^{\prime}} d y \leq B^{p^{\prime}}\left(\int_{0}^{a_{k}} w(y) d y\right)^{-p^{\prime} / q} u\left(a_{k+1}\right)^{-p^{\prime}}<\infty
$$

Hence, by Lemma 2.1, for any $f \in L^{p}(0, b)$, the Riemann-Liouville integral $\int_{0}^{t} f(y) v(y)(t-y)^{\alpha-1} d y$ is bounded on $\left[a_{k}, a_{k+1}\right]$ and it is continuous from the right on [$\left.a_{k}, a_{k+1}\right)$.

Fix a nonnegative function $f \in L^{p}(0, b)$. We have

$$
\begin{aligned}
\int_{0}^{b}\left[\left(R_{\alpha} f\right)(x)\right]^{q} w(x) d x & \leq \sum_{k<N} \int_{a_{k}}^{a_{k+1}} w(t) d t\left(\sup _{a_{k} \leq s<b} u(s) \int_{0}^{s} \frac{f(y) v(y) d y}{(s-y)^{1-\alpha}}\right)^{q} \\
& =\sum_{k<N} 2^{k}\left(\sup _{k \leq i<N} \sup _{a_{i} \leq s<a_{i+1}} u(s) \int_{0}^{s} \frac{f(y) v(y) d y}{(s-y)^{1-\alpha}}\right)^{q} \\
& \leq \sum_{k<N} 2^{k} \sum_{k \leq i<N} \sup _{a_{i} \leq s<a_{i+1}}\left(u(s) \int_{0}^{s} \frac{f(y) v(y) d y}{(s-y)^{1-\alpha}}\right)^{q} \\
& \approx \sum_{i<N} 2^{i-1} \sup _{a_{i} \leq s<a_{i+1}}\left(u(s) \int_{0}^{s} \frac{f(y) v(y) d y}{\left.(s-y)^{1-\alpha}\right)^{q}}\right. \\
& \lesssim \sum_{i<N} \int_{a_{i-1}}^{a_{i}} w(t) d t\left(u\left(z_{i}\right) \int_{0}^{z_{i}} \frac{f(y) v(y) d y}{\left(z_{i}-y\right)^{1-\alpha}}\right)^{q}
\end{aligned}
$$

where z_{i} is a point in $\left(a_{i}, a_{i+1}\right]$ such that

$$
\sup _{a_{i} \leq s<a_{i+1}}\left(u(s) \int_{0}^{s} \frac{f(y) v(y) d y}{(s-y)^{1-\alpha}}\right)^{q} \leq 2\left(u\left(z_{i}\right) \int_{0}^{z_{i}} \frac{f(y) v(y) d y}{\left(z_{i}-y\right)^{1-\alpha}}\right)^{q} .
$$

The existence of such a point $z_{i} \in\left(a_{i}, a_{i+1}\right]$ follows from the continuity from the right of the Riemann-Liouville integral. Consequently,

$$
\begin{equation*}
\int_{0}^{b}\left[\left(R_{\alpha} f\right)(x)\right]^{q} w(x) d x \lesssim \sum_{i<N} \int_{z_{i-2}}^{z_{i}} w(t) d t\left(u\left(z_{i}\right) \int_{0}^{z_{i}} \frac{f(y) v(y) d y}{\left(z_{i}-y\right)^{1-\alpha}}\right)^{q} \lesssim I_{1}+I_{2} \tag{12}
\end{equation*}
$$

where

$$
\begin{aligned}
I_{1} & :=\sum_{i<N} \int_{z_{i-2}}^{z_{i}} w(t) d t\left(u\left(z_{i}\right) \int_{z_{i-2}}^{z_{i}} \frac{f(y) v(y) d y}{\left(z_{i}-y\right)^{1-\alpha}}\right)^{q} \\
I_{2} & :=\sum_{i<N} \int_{z_{i-2}}^{z_{i}} w(t) d t\left(u\left(z_{i}\right) \int_{0}^{z_{i-2}} \frac{f(y) v(y) d y}{\left(z_{i}-y\right)^{1-\alpha}}\right)^{q} \\
& \leq \int_{0}^{b} w(x) u(x)^{q}\left(\int_{0}^{x} \frac{f(y) v(y) d y}{(x-y)^{1-\alpha}}\right)^{q} d x .
\end{aligned}
$$

Applying the Hölder inequality, we obtain

$$
\begin{equation*}
I_{1} \leq \sum_{i<N} \int_{z_{i-2}}^{z_{i}} w(t) d t\left[\int_{z_{i-2}}^{z_{i}} f(y)^{p} d y\right]^{q / p} u\left(z_{i}\right)^{q}\left[\int_{z_{i-2}}^{z_{i}} \frac{v(y)^{p^{\prime}} d y}{\left(z_{i}-y\right)^{(1-\alpha) p^{\prime}}}\right]^{q / p^{\prime}} \tag{13}
\end{equation*}
$$

Now, using the Jensen inequality in case of $p \leq q$, we get the estimate $I_{1} \lesssim B^{q}\|f\|_{p}^{q}$.
If $q<p$ then applying the Hölder inequality with exponents $\frac{r}{q}, \frac{p}{q}$ in formula (13) we obtain

$$
\begin{aligned}
I_{1} \leq & {\left[\sum_{i<N}\left[\int_{z_{i-2}}^{z_{i}} w(t) d t\right]^{r / q} u\left(z_{i}\right)^{r}\left[\int_{z_{i-2}}^{z_{i}} \frac{v(y)^{p^{\prime}} d y}{\left(z_{i}-y\right)^{(1-\alpha) p^{\prime}}}\right]^{r / p^{\prime}}\right]^{q / r} } \\
& \times\left[\sum_{i<N} \int_{z_{i-2}}^{z_{i}} f(y)^{p} d y\right]^{q / p} \lesssim\left(\sum_{\substack{i<N \\
|i| \text { odd }}}+\sum_{\substack{i<N \\
|i| \text { even }}}\right)^{q / r}\|f\|_{p}^{q} \lesssim D^{q}\|f\|_{p}^{q} .
\end{aligned}
$$

Theorem 2.7

Let $\alpha \in(0,1), 1<p<\infty, 0<q<p<\infty, \frac{1}{r}=\frac{1}{q}-\frac{1}{p} ; w, v \in \mathfrak{M}^{+}$, u be a continuous and nonincreasing nonnegative function. Then the inequality (2) holds if and only if the inequality (9) holds, $\sup _{t \in(0, b)} B(t)<\infty$ and $\mathcal{D}<\infty$, where

$$
\mathcal{D}:=\left(\int_{0}^{b} w(t) \sup _{t \leq s<b}\left\{u(s)^{r}\left(\int_{t}^{s} w(y) d y\right)^{r / p}\left(\int_{t}^{s} \frac{v(y)^{p^{\prime}} d y}{(s-y)^{(1-\alpha) p^{\prime}}}\right)^{r / p^{\prime}}\right\} d t\right)^{1 / r} .
$$

Proof. Sufficiency. Fix a nonnegative function $f \in L^{p}(0, b)$. Using the same arguments as in proof of Theorem 2.6, we get the estimate (12). Applying the Hölder inequality for integral with exponents p, p^{\prime} and the Hölder inequality for sum with exponents $\frac{r}{q}$, $\frac{p}{q}$, we obtain

$$
\begin{aligned}
I_{1} & \leq \sum_{i<N}\left[\int_{z_{i-2}}^{z_{i}} f(y)^{p} d y\right]^{q / p} u\left(z_{i}\right)^{q}\left[\int_{z_{i-2}}^{z_{i}} w(t) d t\right]\left[\int_{z_{i-2}}^{z_{i}} \frac{v(y)^{p^{\prime}} d y}{\left(z_{i}-y\right)^{(1-\alpha) p^{\prime}}}\right]^{q / p^{\prime}} \\
& \lesssim\left[\sum_{i<N} u\left(z_{i}\right)^{r}\left[\int_{z_{i-2}}^{z_{i}} w(t) d t\right]^{r / q}\left[\int_{z_{i-2}}^{z_{i}} \frac{v(y)^{p^{\prime}} d y}{\left(z_{i}-y\right)^{(1-\alpha) p^{\prime}}}\right]^{r / p^{\prime}}\right]^{q / r}\|f\|_{p}^{q} \\
& \lesssim\left[\sum_{i<N} \int_{z_{i-4}}^{z_{i-2}} w(t) d t\left\{u\left(z_{i}\right)^{r}\left[\int_{z_{i-2}}^{z_{i}} w(y) d y\right]^{r / p}\left[\int_{z_{i-2}}^{z_{i}} \frac{v(y)^{p^{\prime}} d y}{\left(z_{i}-y\right)^{(1-\alpha) p^{\prime}}}\right]^{r / p^{\prime}}\right\}\right]^{q / r}\|f\|_{p}^{q} \\
& \lesssim\left[\sum_{i<N} \int_{z_{i-4}}^{z_{i-2}} w(t)\left\{u\left(z_{i}\right)^{r}\left[\int_{t}^{z_{i}} w(y) d y\right]^{r / p}\left[\int_{t}^{z_{i}} \frac{v(y)^{p^{\prime}} d y}{\left(z_{i}-y\right)^{(1-\alpha) p^{\prime}}}\right]^{r / p^{\prime}}\right\} d t\right]^{q / r}\|f\|_{p}^{q}
\end{aligned}
$$

Hence $I_{1} \lesssim \mathcal{D}^{q}\|f\|_{p}^{q}$.
Necessity. By Theorem 2.6 the constant D is finite. Since $\sup _{t \in(0, b)} B(t) \leq D$ (see Remark after Theorem 2.6), then the equality $\int_{0}^{t} w(y) d y=\infty$ for some $t \in(0, b)$ implies $v=0$ a.e. on $(0, b)$ and $\mathcal{D}=0$. Also if $\int_{0}^{b} w(y) d y=0$ then $\mathcal{D}=0$. We show that finiteness of the constant D implies finiteness \mathcal{D}. Let

$$
\begin{aligned}
a_{0} & :=\sup \left\{t \in(0, b) \mid \int_{0}^{a_{0}} w(y) d y=0\right\} \\
h(s, t) & :=u(s)^{r}\left(\int_{t}^{s} w(y) d y\right)^{r / p}\left(\int_{t}^{s} \frac{v(y)^{p^{\prime}} d y}{(s-y)^{(1-\alpha) p^{\prime}}}\right)^{r / p^{\prime}} \\
\tilde{b} & :=\sup \left\{t \in(0, b) \mid \sup _{t \leq s<b} h(s, t)>0\right\}
\end{aligned}
$$

and $a_{0}<\tilde{b}$. Fix an arbitrary $a \in\left(a_{0}, \tilde{b}\right)$ and $\varepsilon>0$. Then, for any $t \in[a, \tilde{b})$,

$$
0<\sup _{t \leq s<b} h(s, t) \leq \sup _{t \leq s<b} B(s)^{r}\left(\int_{0}^{s} w(y) d y\right)^{-1} \leq D^{r}\left[\int_{0}^{a} w(y) d y\right]^{-1}<\infty
$$

Put $a_{1}:=a, c_{1}:=a$ for $k \in \mathbb{N}$ we take

$$
a_{k+1}:=\sup \left\{t \in\left(a_{k}, \tilde{b}\right] \mid \sup _{a_{k} \leq s<b} h\left(s, a_{k}\right) \leq 2 h\left(t, a_{k}\right)\right\}
$$

and $c_{k+1} \in\left(a_{k}, a_{k+1}\right]$ such that

$$
\sup _{a_{k} \leq s<b} h\left(s, a_{k}\right) \leq 2 h\left(c_{k+1}, a_{k}\right) \text { and } \int_{c_{k+1}}^{a_{k+1}} w(y) d y<\varepsilon\left(2^{k} \sup _{a_{k} \leq s<b} h\left(s, a_{k}\right)\right)^{-1}
$$

There are two opportunities: 1) there exists a number $N \in \mathbb{N}$ such that $a_{N}=\tilde{b}$ or 2) $a_{k}<\tilde{b}$ for any $k \in \mathbb{N}$ and in this case we put $N=\infty$ and $\tilde{a}:=\lim _{k \rightarrow \infty} a_{k}$.

Let $N=\infty$. By the definition of sequence $\left\{a_{k}\right\}_{k \in \mathbb{N}}$ the inequality

$$
h\left(t, a_{k}\right) \leq 2^{-1} \sup _{a_{k} \leq s<b} h\left(s, a_{k}\right)
$$

holds for any $t>a_{k+1}$. Together with the facts that the function $s \mapsto h\left(s, a_{k+1}\right)$ is right continuous and that the function $t \mapsto h(s, t)$ is non-increasing, the last inequality implies that

$$
\begin{aligned}
\sup _{a_{k+1} \leq s<b} h\left(s, a_{k+1}\right) & =\sup _{a_{k+1}<s<b} h\left(s, a_{k+1}\right) \\
& \leq \sup _{a_{k+1}<s<b} h\left(s, a_{k}\right) \leq 2^{-1} \sup _{a_{k} \leq s<b} h\left(s, a_{k}\right) .
\end{aligned}
$$

Hence,

$$
\sup _{\tilde{a} \leq s<b} h(s, \tilde{a}) \leq \sup _{a_{k} \leq s<b} h\left(s, a_{k}\right) \leq 2^{-(k-1)} \sup _{a_{1} \leq s<b} h\left(s, a_{1}\right) \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

and $\tilde{a}=\tilde{b}$.
In both cases we have

$$
\begin{aligned}
I(a) & :=\int_{a}^{b} w(t) \sup _{t \leq s<b} h(s, t) d t=\int_{a}^{\tilde{b}} w(t) \sup _{t \leq s<b} h(s, t) d t \\
& \leq \sum_{1 \leq k<N} \int_{a_{k}}^{a_{k+1}} w(y) d y \sup _{a_{k} \leq s<b} h\left(s, a_{k}\right)=I_{1}+I_{2},
\end{aligned}
$$

where

$$
\begin{aligned}
& I_{1}:=\sum_{1 \leq k<N} \int_{a_{k}}^{c_{k+1}} w(y) d y \sup _{a_{k} \leq s<b} h\left(s, a_{k}\right), \\
& I_{2}:=\sum_{1 \leq k<N} \int_{c_{k+1}}^{a_{k+1}} w(y) d y \sup _{a_{k} \leq s<b} h\left(s, a_{k}\right) \leq \sum_{1 \leq k<N} \varepsilon 2^{-k} \leq \varepsilon .
\end{aligned}
$$

Besides that,

$$
\begin{aligned}
I_{1} & \leq 2 \sum_{1 \leq k<N} \int_{a_{k}}^{c_{k+1}} w(y) d y h\left(c_{k+1}, a_{k}\right) \\
& \leq 2 \sum_{1 \leq k<N} \int_{c_{k}}^{c_{k+1}} w(y) d y h\left(c_{k+1}, c_{k}\right) \leq 2 D^{r} .
\end{aligned}
$$

Thus, for arbitrary $\varepsilon>0$ we obtain $I(a) \leq 2 D^{r}+\varepsilon$ that is $I(a) \leq 2 D^{r}$. Since $\mathcal{D}=\lim _{a \rightarrow a_{0}+0} I(a)^{1 / r}$, we get the estimate $\mathcal{D} \leq 2^{1 / r} D$.

Using results of the papers $[1,5,6,7,8]$, where the inequality (9) was characterized, and Theorems $2.6,2.7$ we obtain criteria of validity of the inequality (2). For example, if w is a nonincreasing nonnegative function, by using [8, Theorem 5], we get the following ctiterion.

Theorem 2.8

Let $1<p \leq q<\infty, 1-\frac{p}{q}<\alpha<1,1-\gamma:=\frac{(1-\alpha) q}{p} ; v \in \mathfrak{M}^{+}$, let u, w be nonincreasing nonnegative functions and u be a continuous function, also. Then the inequality (2) holds if and only if

$$
\begin{aligned}
& \int_{0}^{t} \frac{v(y)^{p^{\prime}} d y}{(t-y)^{1-\alpha}}<+\infty \quad \text { for almost all } t \in(0, b) \\
& \underset{0<t<b}{\operatorname{essssup}}\left[\int_{0}^{t} \frac{w(x) u(x)^{q} d x}{(t-x)^{1-\gamma}}\left[\int_{0}^{x} \frac{v(y)^{p^{\prime}} d y}{(x-y)^{1-\alpha}}\right]^{q}\right]^{1 / q}\left[\int_{0}^{t} \frac{v(y)^{p^{\prime}} d y}{(t-y)^{1-\alpha}}\right]^{-1 / p}<\infty
\end{aligned}
$$

and $B<\infty$.

References

1. K.F. Andersen and E.T. Sawyer, Weighted norm inequalities for the Riemann-Liouville and Weyl fractional integral operators, Trans. Amer. Math. Soc. 308 (1988), 547-558.
2. O. Besov, V. Il'in, and S. Nikol'skij, Integral Representations of Functions and Imbedding Theorems, Second edition, Fizmatlit "Nauka", Moscow, 1996.
3. A. Gogatishvili, B. Opic, and L. Pick, Weighted inequalities for Hardy-type operators involving suprema, Collect. Math. 57 (2006), 227-255.
4. A. Gogatishvili and L. Pick, A reduction theorem for supremum operators, J. Comput. Appl. Math. 208 (2007), 270-279.
5. M. Lorente, A characterization of two weight norm inequalities for one-sided operators of fractional type, Canad. J. Math. 49 (1997), 1010-1033.
6. A. Meskhi, Solution of some weight problems for the Riemann-Liouville and Weyl operators, Georgian Math. J. 5 (1998), 565-574.
7. D.V. Prokhorov, On the boundedness and compactness of a class of integral operators, J. London Math. Soc. (2) 61 (2000), 617-628.
8. D.V. Prokhorov and V.D. Stepanov, Weighted estimates for Riemann-Liouville operators and their applications, Tr. Mat. Inst. Steklova 243 (2003), Funkts. Prostran., Priblizh., Differ. Uravn., 289312; translation Proc. Steklov Inst. Math. 243 (2003), 278-301.

[^0]: ${ }^{1}$ The research was partially supported by the Russian Foundation for Basic Research (09-01-98516p_vostok_a), by the FEB RAS (Projects 09-I-OMH-02, 09-II-CO-01-003) and by the Russian Science Support Foundation.

 Keywords: Riemann-Liouville integral operator, weighted inequality.
 MSC2000: 26D10, 46E20, 47G10.

