Collectanea Mathematica (electronic version): http://www.collectanea.ub.edu

Collect. Math. 61, 2 (2010), 205-221
(C) 2010 Universitat de Barcelona

Jacobi transplantations and Weyl integrals

V.I. Kolyada
Department of Mathematics, Karlstad University, Universitetsgatan 1, 65188 Karlstad, Sweden E-mail: viktor.kolyada@kau.se
L. Roncal
Departamento de Matemáticas y Computación, Universidad de La Rioja, Edificio J.L. Vives, Calle Luis de Ulloa s/n, 26004 Logroño, Spain
E-mail: luz.roncal@unirioja.es

Received August 18, 2009. Revised October 9, 2009

Abstract

We prove that transplantations for Jacobi polynomials can be derived from representation of a special integral operator as fractional Weyl's integral. Furthermore, we show that, in a sense, Jacobi transplantation can be reduced to transplantations for ultraspherical polynomials. As an application of these results, we obtain transplantation theorems for Jacobi polynomials in $\operatorname{Re} H^{1}$ and BMO. The paper gives an extension of the results obtained for ultraspherical polynomials by the first named author (MR2148530 (2006a:42045)).

1. Introduction

Let $P_{n}^{\alpha, \beta}(z)$ be the Jacobi polynomial of degree n and order (α, β), where $\alpha, \beta>-1$ (see $[14,4.1])$. The Jacobi polynomials are orthogonal on $(-1,1)$ with respect to the

Research of the second author supported by grant MTM2006-13000-C03-03 of the DGI and a FPI grant of the University of La Rioja.

The authors are grateful to the referee for his/her useful remarks.
Keywords: Transplantation, Fourier coefficients, Jacobi series, Hardy space ReH ${ }^{1}$, BMO.
MSC2000: Primary 42C10.
measure $(1-z)^{\alpha}(1+z)^{\beta} d z$ and

$$
\begin{aligned}
& \int_{-1}^{1}\left[P_{n}^{(\alpha, \beta)}(z)\right]^{2}(1-z)^{\alpha}(1+z)^{\beta} d z \\
&=\frac{2^{\alpha+\beta+1} \Gamma(n+\alpha+1) \Gamma(n+\beta+1)}{(2 n+\alpha+\beta+1) \Gamma(n+1) \Gamma(n+\alpha+\beta+1)}=\left[s_{n}^{(\alpha, \beta)}\right]^{2}
\end{aligned}
$$

(see [14, (4.3.3), p.68]). The functions

$$
\begin{equation*}
\varphi_{n}^{(\alpha, \beta)}(y)=\frac{2^{(\alpha+\beta+1) / 2} P_{n}^{(\alpha, \beta)}(\cos y)(\sin y / 2)^{\alpha+1 / 2}(\cos y / 2)^{\beta+1 / 2}}{s_{n}^{(\alpha, \beta)}} \tag{1.1}
\end{equation*}
$$

form an orthonormal system on $(0, \pi)$ with respect to Lebesgue measure. For $\alpha=\beta$ we obtain the system of ultraspherical polynomials

$$
u_{n}^{(\lambda)}(y)=\varphi_{n}^{(\alpha, \alpha)}(y), \quad \lambda=\alpha+\frac{1}{2}
$$

Transplantations of coefficients from one orthonormal system to another have a long history. One of the first transplantation theorems was obtained by Askey and Wainger [2] for ultraspherical polynomials. This theorem was extended by Askey [1] to general Jacobi series. Later on, the boundedness of the Jacobi transplantation operator in weighted L^{p}-spaces $(1<p<\infty)$ was studied in [8] and [13] (see also [4]). It is well known that this operator fails to be bounded in L^{1} and L^{∞} (see [3]). Thus, it is natural to ask whether transplantation holds in the spaces Re H^{1} and BMO. This problem was first studied in [9, 11] for ultraspherical polynomials. Afterwards, sharp results on Jacobi transplantation for weighted Hardy spaces were obtained in [12]. We mention also the work [10] in which a transplantation theorem for the Hankel transform in the space $\operatorname{Re} H^{1}(\mathbb{R})$ was proved.

Recall that the real Hardy space $\operatorname{Re} H^{1}$ is the space of all 2π-periodic functions $\varphi \in L^{1}[0,2 \pi]$ for which the conjugate function $\widetilde{\varphi}$ also belongs to $L^{1}[0,2 \pi]$. The norm in $\operatorname{Re} H^{1}$ is defined by

$$
\|\varphi\|_{\operatorname{Re} H^{1}}=\|\varphi\|_{L^{1}}+\|\widetilde{\varphi}\|_{L^{1}}
$$

The space BMO consists of all 2π-periodic functions $f \in L^{1}[0,2 \pi]$ such that

$$
\|f\|_{*} \equiv \sup _{I} \frac{1}{|I|} \int_{I}\left|f(x)-f_{I}\right| d x<\infty, \quad f_{I}=\int_{I} f(t) d t
$$

where the supremum is taken over all intervals $I \subset \mathbb{R}$. We set

$$
\begin{equation*}
\|f\|_{\mathrm{BMO}}=\left|\int_{0}^{2 \pi} f(x) d x\right|+\|f\|_{*} \tag{1.2}
\end{equation*}
$$

By the Spanne-Stein theorem [15, p. 207], for any function $f \in \mathrm{BMO}$ its conjugate function \widetilde{f} also belongs to BMO, and $\|\widetilde{f}\|_{*} \leq c\|f\|_{*}$.

In [11], there were proved two-sided transplantation theorems in the spaces $\operatorname{Re} H^{1}$ and BMO betweeen ultraspherical series and trigonometric series. With the use of

Mehler's integral representation of ultraspherical polynomials, the proofs were reduced to representation of a special integral operator as fractional Weyl's integral.

In this paper we show that the approach developed in [11] can be extended to Jacobi polynomials. We shall give a brief description of our main results.

Let $f \in L^{1}[0, \pi]$ and $\alpha, \beta>-1 / 2$. The Fourier-Jacobi coefficients of f are defined by

$$
\begin{equation*}
a_{n}^{(\alpha, \beta)}(f)=\int_{0}^{\pi} f(y) \varphi_{n}^{(\alpha, \beta)}(y) d y \tag{1.3}
\end{equation*}
$$

We will apply a Mehler type formula for Jacobi polynomials, to obtain that

$$
a_{n}^{(\alpha, \beta)}(f)=t_{n}^{(\alpha, \beta)} \int_{0}^{\pi} K_{\alpha, \beta}(f ; x) \cos (n+\gamma) x d x \quad(\gamma=(\alpha+\beta+1) / 2)
$$

where

$$
\begin{equation*}
K_{\alpha, \beta}(f ; x)=\int_{|x|}^{\pi} f(y) J_{\alpha, \beta}(x, y) d y \quad(|x| \leq \pi) \tag{1.4}
\end{equation*}
$$

and $J_{\alpha, \beta}(x, y)$ is a special kernel. In the case $\alpha=\beta$ this kernel has a comparatively simple form,

$$
J_{\alpha, \alpha}(x, y)=\left(\frac{\sin y}{\cos x-\cos y}\right)^{1 / 2-\alpha}, \quad 0 \leq x<y \leq \pi
$$

We show explicitly that under quite weak conditions on a function space X, the transplantation from Jacobi polynomials to the trigonometric system in X can be immediately derived from representation of the operator (1.4) as fractional Weyl's integral (see Theorem 3.1).

It is clear that if $\operatorname{supp} f \subset[0,2 \pi / 3]$, then the value of β does not have an essential influence on the behaviour of $a_{n}^{(\alpha, \beta)}(f)$. Roughly speaking, one can expect that in this case the Jacobi coefficients $a_{n}^{(\alpha, \beta)}(f)$ behave as ultraspherical coefficients $a_{n}^{(\alpha, \alpha)}(f)$. We give a quantitative form of this phenomenon in terms of $J_{\alpha, \beta}(x, y)$. Namely, we prove that for $0 \leq x<y \leq 2 \pi / 3$ the ultraspherical kernel $J_{\alpha, \alpha}(x, y)$ gives a good approximation of the Jacobi kernel $J_{\alpha, \beta}(x, y)$ (see Proposition 2.3 below).

We show that these results and representations of the operator (1.4) (with $\alpha=\beta$) proved in [11] readily yield transplantation theorems in $\operatorname{Re} H^{1}$ and BMO for Jacobi polynomials in the range $\alpha, \beta \in(-1 / 2,1 / 2)$ (see Theorems 4.6 and 4.7 below).

2. Dirichlet-Mehler type formula and Jacobi kernels

We will use a Dirichlet-Mehler type integral representation for Jacobi polynomials. This representation was first found in [7].

Let $F(a, b ; c ; z)$ be the Gauss hypergeometric function (see [14, Chapter 4]),

$$
\begin{equation*}
F(a, b ; c ; z)=1+\sum_{n=1}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{z^{n}}{n!} \tag{2.1}
\end{equation*}
$$

where $(\mu)_{n}=\mu(\mu+1) \cdots(\mu+n-1)$. Note that for $\mu>0$ and $n \in \mathbb{N}$ we have

$$
\begin{equation*}
(\mu)_{n}=\frac{\Gamma(n+\mu)}{\Gamma(\mu)} \quad \text { and } \quad \Gamma(n+\mu)=\Gamma(n)\left[n^{\mu}+O\left(n^{\mu-1}\right)\right] \tag{2.2}
\end{equation*}
$$

Lemma 2.1

For $\alpha>-1 / 2, \beta>-1$ and $0<y<\pi$, we have the integral representation

$$
\begin{aligned}
\frac{P_{n}^{(\alpha, \beta)}(\cos y)}{P_{n}^{(\alpha, \beta)}(1)}= & \frac{2^{(\alpha+\beta+1) / 2} \Gamma(\alpha+1)}{\Gamma(1 / 2) \Gamma(\alpha+1 / 2)}(1-\cos y)^{-\alpha} \int_{0}^{y} \cos (n+(\alpha+\beta+1) / 2) x \\
& \times \frac{(\cos x-\cos y)^{\alpha-1 / 2}}{(1+\cos x)^{(\alpha+\beta) / 2}} F\left(\frac{\alpha+\beta+1}{2}, \frac{\alpha+\beta}{2} ; \alpha+\frac{1}{2} ; \frac{\cos x-\cos y}{1+\cos x}\right) d x .
\end{aligned}
$$

Note that (see [14, (4.1.1), p. 58])

$$
P_{n}^{(\alpha, \beta)}(1)=\binom{n+\alpha}{n}
$$

Thus, the functions (1.1) can be written as

$$
\begin{equation*}
\varphi_{n}^{(\alpha, \beta)}(y)=t_{n}^{(\alpha, \beta)} \int_{0}^{y} J_{\alpha, \beta}(x, y) \cos \left(n+\frac{\alpha+\beta+1}{2}\right) x d x \tag{2.3}
\end{equation*}
$$

where

$$
\begin{align*}
J_{\alpha, \beta}(x, y) & =\left(\frac{\sin y}{\cos x-\cos y}\right)^{1 / 2-\alpha} G_{\alpha, \beta}(x, y), \quad|x|<|y| \leq \pi \tag{2.4}\\
G_{\alpha, \beta}(x, y) & =\left(\frac{1+\cos y}{1+\cos x}\right)^{\alpha+\beta / 2} F\left(\frac{\alpha+\beta+1}{2}, \frac{\alpha+\beta}{2} ; \alpha+\frac{1}{2} ; \frac{\cos x-\cos y}{1+\cos x}\right)
\end{align*}
$$

and

$$
\begin{equation*}
t_{n}^{(\alpha, \beta)}=c_{\alpha, \beta} n^{\alpha+1 / 2}+O\left(n^{\alpha-1 / 2}\right) \tag{2.5}
\end{equation*}
$$

If $\alpha=\beta$, denote $\lambda=\alpha+1 / 2$. In this case (2.3) is the Mehler formula for ultraspherical polynomials (see [5, p. 177]). We set for $\lambda>0$,

$$
\begin{equation*}
U_{\lambda}(x, y)=\left(\frac{\sin y}{\cos x-\cos y}\right)^{1-\lambda}, \quad|x|<|y| \leq \pi \tag{2.6}
\end{equation*}
$$

It follows from (2.1) that $G_{\alpha, \alpha}(x, y)=1$ and $J_{\alpha, \alpha}(x, y)=U_{\alpha+1 / 2}(x, y)$.
In what follows we denote

$$
\Omega=\{(x, y): 0 \leq x<y \leq 2 \pi / 3\}
$$

Set also

$$
\begin{equation*}
D_{\alpha, \beta}(x, y)=J_{\alpha, \beta}(x, y)-U_{\alpha+1 / 2}(x, y), \quad|x|<|y| \leq \pi \tag{2.7}
\end{equation*}
$$

Our main result in this section is that the derivatives of $D_{\alpha, \beta}(x, y)$ with respect to x in Ω are comparatively small. First we prove the following lemma.

Lemma 2.2

Let $\lambda>0$ and let ν be the least integer such that $\nu \geq \lambda$. Set

$$
\psi(x, y)=(\cos x-\cos y)^{\lambda}(\sin y)^{1-\lambda}, \quad(x, y) \in \Omega
$$

Then

$$
\begin{equation*}
\left|\frac{\partial^{r} \psi}{\partial x^{r}}(x, y)\right| \leq C_{\lambda} y(y-x)^{\lambda-r} \tag{2.8}
\end{equation*}
$$

for any $(x, y) \in \Omega$ and $0 \leq r \leq \nu$.

Proof. We have that

$$
\psi(x, y)=2^{\lambda}\left(\sin \frac{y-x}{2}\right)^{\lambda}\left(\sin \frac{y+x}{2}\right)^{\lambda}(\sin y)^{1-\lambda}
$$

For $r=0,(2.8)$ is obvious. Set $\omega(t)=(\sin t)^{\lambda}$. Then

$$
\omega(t)=t^{\lambda}(1+g(t))^{\lambda}
$$

where

$$
g(t)=\sum_{k=1}^{\infty}(-1)^{k} \frac{t^{2 k}}{(2 k+1)!}
$$

It is clear that $g \in C^{\infty}[0,2 \pi / 3]$. Moreover,

$$
1+g(t)=\frac{\sin t}{t} \geq \frac{1}{4}, \quad 0 \leq t \leq \frac{2 \pi}{3}
$$

It follows easily that

$$
\begin{equation*}
\left|\frac{d^{r}}{d t^{r}} \omega(t)\right| \leq c_{\lambda} t^{\lambda-r}, \quad 0<t \leq 2 \pi / 3 \tag{2.9}
\end{equation*}
$$

for any $1 \leq r \leq \nu$. Applying (2.9) and the Leibniz formula, we obtain

$$
\begin{aligned}
\left|\frac{\partial^{r} \psi}{\partial x^{r}}(x, y)\right| & \leq c_{\lambda} y^{1-\lambda} \sum_{k=0}^{r}\binom{r}{k}(y-x)^{\lambda-k}(y+x)^{\lambda-r+k} \\
& \leq 2^{r} c_{\lambda} y^{1-\lambda}(y-x)^{\lambda-r}(y+x)^{\lambda} \leq c_{\lambda}^{\prime} y(y-x)^{\lambda-r}
\end{aligned}
$$

for any $(x, y) \in \Omega$ and any $1 \leq r \leq \nu$.
Let $D_{\alpha, \beta}(x, y)$ be defined by (2.7).

Proposition 2.3

Let $\alpha, \beta>-1 / 2$. Suppose that ν is the least integer such that $\nu \geq \alpha+1 / 2$. Then

$$
\begin{equation*}
\left|\frac{\partial^{r} D_{\alpha, \beta}}{\partial x^{r}}(x, y)\right| \leq c_{\alpha, \beta} y(y-x)^{\alpha-r+1 / 2} \tag{2.10}
\end{equation*}
$$

for any $0 \leq r \leq \nu$ and $(x, y) \in \Omega$.
Proof. The functions $(1-z)^{(\alpha+\beta) / 2}$ and

$$
F_{\alpha, \beta}(z)=F\left(\frac{\alpha+\beta+1}{2}, \frac{\alpha+\beta}{2} ; \alpha+\frac{1}{2} ; z\right)
$$

are both analytic in $|z|<1$. Set $g(z)=(1-z)^{(\alpha+\beta) / 2} F_{\alpha, \beta}(z)$. Then

$$
\begin{equation*}
g(z)=1+\sum_{k=1}^{\infty} \gamma_{k}(\alpha, \beta) z^{k} \tag{2.11}
\end{equation*}
$$

where the series at the right hand side has radius of convergence at least 1 . Thus, by the Cauchy-Hadamard formula,

$$
\begin{equation*}
\varlimsup_{k \rightarrow \infty} \sqrt[k]{\left|\gamma_{k}(\alpha, \beta)\right|} \leq 1 \tag{2.12}
\end{equation*}
$$

Denote

$$
\zeta(x, y)=\frac{\cos x-\cos y}{1+\cos x}, \quad(x, y) \in \Omega
$$

Then

$$
\begin{equation*}
0 \leq \zeta(x, y) \leq \frac{3}{4}, \quad(x, y) \in \Omega \tag{2.13}
\end{equation*}
$$

Further, we have $G_{\alpha, \beta}(x, y)=g(\zeta(x, y))$. Thus, by (2.11) and (2.13), for any $(x, y) \in \Omega$

$$
G_{\alpha, \beta}(x, y)=1+\sum_{k=1}^{\infty} \gamma_{k}(\alpha, \beta) \zeta(x, y)^{k}
$$

Now, we get

$$
\begin{aligned}
D_{\alpha, \beta}(x, y) & =U_{\alpha+1 / 2}(x, y)\left(G_{\alpha, \beta}(x, y)-1\right) \\
& =U_{\alpha+1 / 2}(x, y) \sum_{k=1}^{\infty} \gamma_{k}(\alpha, \beta) \zeta^{k}(x, y) \\
& =(\sin y)^{1 / 2-\alpha}(\cos x-\cos y)^{\alpha+1 / 2} \Phi_{\alpha, \beta}(x, y)
\end{aligned}
$$

where

$$
\Phi_{\alpha, \beta}(x, y)=(1+\cos x)^{-1} \sum_{k=1}^{\infty} \gamma_{k}(\alpha, \beta) \zeta^{k-1}(x, y)
$$

It is obvious that

$$
\left|\frac{\partial^{r}}{\partial x^{r}} \zeta(x, y)\right| \leq c_{\nu}, \quad(x, y) \in \Omega
$$

for any $1 \leq r \leq \nu$, where c_{ν} depends only on ν. It easily follows from this estimate that

$$
\left|\frac{\partial^{r}}{\partial x^{r}} \zeta^{k}(x, y)\right| \leq c_{\nu}^{\prime}, \quad(x, y) \in \Omega
$$

for any $1 \leq k \leq \nu$, and

$$
\left|\frac{\partial^{r}}{\partial x^{r}} \zeta^{k}(x, y)\right| \leq c_{\nu}^{\prime} k^{r} \zeta^{k-r}, \quad(x, y) \in \Omega
$$

for any $k>\nu$, where $1 \leq r \leq \nu$. Thus, applying (2.12) and (2.13), we obtain that

$$
\left|\frac{\partial^{r}}{\partial x^{r}} \Phi_{\alpha, \beta}(x, y)\right| \leq c_{\alpha, \beta}, \quad(x, y) \in \Omega
$$

for any $0 \leq r \leq \nu$. Using this estimate and Lemma 2.2, we get (2.10).

3. Weyl fractional integrals

We recall the definition of Weyl fractional integrals. Let $0<\lambda<1$. Set

$$
(i k)^{\lambda}=|k|^{\lambda} \exp \left(\frac{\lambda \pi i}{2} \operatorname{sign} k\right) \quad(k \in \mathbb{Z}, k \neq 0) .
$$

Further, denote

$$
\begin{equation*}
\Psi_{\lambda}(t)=\sum_{n \in \mathbb{Z}, n \neq 0} \frac{e^{i n t}}{(i n)^{\lambda}}=2 \sum_{k=1}^{\infty} \frac{\cos (k t-\lambda \pi / 2)}{k^{\lambda}} . \tag{3.1}
\end{equation*}
$$

These series converge for all $t \in(0,2 \pi)$ and $\Psi_{\lambda} \in L^{1}[0,2 \pi]$; moreover,

$$
\begin{equation*}
\left|\Psi_{\lambda}(t)\right| \leq c_{\lambda}|t|^{\lambda-1}, \quad 0<|t| \leq \pi, \tag{3.2}
\end{equation*}
$$

(see [16, Chapter 12, § 8]).
Let $\varphi \in L^{1}[0,2 \pi]$ be a 2π-periodic function. The Weyl fractional integral of order $\lambda>0$ of the function φ is defined by the equality

$$
I_{\lambda} \varphi(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \Psi_{\lambda}(x-t) \varphi(t) d t
$$

The last integral converges absolutely for almost all x. Moreover, if $\varphi \in L^{p}[0,2 \pi]$ ($1 \leq$ $p \leq \infty$), then by (3.2) and Minkowski inequality,

$$
\left\|I_{\lambda} \varphi\right\|_{L^{p}} \leq c\|\varphi\|_{L^{p}}
$$

It follows from (3.1) that

$$
\begin{equation*}
I_{\lambda}\left(I_{\mu} \varphi\right)=I_{\lambda+\mu} \varphi \quad(\lambda, \mu>0) . \tag{3.3}
\end{equation*}
$$

Let X be a linear normed space of 2π-periodic functions. In what follows we assume that X satisfies the following conditions:
(i) $X \subset L^{1}[0,2 \pi]$ and there exists a constant c_{X} such that

$$
\|f\|_{L^{1}} \leq c_{X}\|f\|_{X} \quad \text { for any } \quad f \in X
$$

(ii) if $f \in X$ and $g(x)=f(-x)$, then $g \in X$ and $\|g\|_{X} \leq c_{X}\|f\|_{X}$;
(iii) if $\gamma=\left\{\gamma_{n}\right\}_{n \in \mathbb{N}}$ is a bounded sequence, and

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{3.4}
\end{equation*}
$$

is the Fourier series of a function $f \in X$, then the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\gamma_{n}}{n}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{3.5}
\end{equation*}
$$

is the Fourier series of some function $g \in X$, and $\|g\|_{X} \leq c\|f\|_{X}$, where c depends only on X and γ.

We observe that the spaces $L^{p}[0,2 \pi](1 \leq p \leq \infty)$, Re H^{1}, BMO satisfy these conditions. Indeed, properties (i) and (ii) are obvious. Further, let $\|\gamma\|_{L^{\infty}}=\sup _{n}\left|\gamma_{n}\right|$. If $f \in L^{p}[0,2 \pi](1 \leq p<2)$, and (3.4) is the Fourier series of f, then

$$
\left(\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right) \frac{\gamma_{n}^{2}}{n^{2}}\right)^{1 / 2} \leq\|\gamma\|_{L^{\infty}}\|f\|_{L^{1}}
$$

Thus, (3.5) is the Fourier series of some function $g \in L^{2}[0,2 \pi]$ and $\|g\|_{L^{2}} \leq$ $\|\gamma\|_{L^{\infty}}\|f\|_{L^{1}}$. In particular, this implies that $\|g\|_{\operatorname{Re} H^{1}} \leq c\|\gamma\|_{L^{\infty}}\|f\|_{L^{1}}$. Further, if $f \in L^{p}[0,2 \pi](2 \leq p \leq \infty)$, then

$$
\sum_{n=1}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right) \frac{\gamma_{n}}{n} \leq c\|\gamma\|_{L^{\infty}}\|f\|_{L^{2}} \leq c^{\prime}\|\gamma\|_{L^{\infty}}\|f\|_{L^{p}}
$$

Hence, (3.5) is the Fourier series of some function $g \in L^{\infty}[0,2 \pi]$ and $\|g\|_{L^{\infty}} \leq$ $c\|\gamma\|_{L^{\infty}}\|f\|_{L^{p}}$. This implies also that $\|g\|_{\infty} \leq c\|\gamma\|_{L^{\infty}}\|f\|_{\text {BMO }}$.

For any 2π-periodic function $f \in L^{1}[-\pi, \pi]$ we henceforth denote

$$
a_{n}(f)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, \quad b_{n}(f)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x
$$

$(n=0,1, \ldots)$.
For $\lambda>0$, we denote by $L^{\lambda}(X)$ the class of all functions $f \in L^{1}[0,2 \pi]$ that can be represented a.e. in the form

$$
f(x)=\frac{a_{0}(f)}{2}+I_{\lambda} \varphi(x),
$$

where $\varphi \in X$ and $a_{0}(\varphi)=0$. The function φ is defined uniquely. We denote $\varphi=D^{\lambda} f$. Set also

$$
\|f\|_{L^{\lambda}(X)}=\frac{\left|a_{0}(f)\right|}{2}+\|\varphi\|_{X} .
$$

If $X=L^{p}[-\pi, \pi] \quad(1 \leq p \leq \infty)$, then we write $L^{\lambda}(X)=L_{p}^{\lambda}$.
The following theorem shows that transplantation theorems follow directly from representation of the operator (1.4) as Weyl's integral. We use notations (1.3) and (2.4).

Theorem 3.1

Let $\alpha, \beta>-1 / 2, \alpha+1 / 2 \notin \mathbb{N}$, and let $\gamma=(\alpha+\beta+1) / 2$. Let a space X satisfy the conditions (i) - (iii). Let $f \in X$. Set

$$
\begin{aligned}
F(x) & =\int_{|x|}^{\pi} f(y) J_{\alpha, \beta}(x, y) d y \quad(|x| \leq \pi) \\
F_{1}(x) & =F(x) \cos \gamma x, \quad F_{2}(x)=F(x) \sin \gamma x \quad(-\pi<x \leq \pi)
\end{aligned}
$$

and extend F_{1} and F_{2} to the whole line with the period 2π. Assume that F_{1} and F_{2} belong to $L^{\alpha+1 / 2}(X)$. Then the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n}^{(\alpha, \beta)}(f) \cos n x \quad \text { and } \quad \sum_{n=1}^{\infty} a_{n}^{(\alpha, \beta)}(f) \sin n x \tag{3.6}
\end{equation*}
$$

are the Fourier series of some functions $\varphi_{1}, \varphi_{2} \in X$ such that

$$
\left\|\varphi_{1}\right\|_{X}+\left\|\varphi_{2}\right\|_{X} \leq c\left(\left\|D^{\alpha+1 / 2} F_{1}\right\|_{X}+\left\|D^{\alpha+1 / 2} F_{2}\right\|_{X}\right) .
$$

Proof. From (1.3) and (2.3), for any $n \in \mathbb{N}$,

$$
\begin{align*}
a_{n}^{(\alpha, \beta)}(f) & =t_{n}^{(\alpha, \beta)} \int_{0}^{\pi} F(x) \cos (n+\gamma) x d x \tag{3.7}\\
& =\frac{\pi}{2} t_{n}^{(\alpha, \beta)}\left[a_{n}\left(F_{1}\right)-b_{n}\left(F_{2}\right)\right] .
\end{align*}
$$

Let $\lambda=\alpha+1 / 2$. By our assumption, there exist functions $g_{1}, g_{2} \in X$ such that

$$
\begin{aligned}
& F_{1}(x)=\frac{a_{0}\left(F_{1}\right)}{2}+\frac{1}{2 \pi} \int_{0}^{2 \pi} \Psi_{\lambda}(x-t) g_{1}(t) d t \\
& F_{2}(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \Psi_{\lambda}(x-t) g_{2}(t) d t
\end{aligned}
$$

and $a_{0}\left(g_{1}\right)=a_{0}\left(g_{2}\right)=0$.
Since F_{1} is even, from (3.1) we obtain that

$$
n^{\lambda} a_{n}\left(F_{1}\right)=a_{n}\left(g_{1}\right) \cos (\lambda \pi / 2)-b_{n}\left(g_{1}\right) \sin (\lambda \pi / 2)
$$

and

$$
b_{n}\left(g_{1}\right) \cos (\lambda \pi / 2)+a_{n}\left(g_{1}\right) \sin (\lambda \pi / 2)=0 .
$$

Thus,

$$
a_{n}\left(F_{1}\right)=\frac{a_{n}\left(g_{1}\right)}{n^{\lambda} \cos (\lambda \pi / 2)}, \quad n \in \mathbb{N} .
$$

Similarly, since F_{2} is odd, we have that

$$
b_{n}\left(F_{2}\right)=\frac{a_{n}\left(g_{2}\right)}{n^{\lambda} \sin (\lambda \pi / 2)}, \quad n \in \mathbb{N} .
$$

Set

$$
g_{0}(x)=\frac{1}{2}\left(\frac{g_{1}(x)+g_{1}(-x)}{\cos (\lambda \pi / 2)}-\frac{g_{2}(x)+g_{2}(-x)}{\sin (\lambda \pi / 2)}\right) .
$$

Then g_{0} is an even function and $a_{0}\left(g_{0}\right)=0$,

$$
a_{n}\left(g_{0}\right)=n^{\lambda}\left[a_{n}\left(F_{1}\right)-b_{n}\left(F_{2}\right)\right], \quad n \in \mathbb{N} .
$$

Moreover, by the property (ii), $g_{0} \in X$ and

$$
\begin{equation*}
\left\|g_{0}\right\|_{X} \leq c\left(\left\|g_{1}\right\|_{X}+\left\|g_{2}\right\|_{X}\right) \tag{3.8}
\end{equation*}
$$

By (3.7) and (2.5),

$$
a_{n}^{(\alpha, \beta)}(f)=\frac{\pi}{2} t_{n}^{(\alpha, \beta)} n^{-\lambda} a_{n}\left(g_{0}\right)=\left(c_{\alpha, \beta}+\frac{\gamma_{n}}{n}\right) a_{n}\left(g_{0}\right), \quad n \in \mathbb{N},
$$

where $\left\{\gamma_{n}\right\}$ is a bounded sequence. Applying property (iii) and (3.8), we obtain that the first series in (3.6) is the Fourier series of a function $\varphi_{1} \in X$ such that

$$
\left\|\varphi_{1}\right\|_{X} \leq c\left(\left\|g_{1}\right\|_{X}+\left\|g_{2}\right\|_{X}\right)
$$

Similarly, using the equalities

$$
a_{n}\left(F_{1}\right)=-\frac{b_{n}\left(g_{1}\right)}{n^{\lambda} \sin (\lambda \pi / 2)}, \quad b_{n}\left(F_{2}\right)=\frac{b_{n}\left(g_{2}\right)}{n^{\lambda} \cos (\lambda \pi / 2)}, \quad n \in \mathbb{N}
$$

we obtain that the second series in (3.6) is the Fourier series of a function $\varphi_{2} \in X$ for which

$$
\left\|\varphi_{2}\right\|_{X} \leq c\left(\left\|g_{1}\right\|_{X}+\left\|g_{2}\right\|_{X}\right)
$$

Remark 3.2 The statement of Theorem 3.1 may fail if $\alpha+1 / 2 \in \mathbb{N}$. However, it remains true if we assume, in addition, that the conjugate function operator is bounded in X.

Lemma 3.3

Let $0 \leq \sigma<1,1 \leq p<q \leq \infty$, and $0 \leq 1 / p-1 / q<1-\sigma$. Assume that $f \in L^{p}[-\pi, \pi]$ and set

$$
h(x)=\int_{-\pi}^{\pi} f(y) \frac{d y}{|y-x|^{\sigma}}, \quad x \in[-\pi, \pi] .
$$

Then $h \in L^{q}[-\pi, \pi]$ and

$$
\|h\|_{L^{q}} \leq c\|f\|_{L^{p}}
$$

This lemma is well known and follows immediately from the Young inequality for convolutions.

The definition of the fractional integral immediately implies that if ψ is a 2π-periodic absolutely continuous function, then

$$
\begin{equation*}
\psi(x)=\frac{a_{0}(\psi)}{2}+I_{1} \psi^{\prime}(x) \tag{3.9}
\end{equation*}
$$

Let $D_{\alpha, \beta}(x, y)$ be defined by (2.7) (note that $D_{\alpha, \beta}(x, y)$ is even in each of variables $x, y)$.

Lemma 3.4

Let $-1 / 2<\alpha<1 / 2$ and $\beta>-1 / 2$. Assume that $f \in L^{1}[-\pi, \pi]$ is a $2 \pi-$ periodic function such that

$$
f(x)=0 \quad \text { for } \quad 2 \pi / 3 \leq|x| \leq \pi
$$

Set

$$
H(x)=\int_{|x|}^{\pi} f(y) D_{\alpha, \beta}(x, y) d y, \quad|x| \leq \pi
$$

Suppose that η is a 2π-periodic function, differentiable in $(-\pi, \pi)$, and

$$
\begin{equation*}
|\eta(x)| \leq 1,\left|\eta^{\prime}(x)\right| \leq 1 \quad \text { for all } \quad x \in(-\pi, \pi) \tag{3.10}
\end{equation*}
$$

Set $\psi=\eta H$ and extend ψ with the period 2π to the whole line. Then:
(1) if $f \in L^{p}[-\pi, \pi](1 \leq p<\infty), p \leq q \leq \infty$, and $1 / p-1 / q<1$, then $\psi \in L_{q}^{\alpha+1 / 2}$, and

$$
\begin{equation*}
\left\|D^{\alpha+1 / 2} \psi\right\|_{L^{q}} \leq c\|f\|_{L^{p}} \tag{3.11}
\end{equation*}
$$

(2) $\psi \in L^{\alpha+1 / 2}\left(\operatorname{Re} H^{1}\right)$, and

$$
\begin{equation*}
\left\|D^{\alpha+1 / 2} \psi\right\|_{\operatorname{Re} H^{1}} \leq c\|f\|_{L^{1}} \tag{3.12}
\end{equation*}
$$

(3) if $f \in \mathrm{BMO}$, then $\psi \in L_{\infty}^{\alpha+1 / 2}$, and

$$
\begin{equation*}
\left\|D^{\alpha+1 / 2} \psi\right\|_{L^{\infty}} \leq c\|f\|_{\text {BMO }} . \tag{3.13}
\end{equation*}
$$

Proof. Denote $\lambda=\alpha+1 / 2$; then $0<\lambda<1$. By virtue of Proposition 2.3,

$$
\begin{equation*}
\left|D_{\alpha, \beta}(x, y)\right| \leq c \quad \text { and } \quad\left|\frac{\partial D_{\alpha, \beta}}{\partial x}(x, y)\right| \leq c(y-x)^{\lambda-1} \tag{3.14}
\end{equation*}
$$

for $(x, y) \in \Omega$. This implies that H is absolutely continuous on $[-\pi, \pi]$. We have also that $H(x)=0$ if $2 \pi / 3 \leq|x| \leq \pi$. Thus, taking into account (3.10), we obtain that ψ is absolutely continuous on $[-\pi, \pi]$. By Proposition $2.3, D_{\alpha, \beta}(x, x)=0$ for $|x| \leq 2 \pi / 3$. Hence,

$$
\psi^{\prime}(x)=\eta^{\prime}(x) H(x)+\eta(x) \operatorname{sign} x \int_{|x|}^{\pi} f(y) \frac{\partial D_{\alpha, \beta}}{\partial x}(x, y) d y
$$

for almost all $x \in[-\pi, \pi]$. By (3.10) and (3.14), we get

$$
\begin{equation*}
\left|\psi^{\prime}(x)\right| \leq c \int_{|x|}^{\pi}|f(y)| \frac{d y}{(y-|x|)^{1-\lambda}}, \quad|x| \leq \pi . \tag{3.15}
\end{equation*}
$$

Further, by (3.9) and (3.3)

$$
\psi-\frac{a_{0}(\psi)}{2}=I_{1} \psi^{\prime}=I_{\lambda} \varphi, \quad \text { where } \quad \varphi=I_{1-\lambda} \psi^{\prime} \quad\left(a_{0}(\varphi)=0\right)
$$

Thus, we have $\varphi=D^{\alpha+1 / 2} \psi$.
Assume that $f \in L^{p}[-\pi, \pi](1 \leq p<\infty)$. Let $0 \leq 1 / p-1 / q<1$. Choose such $r \in[p, q]$ that $1 / p-1 / r<\lambda$ and $1 / r-1 / q<1-\lambda$. By (3.15) and Lemma 3.3,

$$
\begin{equation*}
\left\|\psi^{\prime}\right\|_{L^{r}} \leq c\|f\|_{L^{p}} \tag{3.16}
\end{equation*}
$$

Further, by (3.2),

$$
|\varphi(x)|=\left|I_{1-\lambda} \psi^{\prime}(x)\right| \leq c \int_{-\pi}^{\pi}\left|\psi^{\prime}(y)\right| \frac{d y}{|y-x|^{\lambda}} .
$$

Thus, applying Lemma 3.3 and (3.16), we get

$$
\|\varphi\|_{L^{q}} \leq c\left\|\psi^{\prime}\right\|_{L^{r}} \leq c^{\prime}\|f\|_{L^{p}}
$$

This implies (3.11).
Since $\|\varphi\|_{\operatorname{Re} H^{1}} \leq c\|\varphi\|_{q}$ for any $q>1$, we obtain also (3.12).
Finally, if $f \in \mathrm{BMO}$, then $f \in L^{p}$ for any $p<\infty$, and

$$
\|f\|_{L^{p}} \leq c\|f\|_{\text {BMO }}
$$

(see [6, p. 226]). Let $1<p<\infty$. Then, by (3.11),

$$
\|\varphi\|_{L^{\infty}} \leq c\|f\|_{L^{p}} \leq c^{\prime}\|f\|_{\mathrm{BMO}} .
$$

This estimate implies (3.13).

4. Transplantation theorems

In this section we obtain transplantation theorems for Jacobi polynomials in Re H^{1} and BMO. We derive these theorems using the approach applied in [11] to ultraspherical polynomials. The core of this approach is made up of the following lemmas proved therein.

Lemma 4.1

Let $f \in \operatorname{Re} H^{1}, 0<\lambda<1$, and

$$
\begin{equation*}
G(x)=\int_{|x|}^{\pi} f(y)\left(\frac{\sin y}{\cos x-\cos y}\right)^{1-\lambda} d y, \quad|x| \leq \pi . \tag{4.1}
\end{equation*}
$$

Suppose that η is a $2 \pi-$ periodic function, differentiable in $(-\pi, \pi)$, and

$$
\begin{equation*}
|\eta(x)| \leq 1,\left|\eta^{\prime}(x)\right| \leq 1 \quad \text { for all } \quad x \in(-\pi, \pi) . \tag{4.2}
\end{equation*}
$$

Then the function $\chi=\eta G$ belongs to $L^{\lambda}\left(\operatorname{Re} H^{1}\right)$ and

$$
\left\|D^{\lambda} \chi\right\|_{\operatorname{Re} H^{1}} \leq c\|f\|_{\operatorname{Re} H^{1}}
$$

Lemma 4.2

Let $f \in \mathrm{BMO}$ be an odd function such that

$$
f(x)=0 \quad \text { for } \quad 2 \pi / 3 \leq|x| \leq \pi .
$$

Let $0<\lambda<1$ and let G be defined by (4.1). Suppose that η is a $2 \pi-$ periodic function, differentiable in $(-\pi, \pi)$ and satisfying (4.2). Then the function $\chi=\eta G$ belongs to $L^{\lambda}(\mathrm{BMO})$ and

$$
\left\|D^{\lambda} \chi\right\|_{*} \leq c\|f\|_{*} .
$$

We observe that even for $\lambda<1$ the proofs of Lemmas 4.1 and 4.2 are rather long and complicated. Using these lemmas, we shall extend the results obtained in [11] for ultraspherical polynomials to the Jacobi polynomials $\varphi_{n}^{(\alpha, \beta)}$ for the values $\alpha, \beta \in$ $(-1 / 2,1 / 2)$.

As in [11], we first prove one-sided transplantation inequalities in $\operatorname{Re} H^{1}$ and BMO.
We use the notation (1.3) for Jacobi coefficients.

Proposition 4.3

Let $f \in \operatorname{Re} H^{1}$ and $\alpha, \beta \in(-1 / 2,1 / 2)$. Then the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n}^{(\alpha, \beta)}(f) \cos n x \tag{4.3}
\end{equation*}
$$

is the Fourier series of some function $\varphi \in \operatorname{Re} H^{1}$ such that

$$
\|\varphi\|_{\operatorname{Re} H^{1}} \leq c\|f\|_{\operatorname{Re} H^{1}}
$$

Proof. Let $\xi(x)$ be a continuous 2π-periodic function defined in $[-\pi, \pi]$ as follows:

$$
\xi(x)=\left\{\begin{array}{l}
1 \text { if }|x| \leq \pi / 3 \tag{4.4}\\
0 \quad \text { if } 2 \pi / 3 \leq|x| \leq \pi \\
\text { linear in }[\pi / 3,2 \pi / 3] \text { and }[-2 \pi / 3,-\pi / 3]
\end{array}\right.
$$

Then

$$
\begin{equation*}
\left|\xi\left(x^{\prime}\right)-\xi\left(x^{\prime \prime}\right)\right| \leq \frac{3}{\pi}\left|x^{\prime}-x^{\prime \prime}\right| \tag{4.5}
\end{equation*}
$$

Let $u(x)=f(x) \xi(x)$. Then $u(x)=0$ for $2 \pi / 3 \leq|x| \leq \pi$. Furthermore, for the conjugate function \tilde{u}, we have

$$
\begin{aligned}
|\tilde{u}(x)| & =\frac{1}{\pi}\left|\mathrm{v} \cdot \mathrm{p} \cdot \int_{-\pi}^{\pi} \frac{\xi(x+t) f(x+t)}{2 \tan (t / 2)} d t\right| \\
& \leq \frac{3}{\pi^{2}} \int_{-\pi}^{\pi}|f(x+t)| d t+\xi(x)|\tilde{f}(x)| \leq \frac{3}{\pi^{2}}| | f \|_{L^{1}}+|\tilde{f}(x)|
\end{aligned}
$$

This implies that $u \in \operatorname{Re} H^{1}$ and

$$
\begin{equation*}
\|u\|_{\operatorname{Re} H^{1}} \leq 3\|f\|_{\operatorname{Re} H^{1}} \tag{4.6}
\end{equation*}
$$

Setting

$$
F(x)=\int_{|x|}^{\pi} u(y) J_{\alpha, \beta}(x, y) d y \quad(|x| \leq \pi)
$$

we have that $F=G+H$, where

$$
G(x)=\int_{|x|}^{\pi} u(y) U_{\alpha+1 / 2}(x, y) d y \quad \text { and } \quad H(x)=\int_{|x|}^{\pi} u(y) D_{\alpha, \beta}(x, y) d y
$$

(see (2.4), (2.6), and (2.7)). Further, let $\gamma=(\alpha+\beta+1) / 2$. Denote

$$
\chi(x)=G(x) \cos \gamma x \quad \text { and } \quad \psi(x)=H(x) \cos \gamma x \quad(-\pi<x \leq \pi) .
$$

By Lemma 4.1, $\chi \in L^{\alpha+1 / 2}\left(\operatorname{Re} H^{1}\right)$ and

$$
\left\|D^{\alpha+1 / 2} \chi\right\|_{\operatorname{Re} H^{1}} \leq c\|u\|_{\operatorname{Re} H^{1}} \leq 3 c\|f\|_{\operatorname{Re} H^{1}}
$$

(see (4.6)). Further, by Lemma 3.4, $\psi \in L^{\alpha+1 / 2}\left(\operatorname{Re} H^{1}\right)$ and

$$
\left\|D^{\alpha+1 / 2} \psi\right\|_{\operatorname{Re} H^{1}} \leq c\|u\|_{\operatorname{Re} H^{1}} \leq 3 c\|f\|_{\operatorname{Re} H^{1}}
$$

Using these inequalities, we obtain that the function $F_{1}(x)=F(x) \cos \gamma x$ belongs to $L^{\alpha+1 / 2}\left(\operatorname{Re} H^{1}\right)$ and

$$
\left\|D^{\alpha+1 / 2} F_{1}\right\|_{\operatorname{Re} H^{1}} \leq c\|f\|_{\operatorname{Re} H^{1}}
$$

Similarly, setting $F_{2}(x)=F(x) \sin \gamma x$, we have that $F_{2} \in L^{\alpha+1 / 2}\left(\operatorname{Re} H^{1}\right)$ and

$$
\left\|D^{\alpha+1 / 2} F_{2}\right\|_{\operatorname{Re} H^{1}} \leq c\|f\|_{\operatorname{Re} H^{1}}
$$

Thus, by Theorem 3.1, the series

$$
\sum_{n=1}^{\infty} a_{n}^{(\alpha, \beta)}(u) \cos n x
$$

is the Fourier series of a function $\mu \in \operatorname{Re} H^{1}$ such that

$$
\|\mu\|_{\operatorname{Re} H^{1}} \leq c\left(\left\|D^{\alpha+1 / 2} F_{1}\right\|_{\operatorname{Re} H^{1}}+\left\|D^{\alpha+1 / 2} F_{2}\right\|_{\operatorname{Re} H^{1}}\right) \leq c^{\prime}\|f\|_{\operatorname{Re} H^{1}}
$$

Set now $v(x)=f(x)-u(x)$. By (4.6),

$$
\|v\|_{\operatorname{Re} H^{1}} \leq 4\|f\|_{\operatorname{Re} H^{1}}
$$

Let $\bar{v}(x)=v(\pi-x)$. Clearly, $\|\bar{v}\|_{\operatorname{Re} H^{1}}=\|v\|_{\operatorname{Re} H^{1}}$. Observe also that

$$
\begin{equation*}
\bar{v}(x)=0 \quad \text { for } \quad 2 \pi / 3 \leq|x| \leq \pi . \tag{4.7}
\end{equation*}
$$

Further, we have

$$
\varphi_{n}^{(\alpha, \beta)}(\pi-x)=(-1)^{n} \varphi_{n}^{(\beta, \alpha)}(x)
$$

(see (1.1) and [14, (4.1.3)]). Thus,

$$
\begin{equation*}
a_{n}^{(\alpha, \beta)}(v)=(-1)^{n} a_{n}^{(\beta, \alpha)}(\bar{v}) . \tag{4.8}
\end{equation*}
$$

Taking into account (4.7) and applying the same reasonings as above, we obtain that there exists a function $\bar{\nu} \in \operatorname{Re} H^{1}$ such that $\|\bar{\nu}\|_{\operatorname{Re} H^{1}} \leq c\|f\|_{\operatorname{Re} H^{1}}$ and

$$
\begin{equation*}
a_{n}(\bar{\nu})=a_{n}^{(\beta, \alpha)}(\bar{v}) \quad(n \in \mathbb{N}), \quad a_{0}(\bar{\nu})=0 . \tag{4.9}
\end{equation*}
$$

Set $\nu(x)=\bar{\nu}(\pi-x)$. Then $\|\nu\|_{\operatorname{Re} H^{1}} \leq c\|f\|_{\operatorname{Re} H^{1}}$. Since $a_{n}(\nu)=(-1)^{n} a_{n}(\bar{\nu})$, by (4.8) and (4.9), we have

$$
a_{n}(\nu)=a_{n}^{(\alpha, \beta)}(v) \quad(n \in \mathbb{N}), \quad a_{0}(\nu)=0
$$

Finally, set $\varphi=\mu+\nu$. Then $\|\varphi\|_{\operatorname{Re} H^{1}} \leq c \mid\|f\|_{\operatorname{Re} H^{1}}$. We have $f=u+v$ and $a_{n}^{(\alpha, \beta)}(f)=$ $a_{n}^{(\alpha, \beta)}(u)+a_{n}^{(\alpha, \beta)}(v)$. Thus, series (4.3) is the Fourier series of φ.

Proposition 4.4

Let $f \in \mathrm{BMO}$ be an odd function and $\alpha, \beta \in(-1 / 2,1 / 2)$. Then the series (4.3) is the Fourier series of some function $\varphi \in \mathrm{BMO}$ such that

$$
\|\varphi\|_{*} \leq c\|f\|_{*} .
$$

Proof. The proof is the same as in Proposition 4.3. We need only a few additional remarks. Let ξ be defined by (4.4) and set $u=f \xi$. Since ξ is even, u is odd. Thus, we have that

$$
\begin{equation*}
\|u\|_{\mathrm{BMO}}=\|u\|_{*} \tag{4.10}
\end{equation*}
$$

(see (1.2)). Further,

$$
\begin{equation*}
\|u\|_{*} \leq c\|f\|_{*} . \tag{4.11}
\end{equation*}
$$

Indeed, let I be an interval, $|I| \leq 2 \pi$. Then, using (4.5), we have

$$
\begin{aligned}
\frac{1}{|I|} \int_{I}\left|u(x)-u_{I}\right| d x & \leq \frac{1}{|I|^{2}} \int_{I} \int_{I}|u(x)-u(y)| d x d y \\
& \leq \frac{1}{|I|^{2}} \int_{I} \int_{I}|f(x)-f(y)| d x d y \\
& +\frac{1}{|I|^{2}} \int_{I} \int_{I}|f(y)||\xi(x)-\xi(y)| d x d y \\
& \leq 2| | f\left\|_{*}+\int_{-\pi}^{\pi}|f(y)| d y \leq 2(\pi+1)\right\| f \|_{*}
\end{aligned}
$$

(we have used the condition that f is odd). This implies (4.11).
Taking into account (4.10) and (4.11), and applying Lemmas 4.2 and 3.4, one can complete the proof exactly as in Proposition 4.3.

Remark 4.5 The proofs of Propositions 4.3 and 4.4 are based on the use of Lemmas 4.1, 4.2 , and 3.4. It is easy to extend Lemma 3.4 on the values $\alpha \geq 1 / 2$. However, the extension of Lemmas 4.1 and 4.2 to all $\lambda>0$ is an open problem which may require complicated techniques.

Applying Propositions 4.3 and 4.4, and using duality arguments, we obtain the following theorems.

Theorem 4.6

Let $\alpha, \beta \in(-1 / 2,1 / 2)$. Then:
(i) if $f \in \operatorname{Re} H^{1}$, then the series

$$
\sum_{n=1}^{\infty} a_{n}^{(\alpha, \beta)}(f) \cos n x
$$

is the Fourier series of some function $\varphi \in \operatorname{Re} H^{1}$ such that

$$
\|\varphi\|_{\operatorname{Re} H^{1}} \leq c\|f\|_{\operatorname{Re} H^{1}}
$$

(ii) if $\varphi \in \operatorname{Re} H^{1}$ and

$$
\sum_{n=1}^{\infty} a_{n}(\varphi) \cos n x
$$

is its Fourier series, then there exists an odd function $f \in \operatorname{Re} H^{1}$ such that

$$
a_{n}^{(\alpha, \beta)}(f)=a_{n}(\varphi) \quad(n \in \mathbb{N})
$$

and

$$
\|f\|_{\operatorname{Re} H^{1}} \leq c\|\varphi\|_{\mathrm{Re} H^{1}} .
$$

Theorem 4.7

Let $\alpha, \beta \in(-1 / 2,1 / 2)$. Then:
(i) if $f \in \mathrm{BMO}$ is an odd function, then the series

$$
\sum_{n=1}^{\infty} a_{n}^{(\alpha, \beta)}(f) \cos n x
$$

is the Fourier series of some function $\varphi \in \mathrm{BMO}$ such that

$$
\|\varphi\|_{*} \leq c\|f\|_{*}
$$

(ii) if $\varphi \in \mathrm{BMO}$ and

$$
\sum_{n=1}^{\infty} a_{n}(\varphi) \cos n x
$$

is the Fourier series of φ, then there exists an odd function $f \in \mathrm{BMO}$ such that

$$
a_{n}^{(\alpha, \beta)}(f)=a_{n}(\varphi) \quad(n \in \mathbb{N})
$$

and

$$
\|f\|_{*} \leq c\|\varphi\|_{*} .
$$

We omit the proofs of Theorems 4.6 and 4.7 because they are exactly the same as ones given in [11, Section 5] for ultraspherical polynomials.

We emphasize that the statement (i) in Theorem 4.7 fails if f is not odd. Indeed, failure of this statement for even functions was proved in [11] for the case $\alpha=\beta$ (see [11], Section 5, Remark 5; observe that it should be written there that the function $f-f_{1}$ is equal to $c u_{0}^{(\lambda)}$, where c is a constant). In the general case the proof is the same.

Acknowledgement. This research was started during the sojourn in Karlstad of the second-named author, who wants to thank Department of Mathematics of Karlstad University for the hospitality.

References

1. R. Askey, A transplantation theorem for Jacobi series, Illinois J. Math. 13 (1969), 583-590.
2. R. Askey and S. Wainger, A transplantation theorem between ultraspherical series, Illinois J. Math. 10 (1966), 322-344.
3. R. Askey and S. Wainger, On the behavior of special classes of ultraspherical expansions I, J. Analyse Math. 15 (1965), 193-220.
4. Ó. Ciaurri, A. Nowak, and K. Stempak, Jacobi transplantation revisited, Math. Z. 257 (2007), 355-380.
5. A. Erdélyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi, Higher Transcendental Functions II, New York-Toronto-London, 1953.
6. J.B. Garnett, Bounded Analytic Functions, Graduate Texts in Mathematics 236, Springer, New York, 2007.
7. G. Gasper, Formulas of the Dirichlet-Mehler type, Fractional Calculus and its Applications (Proc. Internat. Conf., Univ. New Haven, West Haven, Conn., 1974), 207-215, Lecture Notes in Math. 457, Springer Berlin, 1975.
8. J.E. Gilbert, Maximal theorems for some orthogonal series I, Trans. Amer. Math. Soc. 145 (1969), 495-515.
9. J.L. Guadalupe and V.I. Kolyada, A transplantation theorem for ultraspherical polynomials at critical index, Studia Math. 147 (2001), 51-72.
10. Y. Kanjin, A transplantation theorem for the Hankel transform on the Hardy space, Tohoku Math. J. (2) 57 (2005), 231-246.
11. V.I. Kolyada, Transplantation theorems for ultraspherical polynomials in $\operatorname{Re} H^{1}$ and BMO, Constr. Approx. 22 (2005), 149-191.
12. A. Miyachi, Transplantation theorem for Jacobi series in weighted Hardy spaces II, Math. Ann. 336 (2006), 111-153.
13. B. Muckenhoupt, Transplantation theorems and multiplier theorems for Jacobi series, Mem. Amer. Math. Soc. 64 (1986), 356.
14. G. Szegö, Orthogonal Polynomials, 4th ed. American Mathematical Society, Colloquium Publications 23, American Mathematical Society, Providence, R.I., 1975.
15. A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, Inc., New York, 1986.
16. A. Zygmund, Trigonometric Series I, II, Cambridge University Press, London-New York 1968.
