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Abstract

For a locally convex space X with the topology given by a family{p(· ; α)}α∈Ω

of seminorms, we study the existence and uniqueness of fixed points for a
mapping K : DK → DK defined on some set DK ⊂ X . We require that
there exists a linear and positive operator K , acting on functions defined on the
index set Ω, such that for every u, v ∈ DK

p(K (u)−K (v) ; α) ≤ K(p(u− v ; ·))(α), α ∈ Ω.

Under some additional assumptions, one of which is the existence of a fixed
point for the operatorK+ p(K (0) ; ·), we prove that there exists a fixed point
of K . For a class of elements satisfying Kn(p(u ; ·))(α) → 0 as n → ∞,
we show that fixed points are unique. This class includes, in particular, the class
for which we prove the existence of fixed points.

We consider several applications by proving existence and uniqueness of
solutions to first and second order nonlinear differential equations in Banach
spaces. We also consider pseudo-differential equations with nonlinear terms.

1. Introduction

In this article, we study existence and uniqueness of fixed points for a certain type
of mappings on locally convex spaces. Spaces of this type arise in many applica-
tions, where there is no natural Banach space to work in and the topology is given by
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seminorms. Seminorms may also provide better understanding of local behaviour of
solutions to, e.g., integral and differential equations.

We let X denote a locally convex topological space, where the topology is given
by a family {p( · ; α)}α∈Ω of seminorms that separates points. The index set Ω is not
assumed to have any specific structure. We want to solve the equation

K (u) = u, u ∈ DK , (1)

where K : DK → DK is a mapping defined on a subset DK ⊂ X . We assume
that 0 ∈ DK . The novelty of our approach consists of the use of an auxiliary linear
and positive operator K that acts on functions defined on the index set Ω. More
specifically, we assume that K : DK → RΩ, where DK ⊂ RΩ is a linear subspace.
By RΩ we denote the set of all real-valued functions on Ω, endowed with the topology
of pointwise convergence.

We suppose that the operator K is subordinated to K; in particular, we require
that

p(K (u)−K (v) ; α) ≤ K(p(u− v ; ·))(α), α ∈ Ω.

Under some natural assumptions on the operator K (see (K1)–(K4)) which guarantee,
in particular, the existence of a minimal non-negative solution σ in DK to the equation

σ(α) = Kσ(α) + p(K (0) ; α), α ∈ Ω, (2)

we prove that equation (1) has a solution in DK ; see Theorem 2.4. In other words,
the existence of a fixed point to a “simpler” operator K + p(K (0) ; · ) implies the
existence of a fixed point of the operator K .

If the functions from DK satisfy limn→∞K
n(p(u ; ·))(α) = 0, we also prove that

the fixed point is unique; see Theorem 2.5.
In Section 2.6, we show how Banach’s fixed point principle for contractive map-

pings on Banach spaces may be deduced from our result. For other generalisations
of Banach’s contraction principle, we refer to Dugundji and Granas [1] and references
therein.

In Section 3, we then consider some applications, starting with two types of non-
linear differential equations in a Banach space. First, in Section 3.1, we treat a first
order equation, where the right-hand side satisfies a Lipschitz-Carathéodory condition.
In Section 3.2, we then consider a second order equation of Sturm-Liouville type, where
the nonlinear term satisfies a similar condition. For both of these equations, we prove
existence and uniqueness results. In the last section, we consider a class of nonlinear
pseudo-differential equations on RN . For more examples of applications where the
above fixed point theorems are useful, we refer to Kozlov and Maz’ya [5, 6].

2. Main results

2.1 The operator K

We suppose that K : DK → RΩ, where DK ⊂ RΩ and K is linear, and require that K
is subject to the following conditions.
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(K1) Positivity of K. The operator K is positive, i.e., if η ∈ DK is non-negative,
then Kη ≥ 0.

(K2) Fixed point inequality. The function k0( · ) = p(K (0) ; · ) ∈ DK , and there
exists a non-negative function z ∈ DK such that

z(α) ≥ Kz(α) + k0(α), α ∈ Ω, (3)

and Kz ∈ DK .
(K3) Monotone closedness of K. The operator K is closed for non-negative,

increasing sequences: if {ηn} is a non-negative sequence in DK such that
ηn ↗ η, η ≤ z, and Kηn ↗ ζ, then η ∈ DK and Kη = ζ.

(K4) Invariance property. If η, ζ ∈ DK such that 0 ≤ η ≤ ζ and Kζ ∈ DK ,
then Kη ∈ DK .

The existence of a non-negative solution z to (3) allows us to prove the existence of a
non-negative solution to the equation

σ(α) = Kσ(α) + k0(α), α ∈ Ω, (4)

which is minimal in the sense that if η ∈ DK is another non-negative solution to (4),
then σ ≤ η.

Lemma 2.1

Suppose that (K1) to (K4) are satisfied. Then there exists a unique minimal
solution σ ∈ DK to (4) such that σ ≤ z. This solution is the limit of the iterations

σ0 = 0 and σk+1 = Kσk + k0, k = 0, 1, 2, . . . , (5)

which are well-defined and converge for all α ∈ Ω. Moreover, for n = 1, 2, . . ., Knσ
belongs to DK and Knσ → 0 as n→∞.

Proof. To see that the iterations are well-defined, we proceed by induction. Obvi-
ously σ0 belongs to DK , σ0 ≤ z, and by (K2), σ1 = k0 ∈ DK . Assume that σk ∈ DK

and σk ≤ z. Then Kσk belongs to DK by (K4) and hence, σk+1 belongs to DK

since DK is a linear space. Now, (K1) and (K2) imply that σk+1 ≤ Kz + k0 ≤ z.
Thus, the sequence {σk} is well-defined and σk ≤ z for every k ≥ 0. Furthermore, this
sequence is increasing. Indeed, σ1 ≥ σ0. Assume that σk ≥ σk−1. Then, by (K1),

σk+1 − σk = Kσk −Kσk−1 ≥ 0.

This implies that σk(α) converges to a number σ(α) for every α ∈ Ω. Obviously σ ≤ z.
Moreover, we have Kσk = σk+1 − k0, and therefore Kσk ↗ σ − k0. Hence, by (K3),
we obtain that σ ∈ DK and Kσ = σ − k0.

Let 0 ≤ η ∈ DK be another solution to (4). The argument above with z replaced
by η shows that σ ≤ η. This proves that σ is minimal.

Let us finally show that Knσ belongs to DK and that Knσ → 0 as n→∞. It is
clear that Kσ belongs to DK and that Kσ = σ − σ1. Assume that Knσ ∈ DK and
that Knσ = σ−σn. Then Knσ ≤ z and (K4) implies that Kn+1σ belongs to DK . We
also obtain that

Kn+1σ = K(σ − σn) = σ − σn+1. (6)

Thus, Knσ is well-defined for all n ∈ N and tends to zero as n→∞. �
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2.2 The operator K

Suppose that the operator K maps DK into DK . We let σ be the minimal solution
to (4), and put

DK ,σ =
{
u ∈ DK : p(u ; α) ≤ σ(α) for every α ∈ Ω

}
.

We shall require the following properties to hold.

(K 1) Subordination to K. If u, v belong to DK ,σ, then p(u− v ; · ) belongs to DK ,
and we have

p(K (u)−K (v) ; α) ≤ K(p(u− v ; ·))(α), α ∈ Ω. (7)

(K 2) Closedness of DK ,σ. If {vk}∞k=0 is a sequence in DK ,σ such that v0 = 0 and

∞∑
k=0

p(vk+1 − vk ; α) ≤ σ(α), α ∈ Ω, (8)

then the limit of vk exists and belongs to DK ,σ.

As an example of the condition in (K 2), consider the following.

Remark 2.2 Let X be a sequentially complete space and suppose that DK is sequen-
tially closed. If a sequence in DK ,σ satisfies (8), then it is clearly a Cauchy sequence.
By completeness it converges to some element v ∈X for which p(v ; α) ≤ σ(α), α ∈ Ω.
Now, the fact that DK is sequentially closed immediately implies that v ∈ DK ,σ.

Since 0 ∈ DK ,σ, (K 1) implies that p(u ; · ) ∈ DK for u ∈ DK . We also obtain
the following lemma concerning properties of elements in DK ,σ.

Lemma 2.3

Suppose that (K 1) holds. Then

(i) the operator K maps DK ,σ into itself;

(ii) if u ∈ DK ,σ, then Kn(p(u ; ·)) is well-defined for every non-negative integer n
and limn→∞K

n(p(u ; ·))(α) = 0 for every α ∈ Ω.

Proof. Let u ∈ DK ,σ. The assumption (K 1) implies that p(u ; · ) ∈ DK and

p(K (u) ; α) ≤ p(K (u)−K (0) ; α) + k0(α)

≤ K(p(u ; ·)) + k0(α)

≤ Kσ(α) + k0(α)

= σ(α).

This proves (i). To prove (ii), we notice that K(p(u ; ·)) ∈ DK by (K4). Assume
that Kn(p(u ; ·)) belongs to DK . Since p(u ; · ) ≤ σ and (6) holds for every n ∈ N, it
follows that

Kn(p(u ; ·)) ≤ Knσ = σ − σn ≤ σ ≤ z.

Then (K4) implies that Kn+1(p(u ; ·)) ∈ DK . Moreover, by Lemma 2.1 we know
that σn → σ, which proves that Kn(p(u ; ·))→ 0 by the previous inequality. �
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2.3 Existence of fixed points

We wish to find a fixed point of K . This will be accomplished by the following
iterations:

u0 = 0 ∈ DK ,σ and uk+1 = K (uk), k = 0, 1, 2, . . . . (9)

By Lemma 2.3(i), this sequence is well-defined and every element of the sequence
belongs to DK ,σ. We will now prove that the iterations converge to a solution to (1).

Theorem 2.4

Suppose that K satisfies (K1) to (K4) and that K satisfies (K 1) and (K 2).
Then there exists a fixed point of K in DK ,σ. This fixed point is the limit of the
iterations in (9).

Proof. We have u1 = K (0), so

p(u1 − u0 ; α) = k0(α) = σ1(α)− σ0(α).

We proceed by induction to show that

p(uk+1 − uk ; α) ≤ σk+1(α)− σk(α), k = 0, 1, 2, . . . . (10)

Assume that p(uk+1 − uk ; α) ≤ σk+1(α)− σk(α). Then, by (K 1),

p(uk+2 − uk+1 ; α) = p(K (uk+1)−K (uk) ; α)

≤ K(p(uk+1 − uk ; ·))(α)

≤ Kσk+1(α)−Kσk(α).

Hence, (10) holds. Since σk converges to σ, it follows that

∞∑
k=0

p(uk+1 − uk ; · ) ≤ σ − σ0 = σ.

Thus (K 2) implies that uk converges to some element u in DK ,σ. We also see that

p(u− uk ; α) ≤ σ(α)− σk(α). (11)

By (11), (4) and the definition of σk, we now obtain that

p(K (u)−K (uk) ; α) ≤ K(p(u− uk ; ·))(α)

≤ Kσ(α)−Kσk(α)

= σ(α)− σk+1(α).

Thus, K (uk)→ K (u). Since we also know that K (uk) = uk+1 → u, it is clear that u
is a fixed point of K . �
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2.4 Uniqueness of fixed points

We now turn to prove a uniqueness result. Suppose that the operator K maps DK

into itself. We shall assume that the following conditions hold.

(I) If u ∈ DK , then Kn(p(u ; ·)) is defined and belongs to DK for every non-
negative integer n, and limn→∞K

n(p(u ; ·)) = 0.

(II) If η, ζ ∈ DK such that 0 ≤ η ≤ ζ and Kζ ∈ DK , then Kη ∈ DK .

(III) If u, v belong to DK , then the function p(u − v ; · ) belongs to DK , and (7)
holds.

Theorem 2.5

Suppose that the operators K and K satisfy (K1) and (I) to (III). Then there
exists at most one fixed point of K .

Proof. Let u and v be two fixed points of K . Then (III) implies that

p(u− v ; α) = p(K (u)−K (v) ; α) ≤ K(p(u− v ; ·))(α), α ∈ Ω. (12)

Since 0 ∈ DK , it follows from (III) that p(u ; · ) and p(v ; · ) belong to DK . We
also have p(u − v ; α) ≤ p(u ; α) + p(v ; α) ∈ DK and, by (I), K(p(u ; · ) + p(v ; · ))
also belongs to DK , so it follows from (II) that K(p(u − v ; ·)) ∈ DK . Assume
that Kn(p(u− v ; ·)) belongs to DK for some n ≥ 1. Then

Kn(p(u− v ; ·)) ≤ Kn(p(u ; ·)) +Kn(p(v ; ·)) ∈ DK .

We also have K(Knp(u ; · ) +Knp(v ; · )) ∈ DK , so Kn+1(p(u− v ; ·)) belongs to DK

by (II). Thus, Kn(p(u− v ; ·)) is well-defined for every n ∈ N. Now, (12) implies that

p(u− v ; α) ≤ Kn(p(u ; ·))(α) +Kn(p(v ; ·))(α), n ∈ N, α ∈ Ω.

The assumption (I) now implies that p(u − v ; α) = 0 for every α ∈ Ω, which implies
that u = v since the seminorms separates points. �

Let us restrict K to DK ,σ. Suppose that K and K satisfy (K1) to (K4)
and (K 1) to (K 2), respectively. It is immediate that (K 1) implies (III). Since
p(u ; · ) ≤ σ for every u ∈ DK , (K4) implies (II). Furthermore, (I) follows from
Lemma 2.3(ii). Theorem 2.5 now shows that the fixed point in Theorem 2.4 is unique
in the set DK ,σ.

2.5 Error estimates

In the following theorem, σk are the iterations defined by (5) and σ is the limit, which
exists by Lemma 2.1. Let {uk} be the iterations defined by (9) and let u be the limit.

Theorem 2.6

We assume that all assumptions in Theorem 2.4 are valid, that is, that K sat-
isfy (K1)–(K4) and that K satisfy (K 1) and (K 2). Then we have the following a
priori estimate :

p(u− un ; α) ≤ σ(α)− σn(α), n ∈ N, α ∈ Ω, (13)
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and the a posteriori estimate :

p(u− un+1 ; α) ≤
∞∑
i=0

Ki+1(p(un − un+1 ; ·))(α), n ∈ N, α ∈ Ω, (14)

where the series is finite for every α ∈ Ω.

Proof. Let m,n ∈ N. From (10), it follows that

p(un+m − un ; α) ≤ σn+m(α)− σn(α) (15)

If we let m→∞ in (15), (13) now follows.
To prove the a posteriori estimate, we observe that as in the proof of (ii) in

Lemma 2.3, we have Ki(p(un − um ; ·)) ∈ DK for every i ∈ N. This follows from (K4)
since p(un − um ; · ) ≤ σn − σm for m ≤ n. Thus,

p(un+1 − un+m+1 ; α) ≤
m∑
i=1

Ki(p(un+1 − un ; ·))(α)

=
m−1∑
i=0

KiK(p(un+1 − un ; ·))(α).

(16)

Using the same argument as in the proof of (6), we obtain that Kiσn = σn+i−σi, and
consequently

m−1∑
i=0

Ki(σn+2 − σn+1) =
m−1∑
i=0

(σn+i+2 − σn+i+1)

= σn+m+1 − σn+1.

Since K(p(un+1 − un ; ·)) ≤ σn+2 − σn+1, this shows that if we let m → ∞ in (16),
then the series in (14) is finite and the a posteriori estimate holds. �

2.6 Comparison with Banach’s fixed point theorem

We now demonstrate that our result is indeed a generalisation of Banach’s fixed point
theorem. Let X be a Banach space and K : DK → DK a Lipschitz mapping, with
constant γ, on a closed non-empty set DK ⊂ X . We have only one-seminorm, i.e.,
the norm | · | on X . Thus, the index set Ω consists of one point and RΩ = R. Let K be
the operator given by multiplication by γ. For a non-negative solution z to (3) to exist
in general, it is necessary that 0 ≤ γ < 1, i.e., that K is a contraction. The unique
solution to (4) is given by σ = (1 − γ)−1|K (0)| ∈ DK . Thus, if K is a contraction,
then (K2) holds. Obviously, K is linear and satisfies (K1), (K3), and (K4). It is also
obvious that (K 1) and (K 2) hold. Theorem 2.4 now shows that there exists a fixed
point x of K . Furthermore, Kn|y| → 0 for every y in X , so the fixed point is unique
in DK by Theorem 2.5. From the expressions in (13) and (14), we also obtain the
well-known prior and posterior estimates; see Zeidler [11, p. 19].
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3. Applications

3.7 A first order differential equation

To show how to apply the abstract fixed point theorems, we give a new proof of a well-
known solvability result for first order differential equations in a separable Banach
space B, with the norm denoted by | · |. We consider the following equation:

x′(t) = A(x(t), t), t ≥ 0, (17)

where
x(0) = a ∈ B.

We suppose that A : B × [0,∞) → B satisfies the following Lipschitz-Carathéodory
condition:

(A) For every fixed x ∈ B, A(x, · ) is measurable1, and there exists a function ω
in L1

loc([0,∞)) such that for all x, y ∈ B and every t ≥ 0, we have

|A(x, t)−A(y, t)| ≤ ω(t)|x− y|. (18)

This condition implies, in particular, that the composition A(x( · ), · ) with a
measurable function x : [0,∞) → B is again measurable. We also require that
|A(0, · )| ∈ L1

loc([0,∞)).
Integrating (17), we obtain

x(t) = a+

∫ t

0
A(x(τ), τ) dτ , t ≥ 0. (19)

We let L1
loc([0,∞) ; B) denote the linear space of functions on [0,∞) into B that are

locally Bochner integrable (see Hille [3, p. 78]). It is clear that the assumptions above
imply that A(x( · ), · ) ∈ L1

loc([0,∞) ; B) if x ∈ L1
loc([0,∞) ; B), so equation (19) is

well-defined. Similarly, by L∞loc([0,∞) ; B) we denote the linear space of measurable
functions x mapping [0,∞) into B such that |x( · )| belongs to L∞loc([0,∞)). If there ex-
ists a solution x ∈ L∞loc([0,∞) ; B) to equation (19), x will be continuous and solves (17)
in the sense of vector distributions; see Lions and Magenes [8, Section 1.3].

Theorem 3.1

There exists a unique solution x in L∞loc([0,∞) ; B) to (19), and this solution
satisfies

|x(t)| ≤ |a| exp

(∫ t

0
ω(τ) dτ

)
, t ≥ 0.

Proof. Let X be the vector space of all mappings from Ω = [0,∞) into B. We define
the topology on X by the seminorms p(x ; t) = |x(t)|, x ∈X , t ≥ 0. Obviously these
seminorms separate points, and it is easy to see that X is a complete, locally convex
space with this topology.

1Since B is separable, strong measurability is equivalent with weak measurability (cf. Hille [3],
Theorem 3.5.3).
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We first prove existence of a solution to (19). Let K : DK → X be defined by
the right-hand side in (19), with DK chosen as L∞loc([0,∞) ; B). Define K : DK → RΩ

by

Kη(t) =

∫ t

0
ω(τ)η(τ) dτ , t ≥ 0,

with DK = L∞loc([0,∞)). Obviously, if x ∈ DK , then K (x) belongs to DK . The
condition (A) implies that (K 1) holds. Clearly, K is linear, positive, and closed for
non-negative increasing sequences (by the monotone convergence theorem), so (K1)
and (K3) hold. Moreover, the function σ ∈ DK , defined by

σ(t) = |a| exp

(∫ t

0
ω(τ) dτ

)
, t ≥ 0, (20)

is the unique solution to σ = Kσ + |a|, so we may choose z = σ, which proves
that (K2) is valid. For η ∈ DK , Kη is continuous, so (K4) is satisfied. Suppose that the
sequence {xn}∞n=0 satisfy the condition (8) in (K 2). Clearly, this is a Cauchy sequence
in DK ,σ. Then xn converges to some measurable x ∈X such that |x| ≤ σ. From this
it follows that x belongs to L∞loc([0,∞) ; B), which proves that (K 2) holds. Thus, all
requirements for Theorem 2.4 are satisfied, so there exists a fixed point x ∈ DK of K
such that |x| ≤ σ.

Next, we prove that this fixed point is unique. It is obvious that (II) and (III)
hold. To prove that (I) is valid as well, we will use the following identity:∫ t

0
ω(τn)

∫ τn

0
ω(tn−1)

∫ τn−1

0
· · ·
∫ τ2

0
ω(τ1) dτ1 dτ2 · · · dτn =

1

n!

(∫ t

0
ω(τ) dτ

)n
,

which holds for every t ≥ 0 and n ∈ N. For continuous ω, this can be checked by
differentiation and for general ω, it follows by density of smooth functions. From this,
we obtain that, for η ∈ DK ,

|Knη(t)| ≤ 1

n!
‖ω‖nL1([0,t])‖η‖L∞([0,t]) (21)

for every t ≥ 0 and n ∈ N. This shows that Kn(p(y ; ·))→ 0 for every y ∈ DK , so the
fixed point is unique by Theorem 2.5. �

Remark 3.2 If the function ω in (A) instead belongs to L∞loc([0,∞)), one can
choose DK = L1

loc([0,∞)) and DK = L1
loc([0,∞) ; B). With small changes to the

proof of Theorem 3.1, we obtain existence and uniqueness of a solution to (19) in the
space L1

loc([0,∞) ; B).

3.8 A second order differential equation

Let us consider a second order differential equation in the Banach space B:

−x′′(t) + k2x(t) = A(x(t), t), t ∈ R, (22)

where k is a positive constant and A : B × R → B satisfies the following Lipschitz-
Carathèodory condition:
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(A′) For every fixed x ∈ B, A(x, · ) is measurable, and there exists a function ω
in L∞(R) such that for all x, y ∈ B and every t ∈ R, (18) holds.

It is easy to verify that the function g(t) = (2k)−1 exp(−k|t|), t ∈ R, is a Green’s
function for the operator −∂2

t + k2. Using this, we can formally rewrite (22) as

x(t) =

∫
R
g(t− τ)A(x(τ), τ) dτ , t ∈ R. (23)

One can show that a solution in L1
loc(R ; B) to (23) is continuous and satisfies (22) in

the sense of vector distributions.
In order to describe our results for (23), we introduce the auxiliary differential

equation
−w′′(t) + k2w(t)− ω(t)w(t) = h(t), t ∈ R, (24)

where h(t) = |A(0, t)| for t ∈ R. We will require that

sup
t∈R

ω(t) < k2. (25)

Under this condition, the operator −∂2
t + k2 − ω has a Green’s function gω(t, τ), re-

presented by the Neumann series

∞∑
k=0

∫
Rk

g(t− τ1)ω(τ1)g(τ1 − τ2) · · ·ω(τk)g(τk − τ) dτ1 dτ2 · · · dτk; (26)

see Kozlov and Maz’ya [4, Section 6]. This Green’s function is uniquely defined if we
require that gω is bounded. We also let w± be two positive solutions to the to (24)
corresponding homogeneous equation, such that

(i) w±(t) > 0 for t ∈ R, w±(t)→ 0 as t→ ±∞, w±(t)→∞ as t→ ∓∞,

One can show that w± satisfy

(ii) |w∓(t)|+ |∂tw∓(t)| ≤ Ce±kt for t ≷ 0.

These solutions exist and are unique up to a positive constant factor; see the proof of
Theorem 6.4.1 in Kozlov and Maz’ya [4]. Using these, one can give another represen-
tation for gω:

gω(t, τ) =

{
Dw+(t)w−(τ), t ≥ τ ,

Dw−(t)w+(τ), t ≤ τ ,
(27)

where D is some positive constant.

Theorem 3.3

Suppose that ∫
R
gω(0, τ)|A(0, τ)| dτ <∞. (28)

Then there exists a solution x ∈ L1
loc(R ; B) to (23) that satisfies

|x(t)| ≤
∫
R
gω(t, τ)|A(0, τ)| dτ , t ∈ R, (29)
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and

|x(t)| = o(w±(t)) as t→ ∓∞. (30)

Moreover, a solution in L1
loc(R ; B) to (23), that satisfies (30), is unique.

To verify (28) in specific cases, one can employ well-known asymptotic properties of
solutions to ordinary differential equations; see Eastham [2], Kozlov and Maz’ya [4],
and Wasov [10].

Proof. As in the proof of Theorem 3.1, we let X be the vector space of all mappings
from Ω = R into B. The topology on X is given by the seminorms p(x ; t) = |x(t)|, x ∈
X , t ∈ R. With this topology, X is locally convex and complete. We define the
operator K : DK → RΩ by

Kη(t) =

∫
R
g(t− τ)ω(τ)η(τ) dτ , t ∈ R,

where the domain DK of K is the set of measurable functions η on R such that∫
R
g(τ)ω(τ)|η(τ)| dτ <∞. (31)

Furthermore, let K be the right-hand side in (23). It follows from (A′) that, for
example, if x ∈ L1

loc(Ω ; B) such that |x| ∈ DK , then K (x) is defined:

|K (x)(t)| ≤
∫
R
g(t− τ)|A(x(τ), τ)−A(0, τ)| dτ + |K (0)(t)|

≤ K|x|(t) + |K (0)(t)|.
(32)

The last term is finite since (28) holds.
We will next show that the functions w± both belong to DK . First of all,

e−kτω(τ)w−(τ) = −∂τ (e−kτ (∂τ + k)w−(τ))

and |(∂τ + k)w−(τ)| ≤ Cekτ for τ > 0. Thus,∫ M

0
g(τ)ω(τ)w−(τ) dτ = −

∫ M

0
∂τ
(
e−kτ (∂τ + k)w−(τ)

)
dτ

is bounded with respect to M > 0. Moreover, w−(τ) is bounded for τ < 0, so∫ 0

−∞
g(τ)ω(τ)w−(τ) dτ <∞.

This shows that w− ∈ DK . In a similar manner, one can show that w+ ∈ DK .
We now prove that (K2) is satisfied. Let h(t) = |A(0, t)|, t ∈ R. By Theorem 6.5.2

in Kozlov and Maz’ya [4], there exists a solution z to (24), which is given by

z(t) =

∫
R
gω(t, τ)h(t) dτ , t ∈ R, (33)
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and this solution satisfies z(t) = o(w±(t)) as t → ∓∞. It is also clear that z belongs
to DK since w± belong to DK . Moreover, the fact that g is a Green’s function for −∂2

t +
k2 implies that z also solves the equation

Kz(t) + h ∗ g(t) = z(t), t ∈ R,

and hence, (K2) is satisfied. Let η, ζ ∈ DK such that 0 ≤ η ≤ ζ and Kζ belongs to DK .
Clearly Kη is measurable, so it follows that Kη ∈ DK since Kη ≤ Kζ and Kζ ∈ DK .
Therefore it is clear that (K4) holds. By monotone convergence, it follows that K
is closed for non-negative, increasing sequences. Hence, (K3) is valid. Thus, (K1)
to (K4) are satisfied, so Lemma 2.1 shows that a unique minimal σ ∈ DK exists.

Existence. We let DK be defined as the set of those measurable functions x that
maps RN into B for which |x| ≤ σ. It follows from (18) that K is defined on DK

since (A′) holds and σ ∈ DK ; compare with (32). It is clear that K (x) is measurable
for every x in DK , and using the same argument as in the proof of (i) in Lemma 2.3,
we obtain that |K (x)| ≤ σ if x ∈ DK . Thus, K maps DK into itself. As above, we
also have |K (x)−K (y)| ≤ K|x− y| for all x, y ∈ DK . Hence, (K 1) holds.

We next show that (K 2) is satisfied. Suppose that {xn}∞n=0 satisfies condition (8)
in (K 2). Then the sequence is a Cauchy sequence in DK ,σ. Since X is (sequentially)
complete, we have xn → x for some measurable x ∈X . Clearly |x| ≤ σ, so x ∈ DK ,σ.
Thus, all requirements for Theorem 2.4 are satisfied and there exists a fixed point x
in DK ,σ of K . Moreover, it is straightforward to verify, using (27) and the properties
of w±, that the estimate in (29) implies (30).

Uniqueness. Choose DK as the linear space of functions x ∈ L1
loc(R ; B) such

that (30) holds. If x ∈ DK , then |x| ∈ DK since w± ∈ DK , so K (x) is defined;
compare with (32). We next show that the operator K maps DK into itself. To see
that this is true, let x belong to DK and let ε > 0 be arbitrary. Choose M > 0 such
that |x(t)| ≤ εw∓(t) for t ≷ ±M . Since (28) holds, it is sufficient to prove that∫

R
g(t− τ)ω(τ)|x(τ)| dτ = o(w±(t)) as t→ ∓∞. (34)

It is straightforward to show that∫ M

−M
g(t− τ)ω(τ)|x(τ)| dτ → 0 as t→ ∓∞.

Since ω(τ)w±(τ) = (−∂2
t + k2)w±(τ), we also have∫ −M

−∞
g(t− τ)ω(τ)|x(τ)| dτ ≤ ε

∫ ∞
−∞

g(t− τ)ω(τ)w+(τ) dτ

= εw+(t),

and similarly ∫ ∞
M

g(t− τ)ω(τ)|x(τ)| dτ ≤ εw−(t).

This implies that (34) is valid. The relation in (34) also shows that (II) holds. The
fact that (III) holds follows from (A′) and the definition of DK and DK .
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We now turn to show that (I) holds. For an arbitrary but fixed function u in DK ,
let η(t) = |u(t)|, t ∈ R. Then η ∈ DK and η(t) = o(w±(t)) as t→ ∓∞. We prove, for a
fixed t = t0, that Knη(t0)→ 0 as n→∞. Let ε > 0. Choose a positive number M so
that |η(t)| ≤ εw∓(t) when t ≷ ±M . Put ηM (t) = |η(t)| when |t| ≤ M , η−(t) = |η(t)|
when t < −M , and η+(t) = |η(t)| when t > M . All three functions are defined as zero
elsewhere.

For ηM , we multiply (26) by ηM and integrate. The monotone convergence theo-
rem implies that

∞∑
n=0

gn(t) =

∫
R
gω(t, τ)ηM (τ) dτ <∞, t ∈ R, (35)

where

gn(t) =

∫
Rn

g(t− τ1)ω(τ1)g(τ1 − τ2) · · ·ω(τn−1)g(τn−1 − τn)ηM (τn) dτ1 dτ2 · · · dτn.

Since KnηM (t) ≤ k2gn(t) for every t, the convergence of the series in (35) implies
that |KnηM (t0)| ≤ ε if n is large enough.

For η±, the fact that Kw± = w± shows that

Knη±(t0) ≤ εKnw±(t0) = εw±(t0).

Hence, we obtain that for all large n, we have

|Knη(t0)| < (1 + w−(t0) + w+(t0))ε.

This proves that Knη(t0)→ 0 as n→∞. Hence, we may apply Theorem 2.5, and find
that the fixed point is indeed unique. �

3.9 A pseudo-differential equation

Let 1 < p < ∞ and let S be a pseudo-differential operator on RN with an invertible
symbol a(ξ) which is smooth outside the origin and positively homogeneous of order
zero. We consider the equation

Su(x) = Q(u)(x), x ∈ RN , (36)

where the mapping Q : Lploc(R
N \ {0}) → Lploc(R

N \ {0}) is assumed to satisfy the
following Lipschitz type condition.

(Q) There exists some q ∈ L∞(0,∞) such that for all u, v ∈ Lploc(R
N \ {0}):

Np
(
Q(u)−Q(v) ; r

)
≤ q(r)Np

(
u− v ; r

)
, r > 0, (37)

where

Np(u ; r) =

(
1

rN

∫
r<|x|<2r

|u(x)|p dx
)1/p

, r > 0. (38)
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Equations of this type occur, for example, when one solves boundary value problems
for partial differential equations with nonlinearities in the boundary condition. An
example of such an operator Q is Q(u)(x) = F (u, x), where F satisfies a Lipschitz-
Carathéodory condition: the function F (u, · ) is measurable for every u ∈ R and there
exists some l in L∞(RN ) such that

|F (u, x)− F (v, x)| ≤ l(x)|u− v|, u, v ∈ R and x ∈ RN .

We also assume that F (0, · ) ∈ Lploc(R
N \ {0}). Then Q maps Lploc(R

N \ {0}) into itself
and satisfies (Q) with q(r) = ess supr<|x|<2r l(x).

Since the symbol a(ξ) is invertible, the operator S has an inverse, which we denote
by T , with symbol 1/a(ξ). Formally applying T to (36), we arrive at

u(x) = TQ(u)(x), x ∈ RN . (39)

Under natural assumptions, we will establish existence and uniqueness of solutions
to (39). The operator T can also be represented as a singular integral operator:

Tv(x) = (V.P.)

∫
RN

K(x− y)v(y) dy, x ∈ RN , (40)

where the kernel K is positively homogenous of order −N , infinitely differentiable
outside the origin, and satisfies a cancellation condition; see Stein [9, p. 26]. We
let µ(ρ) = ρN for 0 ≤ ρ < 1 and µ(ρ) = 1 for ρ ≥ 1. The operator T is defined for
functions v ∈ Lploc(R

N \ {0}) such that∫ ∞
0

µ(ρ)Np(v ; ρ)
dρ

ρ
<∞. (41)

In fact, the following inequality holds:

Np(Tu ; r) ≤ CT
∫ ∞

0
µ
(ρ
r

)
Np(u ; ρ)

dρ

ρ
, r > 0, (42)

where the constant CT only depends on N , p, and K. In Kozlov, Thim, and Tures-
son [7], this result is proved for the Riesz transform, but it holds with the obvious
modifications for all operators of the type given in (40).

In what follows, we require that

sup
r>0

q(r) <
N

4CT
, (43)

and put ω(t) = NCT q(e
t) for t ∈ R. In order to formulate our results for (39), let us

introduce an auxiliary differential equation:

−(∂t +N)∂tw(t)− ω(t)w(t) = h(t), t ∈ R, (44)

where h(t) = NCTNp(Q(0) ; et), t ∈ R. A Green’s function for the differential op-
erator −(∂t + N)∂t is given by the function g(t) = N−1µ(e−t), t ∈ R. As before,
the Green’s function gω(t, τ) for the differential operator −(∂t + N)∂t − ω may be
represented as the Neumann series in (26) with g as above. To give another repre-
sentation for gω, we introduce two positive solutions v± to the to (44) corresponding
homogeneous equation such that
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(i) v±(t) > 0 for t ∈ R, v±(t) = o(e−Nt/2) as t → ±∞, eNt/2v±(t) → ∞
as t→ ∓∞.

One can show that v± satisfy

(ii) |v∓(t)|+ |∂tv∓(t)| ≤ Ce−Nt/2±Nt/2 for t ≷ 0.

Compare (i) and (ii) with w± in Section 3.2. We may then represent gω as

gω(t, τ) =

{
Dv+(t)eNτv−(τ), t ≥ τ ,

Dv−(t)eNτv+(τ), t ≤ τ ,
(45)

where D is some positive constant. Observe that eNtv±(t) are solutions to the to (44)
corresponding homogeneous equation for the formal adjoint operator, i.e., the equation

−w′′(t) +Nw′(t)− ω(t)w(t) = 0.

Theorem 3.4

Suppose that ∫ ∞
0

gω(0, log ρ)Np(Q(0) ; ρ)
dρ

ρ
<∞.

Then there exists a solution u ∈ Lploc(R
N \ {0}) to (39). This solution satisfies

Np(u ; r) ≤
∫ ∞

0
gω(log r, log ρ)Np(Q(0) ; ρ)

dρ

ρ
, r > 0,

and

Np(u ; r) =

{
o(v+(log r)) as r → 0+,

o(v−(log r)) as r →∞.
(46)

A solution in Lploc(R
N \ {0}) to (39) that satisfies (46) is unique.

Proof. Let X = Lploc(R
N \ {0}) and put Ω = (0,∞). We let {Np( · ; r)}r>0 be the

seminorms on this space. We start by defining K : DK → RΩ by

Kη(r) = CT

∫ ∞
0

µ
(ρ
r

)
ω(log ρ) η(ρ)

dρ

ρ
, r > 0,

where CT is the constant in (42). The domain DK of K is the set of functions η
in L1

loc(0,∞) such that ∫ ∞
0

µ(ρ)ω(log ρ) η(ρ)
dρ

ρ
<∞. (47)

Using monotone convergence, it follows that K is closed for non-negative increasing
sequences. The functions v±(log ρ), ρ > 0, both belong to DK ; this follows by the
same kind of argument that was used in the proof of Theorem 3.3, after first making
the substitution ρ = et. Next, we define K as the right-hand side in (39).

To see that (K2) is satisfied, let h(t) = NCTNp(Q(0) ; et), t ∈ R. By Theo-
rem 6.5.2 in Kozlov and Maz’ya [4], there exists a solution w to (44), given by (33)
with gω as in (45), and this solution satisfies

|w(t)| = o(v±(t)) as t→ ∓∞.
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The function r 7→ w(log r) belongs to DK since we know that v± ◦ log ∈ DK . Further-
more, g(t) is a Green’s function for −(∂t +N)∂t, so after a change of variables, we see
that z solves the equation

Kz(r) + (h ∗ g)(log(r)) = z(r), r > 0,

and hence, (K2) is satisfied. It is also clear that (K4) is valid. Thus, (K1) to (K4)
are all satisfied, so we may apply Lemma 2.1 to obtain a unique minimal σ ∈ DK that
solves (4).

Existence. We let DK be the linear space of those x ∈ Lploc(R
N \ {0}) such

that Np(u ; r) ≤ σ(r), r > 0. Inequality (42) implies that K (u) ∈ Lploc(R
N \ {0})

for u ∈ DK . From (4) it now follows that K maps DK ,σ into DK ,σ. The condition
in (Q) also shows that (K 1) holds.

Let {un} be a Cauchy sequence in DK ,σ. Since Lploc(R
N \ {0}) is (sequentially)

complete, we have un → u for some u ∈ Lploc(R
N \ {0}). Furthermore, from the facts

that σ ∈ DK and Np(u ; · ) ≤ σ we obtain that Np(u ; · ) ∈ DK by dominated conver-
gence. Hence, u ∈ DK ,σ. This proves that (K 2) is satisfied. Thus, all requirements
for Theorem 2.4 are satisfied and there exists a fixed point u ∈ DK ,σ of K such that
the inequality Np(u ; · ) ≤ σ is holds.

Uniqueness. As in the proof of uniqueness in Theorem 3.3, one can show that
with DK as those functions u ∈ Lploc(R

N \ {0}) such that (46) holds, K (u) is defined
and satisfies (46). It is now straightforward to verify that (II) and (III) are valid. After
the substitution t = log r in the proof of uniqueness in Theorem 3.3, and using v± in the
place of w±, we obtain that Knη(r) → 0 as n → ∞ for all r > 0. Thus, Theorem 2.5
is applicable, which proves that the solution is unique. �
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