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Abstract

Let 1 < p ≤ q < +∞ and let v, w be weights on (0,+∞) satisfying:

(?) v(x)xρ is equivalent to a non-decreasing function on (0,+∞)

for some ρ ≥ 0

and
[w(x)x]1/q ≈ [v(x)x]1/p for all x ∈ (0,+∞).

We prove that if the averaging operator (Af)(x) := 1
x

∫ x
0
f(t) dt, x ∈ (0,+∞),

is bounded from the weighted Lebesgue spaceLp((0,+∞); v) into the weighted
Lebesgue space Lq((0,+∞);w), then there exists ε0 ∈ (0, p− 1) such that the
operator A is also bounded from the space Lp−ε((0,+∞); v(x)1+δxγ) into the
space Lq−εq/p((0,+∞);w(x)1+δxδ(1−q/p)xγq/p) for all ε, δ, γ ∈ [0, ε0).
Conversely, assuming that the operator

A : Lp−ε((0,+∞); v(x)1+δxγ)→ Lq−εq/p((0,+∞);w(x)1+δxδ(1−q/p)xγq/p)
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is bounded for some ε ∈ [0, p−1), δ ≥ 0 and γ ≥ 0, we prove that the operatorA
is also bounded from the space Lp((0,+∞); v) into the space Lq((0,+∞);w).
In particular, our results imply that the class of weights v for which (?) holds
and the operatorA is bounded on the space Lp((0,+∞); v) possesses properties
similar to those of the Ap-class of B. Muckenhoupt.

1. Introduction

Let 1 < p < +∞ and let v be a weight on (0,+∞), i.e., a measurable function which is
positive a.e. on (0,+∞). By Lp(v) ≡ Lp((0,+∞); v) we denote the weighted Lebesgue
space of all measurable functions f on (0,+∞) for which the norm

‖f‖p,v =
(∫ +∞

0
|f(x)|pv(x) dx

)1/p
is finite.

We shall consider one of very important operators in the mathematical analysis,
the averaging operator A defined by

(Af)(x) :=
1

x

∫ x

0
f(t) dt, x ∈ (0,+∞).

It is well known (see [2, 9]) that if 1 < p < +∞ and w, v are weights on (0,+∞), then
the averaging operator A : Lp(v)→ Lq(w) is bounded if and only if

B := sup
r>0

(∫ +∞

r
w(t)t−q dt

)1/q(∫ r

0
v(t)1−p

′
dt
)1/p′

< +∞, (1)

where p′ = p/(p− 1).
Throughout the paper we use the following convention: For two non-negative

expressions (i.e. functions or functionals) F and G the symbol F . G (or F & G)
means that F ≤ cG (or cF ≥ G), where c is a positive constant independent of
appropriate quantities involved in F and G. We shall write F ≈ G (and say that F
and G are equivalent) if both relations F . G and F & G hold.

Our main results are the following two theorems.

Theorem 1.1

Let 1 < p ≤ q < +∞ and let v, w be weights on (0,+∞) such that:

v(x)xρ is equivalent to a non-decreasing function on (0,+∞) for some ρ ≥ 0; (2)

[w(x)x]1/q ≈ [v(x)x]1/p for all x ∈ (0,+∞). (3)

Assume that the averaging operator A : Lp(v)→ Lq(w) is bounded. Then there exists
ε0 ∈ (0, p− 1) such that the operator

A : Lp−ε(v(x)1+δxγ)→ Lq−εq/p(w(x)1+δxδ(1−q/p)xγq/p)

is also bounded for all ε, δ, γ ∈ [0, ε0).
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Theorem 1.2

Let 1 < p ≤ q < +∞ and let v, w be weights on (0,+∞) such that (2) and (3)
hold. Assume that the averaging operator

A : Lp−ε
(
v(x)1+δxγ

)
→ Lq−εq/p

(
w(x)1+δxδ(1−q/p)xγq/p

)
is bounded for some ε ∈ [0, p − 1), δ ≥ 0 and γ ≥ 0. Then the operator A : Lp(v) →
Lq(w) is also bounded.

Remark 1.3 Assumptions of Theorem 1.1 (or Theorem 1.2) ensure that(∫ +∞

r
w(t)t−q dt

)1/q(∫ r

0
v(t)1−p

′
dt
)1/p′

≈ 1 for all r > 0,

which means that (w, v) is the optimal couple of weights for which (1) holds.
Note also that assumption (3) is satisfied when w = v and q = p.

Theorem 1.1 is a particular case of the following assertion.

Theorem 1.4

Let 1 < p ≤ q < +∞ and let v, w be weights on (0,+∞) such that (2) and (3)
hold. Assume that the averaging operator A : Lp(v)→ Lq(w) is bounded. Then there
exist p0 ∈ (1, p) and ε0 > 0 such that the operator

A : LP
(
v(x)1+δxγ

)
→ LQ

(
w(x)1+δxδ(1−Q/P )xγQ/P

)
is also bounded for all P ∈ (p0,+∞) and for every δ, γ ∈ [0, ε0), where Q = Pq/p.

Remark 1.5 If 1 < p < +∞ and v is a weight on (0,+∞), then we write v ∈Mp when
the averaging operator A is bounded on the space Lp(v), that is, when (1) holds with
q = p and w = v. Let Ap, 1 < p < +∞, be the Ap-class of B. Muckenhoupt of those
weights v on (0,+∞) for which the Hardy-Littlewood maximal operator associated
with the interval (0,+∞) is bounded on the space Lp(v). Recall that Ap ⊂ Mp.
Denote by Cp, 1 < p < +∞, the Cp-class of Calderón (introduced in [1]) of those
weights v on (0,+∞) for which both the operator A and its adjoint operator A′ are
bounded on the space Lp(v).

If (2) holds with ρ = 0, then v is equivalent to a non-decreasing function on
(0,+∞). It is known (cf. [4, Theorem 6.1] or [3, Proposition 2.3]) that a non-decreasing
weight v satisfies v ∈Mp if and only if it belongs to the Ap-class. Moreover, it can be
shown that a non-decreasing weight v from the class Mp also belongs to the Cp-class.
Since

v ∈ Ap =⇒ v ∈ Ap−ε for some ε ∈ (0, p− 1),

v ∈ Ap =⇒ v1+ε ∈ Ap for some ε > 0,

v ∈ Ap =⇒ v ∈ Aq for all q ∈ [p,+∞],

v ∈ Cp =⇒ v(x)xε ∈Mp for some ε > 0

(cf. [6, 5] for the first three implications, and [1, Proposition 2.4] for the last one),
Theorem 1.4 with ρ = 0 also follows from properties of weights v ∈ Ap ∩ Cp. (This is
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clear if, in addition, p = q in Theorem 1.4. If p < q, one can show that it is again true
due to condition (3).)

On the other hand, there are weights in the Mp-class which satisfy (2) but which
do not belong to Ap ∩ Cp. A simple example is v(t) = tβ, t > 0, with β ≤ −1. (Note
that the weight v(t) = tβ, t > 0, with β ∈ R, belongs to the Ap-class or the Cp-class
if and only if −1 < β < p − 1. However, v belongs to the Mp-class if and only if
β < p− 1.) Another example is v(t) = tβ(1 + | ln t|)α, t > 0, with β ≤ −1 and α ∈ R.

Remark 1.6 Denote by Dp, 1 < p < +∞, the subset of the Mp-class consisting of
those weights v on (0,+∞) which satisfy condition (2). In particular, our results imply
that the Dp-class possesses properties similar to those of the Ap-class. Namely,

v ∈ Dp =⇒ v ∈ Dp−ε for some ε ∈ (0, p− 1),

v ∈ Dp =⇒ v1+ε ∈ Dp for some ε > 0, (4)

v ∈ Dp =⇒ v ∈ Dq for all q ∈ [p,+∞).

Moreover,

v ∈ Dp =⇒ v(x)xε ∈ Dp for some ε > 0.

It is well-known that a weight v ∈ Ap possesses a better integrability than that
mentioned in the Ap-condition and that such a weight v satisfies a reverse Hölder in-
equality. Implication (4) shows that also a weight v ∈ Dp possesses better integrability
properties than those mentioned in the definition of the Dp-class (cf. (1) with w = v
and q = p). It is even possible to prove that certain reverse Hölder inequalities hold
for such a weight (cf. [8]).

The paper is organized as follows. In Section 2 we prove Theorem 1.1. Section 3
is devoted to the proof of Theorem 1.2. Finally, in Section 4 we prove Theorem 1.4.

Acknowledgement. We would like to thank Mario Milman for the information con-
cerning properties of Cp-weights.

2. Proof of Theorem 1.1

To prove Theorem 1.1, we shall use the following two assertions.

Lemma A (see [7, Lemma 2])

Let ϕ : (0,+∞)→ (0,+∞). If there is a constant c0 > 0 such that∫ +∞

r
ϕ(t)

dt

t
≤ c0ϕ(r) for all r > 0, (5)

then there exist positive constants α1 and c such that∫ +∞

r
ϕ(t)tα

dt

t
≤ cϕ(r)rα for all r > 0 and α ∈ [0, α1).
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Remark 2.1 In fact, it is proved in [7] that the last inequality holds for all r > 0 and
some α > 0. However, checking the [7, proof of Lemma 2], one can see that Lemma A
holds, e.g., with α1 = (2c0)

−1 (and then one can put c = 2c0), where c0 is the constant
in (5).

Lemma A*

Let ϕ : (0,+∞)→ (0,+∞). If there is a constant c0 > 0 such that∫ r

0
ϕ(t)

dt

t
≤ c0ϕ(r) for all r > 0,

then there exist positive constants β1 and c such that∫ r

0
ϕ(t)t−β

dt

t
≤ cϕ(r)r−β for all r > 0 and β ∈ [0, β1).

Proof. Lemma A∗ can be obtained from Lemma A by the change of variables t 7→
t−1.

In addition, we shall also need the following lemma.

Lemma B

Let 1 < p ≤ q < +∞ and let v, w be weights on (0,+∞) such that (2) and (3)
hold. Assume that the averaging operator A : Lp(v)→ Lq(w) is bounded. Then there
exists a positive constant α0 such that∫ r

0
[v(t)tα]1−p

′
dt ≈ [v(r)rα+1−p]1−p

′
(6)

and ∫ +∞

r
w(t)tα−q dt ≈ w(r)rα+1−q (7)

for all r > 0 and α ∈ [0, α0).

Proof. Assume that all the assumptions of Lemma B are satisfied. Since the function
t 7→ v(t)tα+ρ, α ≥ 0, is equivalent to a non-decreasing function on (0,+∞),∫ r

0
[v(t)tα]1−p

′
dt =

∫ r

0
[v(t)tα+ρ]1−p

′
tρ(p

′−1) dt

& [v(r)rα+ρ]1−p
′
∫ r

0
tρ(p

′−1) dt

≈ [v(r)rα+ρ]1−p
′
rρ(p

′−1)+1

= [v(r)rα+1−p]1−p
′

for all r > 0 and α ≥ 0. (8)

Consequently, we obtain from (1), (8) (with α = 0) and (3) that∫ +∞

r
w(t)t−q dt ≤ Bq(∫ r

0 v(t)1−p′ dt
)q/p′ - v(r)q/pr−q/p

′ ≈ w(r)r1−q (9)
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for all r > 0. Setting ϕ(r) = w(r)r1−q, we can rewrite estimate (9) in the form∫ +∞

r
ϕ(t)

dt

t
. ϕ(r) for all r > 0.

Thus, by Lemma A, there exist constants α1 > 0 and c > 0 such that∫ +∞

r
w(t)tα−q dt =

∫ +∞

r
ϕ(t)tα

dt

t
≤ cϕ(r)rα = cw(r)rα+1−q (10)

for all r > 0 and α ∈ [0, α1).

On the other hand, using (3) and the fact that the function t 7→ [v(t)tρ+1]q/ptα,
α ≥ 0, is equivalent to a non-decreasing function on (0,+∞), we arrive at∫ +∞

r
w(t)tα−q dt ≈

∫ +∞

r
[v(t)tρ+1]q/ptαt−ρq/p−q−1 dt

% [v(r)rρ+1]q/prα
∫ +∞

r
t−ρq/p−q−1 dt

≈ [v(r)r]q/prαr−q

= w(r)rα+1−q for all r > 0 and α ≥ 0. (11)

Thus, (10) and (11) imply that (7) holds for all r > 0 and α ∈ [0, α1).

Condition (1) and the first three estimates in (11) (with α = 0) yield∫ r

0
v(t)1−p

′
dt ≤ Bp′(∫ +∞

r w(t)t−q dt
)p′/q

-
1(

[v(r)r]q/pr−q
)p′/q

= v(r)1−p
′
r for all r > 0. (12)

Rewriting (12) in terms of the function ψ(t) = v(t)1−p
′
t, t > 0, and applying Lemma A*,

we obtain that there are constants β1 > 0 and c1 > 0 such that∫ r

0
v(t)1−p

′
t−β dt ≤ c1v(r)1−p

′
r1−β (13)

for all r > 0 and β ∈ [0, β1). Setting α = β/(p′ − 1) and α2 = β1/(p
′ − 1), we can

rewrite (13) in the form ∫ r

0
[v(t)tα]1−p

′
dt - [v(r)rα+1−p]1−p

′

for all r > 0 and α ∈ [0, α2). Together with (8), this shows that (6) holds for all r > 0
and α ∈ [0, α2).

Now, it suffices to put α0 = min{α1, α2}.
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Remark 2.2 On using (3), one can rewrite (7) as∫ +∞

r
w(t)tα−q dt ≈ v(r)q/prα−q+q/p (14)

for all r > 0 and α ∈ [0, α0).

Remark 2.3 Let all the assumptions of Lemma B be satisfied. Then the operator

A : Lp(v(x)xα)→ Lq(w(x)xαq/p)

is also bounded for all α ∈ [0, α0 p/q). Indeed, making use of estimates (6) and (14)
(with α replaced by αq/p), we see that (1) holds with v(t) replaced by v(t)tα and with
w(t) replaced by w(t)tαq/p for all α ∈ [0, α0 p/q).

Proof of Theorem 1.1. Let the assumptions of Theorem 1.1 be satisfied. By (6) and (7)
(with α = 0), for all r > 0, ∫ r

0
v(t)1−p

′
dt ≈ v(r)1−p

′
r (15)

and ∫ +∞

r
w(t)t−q dt ≈ w(r)r1−q. (16)

Take δ, γ ≥ 0, ε ∈ [0, p − 1) and put p(ε) := p − ε, q(ε) := q − εq/p. Clearly,
p(ε), p(ε)′ ∈ (1,+∞), p′ − p(ε)′ ≤ 0 and p(ε)/p = q(ε)/q = 1− ε/p. Thus,

κ :=
p′ − p(ε)′

1− p′
+ δ

1− p(ε)′

1− p′
≥ 0

and the function

t 7→
(∫ t

0
v(τ)1−p

′
dτ
)κ

is non-decreasing on (0,+∞). Consequently, applying (15), we obtain∫ r

0
[v(t)1+δtγ ]1−p(ε)

′
dt=

∫ r

0
v(t)1−p

′
v(t)κ(1−p

′)tγ(1−p(ε)
′) dt

≈
∫ r

0
v(t)1−p

′
(
t−1
∫ t

0
v(τ)1−p

′
dτ
)κ
tγ(1−p(ε)

′) dt

≤
(∫ r

0
v(τ)1−p

′
dτ
)κ ∫ r

0
v(t)1−p

′
t−κ+γ(1−p(ε)

′) dt

≈ v(r)κ(1−p
′)rκ

∫ r

0
[v(t)tα]1−p

′
dt, (17)

where

α ≡ α(ε, δ, γ)

:=
−κ+ γ(1− p(ε)′)

1− p′

=
p′ − p(ε)′

(1− p′)(p′ − 1)
+ δ

1− p(ε)′

(1− p′)(p′ − 1)
+ γ

1− p(ε)′

1− p′
≥ 0.
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Since the function (ε, δ, γ) 7→ α(ε, δ, γ) is non-negative and continuous on the set
[0, p − 1) × [0,+∞) × [0,+∞) and α(0, 0, 0) = 0, there is ε1 ∈ (0, p − 1) such that
α(ε, δ, γ) ∈ [0, α0) provided that ε, δ, γ ∈ [0, ε1), where the number α0 is from Lemma B.
Therefore, (17) and (6) imply that∫ r

0

[
v(t)1+δtγ

]1−p(ε)′
dt . v(r)(1+δ)(1−p(ε)

′) rγ(1−p(ε)
′)+1

for all r > 0 and ε, δ, γ ∈ [0, ε1). Hence,(∫ r

0

[
v(t)1+δtγ

]1−p(ε)′
dt
)1/p(ε)′

. v(r)−(1+δ)/p(ε) r−γ/p(ε) r1/p(ε)
′

(18)

for all r > 0 and ε, δ, γ ∈ [0, ε1).

Applying (7) (with α = 0), the fact that the function

t 7→
(∫ +∞

t
w(τ)τ−q dτ

)δ
tδ(1−q/p), δ ≤ 0,

is non-increasing on (0,+∞) and (14) (with α = 0), we get∫ +∞

r
w(t)1+δtδ(1−q/p)tγq/pt−q(ε) dt

≈
∫ +∞

r
w(t)

(
tq−1

∫ +∞

t
w(τ)τ−q dτ

)δ
t(γ+ε)q/p−qtδ(1−q/p) dt

≤
(∫ +∞

r
w(τ)τ−q dτ

)δ
rδ(1−q/p)

∫ +∞

r
w(t)t(γ+ε)q/p+δ(q−1)−q dt

≈ [v(r)q/pr−q+q/p]δrδ(1−q/p)
∫ +∞

r
w(t)t(γ+ε)q/p+δ(q−1)−q dt. (19)

Now, using (14) (with (γ + ε)q/p+ δ(q− 1) instead of α) to estimate the last integral,
we arrive at ∫ +∞

r
w(t)t(γ+ε)q/p+δ(q−1)−q dt ≈ v(r)q/pr(γ+ε+1)q/p+δ(q−1)−q (20)

for all r > 0 provided that (γ + ε)q/p + δ(q − 1) ∈ [0, α0). Therefore, (19) and (20)
imply that(∫ +∞

r
w(t)1+δtδ(1−q/p)tγq/pt−q(ε) dt

)1/q(ε)
- v(r)(1+δ)/p(ε) rγ/p(ε) r−1/p(ε)

′
(21)

for all r > 0 and ε, δ, γ ∈ [0, ε2), where ε2 := min{α0 p/(3q), α0/(3(q − 1))}.
Putting ε0 = min{ε1, ε2} and using estimates (18) and (21) in (1) (with w(t),

v(t), q and p replaced by w(t)1+δtδ(1−q/p)tγq/p, v(t)1+δtγ , q(ε) and p(ε), respectively),
we obtain the desired result.
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3. Proof of Theorem 1.2

Assume that the assumptions of Theorem 1.2 are satisfied. Put p(ε) := p − ε and
q(ε) := q − εq/p. The Hölder inequality with the exponents

(p(ε)′ − 1)(1 + δ)

(p′ − 1)
and

(p(ε)′ − 1)(1 + δ)

(p(ε)′ − 1)(1 + δ)− (p′ − 1)

implies that, for all r > 0,∫ r

0
v(t)1−p

′
dt ≤

(∫ r

0
[v(t)1+δ]1−p(ε)

′
dt
) p′−1

(p(ε)′−1)(1+δ)
r

(p(ε)′−1)(1+δ)−p′+1

(p(ε)′−1)(1+δ) . (22)

Using the fact that the function t 7→ tγ(p(ε)
′−1) is non-decreasing on the interval

(0,+∞), we obtain∫ r

0
[v(t)1+δ]1−p(ε)

′
dt ≤ rγ(p(ε)′−1)

∫ r

0
[v(t)1+δtγ ]1−p(ε)

′
dt for all r > 0. (23)

Fix ρ ≥ max{ρ(1+δ)−γ, 0}. One can easily verify that (2) and (3) holds with v(x)xρ,
w(x), v(x), q and p replaced by (v(x)1+δxγ)xρ, w(x)1+δxδ(1−q/p)xγq/p, v(x)1+δxγ , q(ε)
and p(ε), respectively. Thus, we can apply Lemma B (with v(x)xρ, w(x), v(x), q
and p replaced by (v(x)1+δxγ)xρ, w(x)1+δxδ(1−q/p)xγq/p, v(x)1+δxγ , q(ε) and p(ε),
respectively). Hence, taking α = 0 in (6) and (7), we obtain, for all r > 0,∫ r

0
[v(t)1+δtγ ]1−p(ε)

′
dt ≈ [v(r)1+δrγ ]1−p(ε)

′
r (24)

and ∫ +∞

r
w(t)1+δtδ(1−q/p)tγq/pt−q(ε) dt ≈ w(r)1+δrδ(1−q/p)rγq/pr1−q(ε). (25)

Combining estimates (22)–(24), we arrive at(∫ r

0
v(t)1−p

′
dt
)1/p′

. v(r)−1/pr1/p
′

for all r > 0. (26)

On the other hand, Hölder’s inequality with the exponents 1 + δ and (1 + δ)/δ
gives∫ +∞

r
w(t)t−q dt ≤

(∫ +∞

r
w(t)1+δtδ(1−q/p)tγq/pt−q(ε) dt

)1/(1+δ)(
r
q
p
− γq
δp
− εq
δp
−q)δ/(1+δ)

,

which, together with (25) and (3), implies that

(∫ +∞

r
w(t)t−q dt

)1/q
. w(r)1/qr−1/q

′ ≈ v(r)1/pr−1/p
′

for all r > 0. (27)

Estimates (26) and (27) used in (1) yield the desired result.
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4. Proof of Theorem 1.4

With respect to Theorem 1.1, it is sufficient to prove that the operator
A : LP (v(x))→ LQ(w(x)) is bounded if p < P < +∞ and Q/P = q/p.

Using the monotonicity of the function t 7→ tq−Q, t > 0, and (14) (with α = 0),
we obtain (∫ +∞

r
w(t)t−Q dt

)1/Q
≤
(
rq−Q

∫ +∞

r
w(t)t−q dt

)1/Q
≈
(
rq−Qv(r)q/pr−q+q/p

)1/Q
= v(r)1/P r−1/P

′
for all r > 0.

Moreover, the Hölder inequality (with the exponents 1−p′
1−P ′ and 1−p′

P ′−p′ ) and (6) (with
α = 0) imply that(∫ r

0
v(t)1−P

′
dt
)1/P ′

≤
(∫ r

0
v(t)1−p

′
dt
)(1−P ′)/((1−p′)P ′)

r(P
′−p′)/((1−p′)P ′)

≈ [v(r)1−p
′
r](1−P

′)/((1−p′)P ′) r(P
′−p′)/((1−p′)P ′)

= v(r)−1/P r1/P
′

for all r > 0.

Consequently, the result follows from (1) (with p and q replaced by P and Q,
respectively).
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