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Abstract

We prove that transplantations for Jacobi polynomials can be derived from repre-
sentation of a special integral operator as fractional Weyl’s integral. Furthermore,
we show that, in a sense, Jacobi transplantation can be reduced to transplanta-
tions for ultraspherical polynomials. As an application of these results, we obtain
transplantation theorems for Jacobi polynomials in ReH1 and BMO. The pa-
per gives an extension of the results obtained for ultraspherical polynomials by
the first named author (MR2148530 (2006a:42045)).

1. Introduction

Let Pα,βn (z) be the Jacobi polynomial of degree n and order (α, β), where α, β > −1
(see [14, 4.1]). The Jacobi polynomials are orthogonal on (−1, 1) with respect to the
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measure (1− z)α(1 + z)β dz and∫ 1

−1
[P (α,β)
n (z)]2(1− z)α(1 + z)β dz

=
2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)

(2n+ α+ β + 1)Γ(n+ 1)Γ(n+ α+ β + 1)
= [s(α,β)n ]2

(see [14, (4.3.3), p.68]). The functions

ϕ(α,β)
n (y) =

2(α+β+1)/2P
(α,β)
n (cos y)(sin y/2)α+1/2(cos y/2)β+1/2

s
(α,β)
n

(1.1)

form an orthonormal system on (0, π) with respect to Lebesgue measure. For α = β
we obtain the system of ultraspherical polynomials

u(λ)n (y) = ϕ(α,α)
n (y), λ = α+

1

2
.

Transplantations of coefficients from one orthonormal system to another have a
long history. One of the first transplantation theorems was obtained by Askey and
Wainger [2] for ultraspherical polynomials. This theorem was extended by Askey [1]
to general Jacobi series. Later on, the boundedness of the Jacobi transplantation
operator in weighted Lp−spaces (1 < p <∞) was studied in [8] and [13] (see also [4]).
It is well known that this operator fails to be bounded in L1 and L∞ (see [3]). Thus,
it is natural to ask whether transplantation holds in the spaces ReH1 and BMO. This
problem was first studied in [9, 11] for ultraspherical polynomials. Afterwards, sharp
results on Jacobi transplantation for weighted Hardy spaces were obtained in [12]. We
mention also the work [10] in which a transplantation theorem for the Hankel transform
in the space ReH1(R) was proved.

Recall that the real Hardy space ReH1 is the space of all 2π–periodic functions
ϕ ∈ L1[0, 2π] for which the conjugate function ϕ̃ also belongs to L1[0, 2π]. The norm
in ReH1 is defined by

‖ϕ‖ReH1 = ‖ϕ‖L1 + ‖ϕ̃‖L1 .

The space BMO consists of all 2π–periodic functions f ∈ L1[0, 2π] such that

‖f‖∗ ≡ sup
I

1

|I|

∫
I
|f(x)− fI | dx <∞, fI =

∫
I
f(t) dt,

where the supremum is taken over all intervals I ⊂ R. We set

‖f‖BMO =

∣∣∣∣∫ 2π

0
f(x) dx

∣∣∣∣+ ‖f‖∗. (1.2)

By the Spanne–Stein theorem [15, p. 207], for any function f ∈ BMO its conjugate
function f̃ also belongs to BMO, and ‖f̃‖∗ ≤ c‖f‖∗.

In [11], there were proved two-sided transplantation theorems in the spaces ReH1

and BMO betweeen ultraspherical series and trigonometric series. With the use of
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Mehler’s integral representation of ultraspherical polynomials, the proofs were reduced
to representation of a special integral operator as fractional Weyl’s integral.

In this paper we show that the approach developed in [11] can be extended to
Jacobi polynomials. We shall give a brief description of our main results.

Let f ∈ L1[0, π] and α, β > −1/2. The Fourier-Jacobi coefficients of f are defined
by

a(α,β)n (f) =

∫ π

0
f(y)ϕ(α,β)

n (y) dy. (1.3)

We will apply a Mehler type formula for Jacobi polynomials, to obtain that

a(α,β)n (f) = t(α,β)n

∫ π

0
Kα,β(f ;x) cos(n+ γ)x dx (γ = (α+ β + 1)/2),

where

Kα,β(f ;x) =

∫ π

|x|
f(y)Jα,β(x, y) dy (|x| ≤ π) (1.4)

and Jα,β(x, y) is a special kernel. In the case α = β this kernel has a comparatively
simple form,

Jα,α(x, y) =

(
sin y

cosx− cos y

)1/2−α
, 0 ≤ x < y ≤ π.

We show explicitly that under quite weak conditions on a function space X, the
transplantation from Jacobi polynomials to the trigonometric system in X can be
immediately derived from representation of the operator (1.4) as fractional Weyl’s
integral (see Theorem 3.1).

It is clear that if supp f ⊂ [0, 2π/3], then the value of β does not have an essential

influence on the behaviour of a
(α,β)
n (f). Roughly speaking, one can expect that in this

case the Jacobi coefficients a
(α,β)
n (f) behave as ultraspherical coefficients a

(α,α)
n (f).

We give a quantitative form of this phenomenon in terms of Jα,β(x, y). Namely, we
prove that for 0 ≤ x < y ≤ 2π/3 the ultraspherical kernel Jα,α(x, y) gives a good
approximation of the Jacobi kernel Jα,β(x, y) (see Proposition 2.3 below).

We show that these results and representations of the operator (1.4) (with α = β)
proved in [11] readily yield transplantation theorems in ReH1 and BMO for Jacobi
polynomials in the range α, β ∈ (−1/2, 1/2) (see Theorems 4.6 and 4.7 below).

2. Dirichlet–Mehler type formula and Jacobi kernels

We will use a Dirichlet–Mehler type integral representation for Jacobi polynomials.
This representation was first found in [7].

Let F (a, b; c; z) be the Gauss hypergeometric function (see [14, Chapter 4]),

F (a, b; c; z) = 1 +

∞∑
n=1

(a)n(b)n
(c)n

zn

n!
, (2.1)

where (µ)n = µ(µ+ 1) · · · (µ+ n− 1). Note that for µ > 0 and n ∈ N we have

(µ)n =
Γ(n+ µ)

Γ(µ)
and Γ(n+ µ) = Γ(n)[nµ +O(nµ−1)]. (2.2)
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Lemma 2.1

For α > −1/2, β > −1 and 0 < y < π, we have the integral representation

P
(α,β)
n (cos y)

P
(α,β)
n (1)

=
2(α+β+1)/2Γ(α+ 1)

Γ(1/2)Γ(α+ 1/2)
(1− cos y)−α

∫ y

0
cos(n+ (α+ β + 1)/2)x

× (cosx− cos y)α−1/2

(1 + cosx)(α+β)/2
F

(
α+ β + 1

2
,
α+ β

2
;α+

1

2
;
cosx− cos y

1 + cosx

)
dx.

Note that (see [14, (4.1.1), p. 58])

P (α,β)
n (1) =

(
n+ α
n

)
.

Thus, the functions (1.1) can be written as

ϕ(α,β)
n (y) = t(α,β)n

∫ y

0
Jα,β(x, y) cos

(
n+

α+ β + 1

2

)
x dx, (2.3)

where

Jα,β(x, y) =

(
sin y

cosx− cos y

)1/2−α
Gα,β(x, y), |x| < |y| ≤ π, (2.4)

Gα,β(x, y) =

(
1 + cos y

1 + cosx

)α+β/2
F

(
α+ β + 1

2
,
α+ β

2
;α+

1

2
;
cosx− cos y

1 + cosx

)
,

and
t(α,β)n = cα,βn

α+1/2 +O(nα−1/2). (2.5)

If α = β, denote λ = α + 1/2. In this case (2.3) is the Mehler formula for
ultraspherical polynomials (see [5, p. 177]). We set for λ > 0,

Uλ(x, y) =

(
sin y

cosx− cos y

)1−λ
, |x| < |y| ≤ π. (2.6)

It follows from (2.1) that Gα,α(x, y) = 1 and Jα,α(x, y) = Uα+1/2(x, y).
In what follows we denote

Ω =
{

(x, y) : 0 ≤ x < y ≤ 2π/3
}
.

Set also
Dα,β(x, y) = Jα,β(x, y)− Uα+1/2(x, y), |x| < |y| ≤ π. (2.7)

Our main result in this section is that the derivatives of Dα,β(x, y) with respect to x
in Ω are comparatively small. First we prove the following lemma.

Lemma 2.2

Let λ > 0 and let ν be the least integer such that ν ≥ λ. Set

ψ(x, y) = (cosx− cos y)λ(sin y)1−λ, (x, y) ∈ Ω.

Then ∣∣∣∣∂rψ∂xr (x, y)

∣∣∣∣ ≤ Cλy(y − x)λ−r (2.8)

for any (x, y) ∈ Ω and 0 ≤ r ≤ ν.
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Proof. We have that

ψ(x, y) = 2λ
(

sin
y − x

2

)λ(
sin

y + x

2

)λ
(sin y)1−λ.

For r = 0, (2.8) is obvious. Set ω(t) = (sin t)λ. Then

ω(t) = tλ
(
1 + g(t)

)λ
,

where

g(t) =

∞∑
k=1

(−1)k
t2k

(2k + 1)!
.

It is clear that g ∈ C∞[0, 2π/3]. Moreover,

1 + g(t) =
sin t

t
≥ 1

4
, 0 ≤ t ≤ 2π

3
.

It follows easily that ∣∣∣∣ drdtrω(t)

∣∣∣∣ ≤ cλtλ−r, 0 < t ≤ 2π/3, (2.9)

for any 1 ≤ r ≤ ν. Applying (2.9) and the Leibniz formula, we obtain∣∣∣∣∂rψ∂xr (x, y)

∣∣∣∣ ≤ cλy1−λ r∑
k=0

(
r
k

)
(y − x)λ−k(y + x)λ−r+k

≤ 2rcλy
1−λ(y − x)λ−r(y + x)λ ≤ c′λy(y − x)λ−r

for any (x, y) ∈ Ω and any 1 ≤ r ≤ ν. �

Let Dα,β(x, y) be defined by (2.7).

Proposition 2.3

Let α, β > −1/2. Suppose that ν is the least integer such that ν ≥ α+ 1/2. Then∣∣∣∣∂rDα,β

∂xr
(x, y)

∣∣∣∣ ≤ cα,β y(y − x)α−r+1/2, (2.10)

for any 0 ≤ r ≤ ν and (x, y) ∈ Ω.

Proof. The functions (1− z)(α+β)/2 and

Fα,β(z) = F

(
α+ β + 1

2
,
α+ β

2
;α+

1

2
; z

)
are both analytic in |z| < 1. Set g(z) = (1− z)(α+β)/2Fα,β(z). Then

g(z) = 1 +
∞∑
k=1

γk(α, β)zk, (2.11)
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where the series at the right hand side has radius of convergence at least 1. Thus, by
the Cauchy-Hadamard formula,

lim
k→∞

k
√
|γk(α, β)| ≤ 1. (2.12)

Denote

ζ(x, y) =
cosx− cos y

1 + cosx
, (x, y) ∈ Ω.

Then

0 ≤ ζ(x, y) ≤ 3

4
, (x, y) ∈ Ω. (2.13)

Further, we have Gα,β(x, y) = g(ζ(x, y)). Thus, by (2.11) and (2.13), for any (x, y) ∈ Ω

Gα,β(x, y) = 1 +

∞∑
k=1

γk(α, β)ζ(x, y)k.

Now, we get

Dα,β(x, y) = Uα+1/2(x, y)(Gα,β(x, y)− 1)

= Uα+1/2(x, y)
∞∑
k=1

γk(α, β)ζk(x, y)

= (sin y)1/2−α(cosx− cos y)α+1/2Φα,β(x, y),

where

Φα,β(x, y) = (1 + cosx)−1
∞∑
k=1

γk(α, β)ζk−1(x, y).

It is obvious that ∣∣∣∣ ∂r∂xr ζ(x, y)

∣∣∣∣ ≤ cν , (x, y) ∈ Ω,

for any 1 ≤ r ≤ ν, where cν depends only on ν. It easily follows from this estimate
that ∣∣∣∣ ∂r∂xr ζk(x, y)

∣∣∣∣ ≤ c′ν , (x, y) ∈ Ω,

for any 1 ≤ k ≤ ν, and ∣∣∣∣ ∂r∂xr ζk(x, y)

∣∣∣∣ ≤ c′νkrζk−r, (x, y) ∈ Ω,

for any k > ν, where 1 ≤ r ≤ ν. Thus, applying (2.12) and (2.13), we obtain that∣∣∣∣ ∂r∂xrΦα,β(x, y)

∣∣∣∣ ≤ cα,β, (x, y) ∈ Ω,

for any 0 ≤ r ≤ ν. Using this estimate and Lemma 2.2, we get (2.10). �
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3. Weyl fractional integrals

We recall the definition of Weyl fractional integrals. Let 0 < λ < 1. Set

(ik)λ = |k|λ exp

(
λπi

2
sign k

)
(k ∈ Z, k 6= 0).

Further, denote

Ψλ(t) =
∑

n∈Z,n6=0

eint

(in)λ
= 2

∞∑
k=1

cos(kt− λπ/2)

kλ
. (3.1)

These series converge for all t ∈ (0, 2π) and Ψλ ∈ L1[0, 2π]; moreover,

|Ψλ(t)| ≤ cλ|t|λ−1, 0 < |t| ≤ π, (3.2)

(see [16, Chapter 12, § 8]).
Let ϕ ∈ L1[0, 2π] be a 2π–periodic function. The Weyl fractional integral of order

λ > 0 of the function ϕ is defined by the equality

Iλϕ(x) =
1

2π

∫ 2π

0
Ψλ(x− t)ϕ(t) dt.

The last integral converges absolutely for almost all x. Moreover, if ϕ ∈ Lp[0, 2π] (1 ≤
p ≤ ∞), then by (3.2) and Minkowski inequality,

‖Iλϕ‖Lp ≤ c‖ϕ‖Lp .

It follows from (3.1) that

Iλ(Iµϕ) = Iλ+µϕ (λ, µ > 0). (3.3)

Let X be a linear normed space of 2π−periodic functions. In what follows we
assume that X satisfies the following conditions:

(i) X ⊂ L1[0, 2π] and there exists a constant cX such that

||f ||L1 ≤ cX ||f ||X for any f ∈ X;

(ii) if f ∈ X and g(x) = f(−x), then g ∈ X and ||g||X ≤ cX ||f ||X ;

(iii) if γ = {γn}n∈N is a bounded sequence, and

∞∑
n=1

(an cosnx+ bn sinnx) (3.4)

is the Fourier series of a function f ∈ X, then the series

∞∑
n=1

γn
n

(an cosnx+ bn sinnx) (3.5)
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is the Fourier series of some function g ∈ X, and ||g||X ≤ c||f ||X , where c depends
only on X and γ.

We observe that the spaces Lp[0, 2π] (1 ≤ p ≤ ∞), ReH1, BMO satisfy these
conditions. Indeed, properties (i) and (ii) are obvious. Further, let ||γ||L∞ = supn |γn|.
If f ∈ Lp[0, 2π] (1 ≤ p < 2), and (3.4) is the Fourier series of f , then( ∞∑

n=1

(a2n + b2n)
γ2n
n2

)1/2

≤ ||γ||L∞ ||f ||L1 .

Thus, (3.5) is the Fourier series of some function g ∈ L2[0, 2π] and ||g||L2 ≤
||γ||L∞ ||f ||L1 . In particular, this implies that ||g||ReH1 ≤ c||γ||L∞ ||f ||L1 . Further, if
f ∈ Lp[0, 2π] (2 ≤ p ≤ ∞), then

∞∑
n=1

(
|an|+ |bn|

)γn
n
≤ c||γ||L∞ ||f ||L2 ≤ c′||γ||L∞ ||f ||Lp .

Hence, (3.5) is the Fourier series of some function g ∈ L∞[0, 2π] and ||g||L∞ ≤
c||γ||L∞ ||f ||Lp . This implies also that ||g||∞ ≤ c||γ||L∞ ||f ||BMO.

For any 2π−periodic function f ∈ L1[−π, π] we henceforth denote

an(f) =
1

π

∫ π

−π
f(x) cosnx dx, bn(f) =

1

π

∫ π

−π
f(x) sinnx dx

(n = 0, 1, ...).
For λ > 0, we denote by Lλ(X) the class of all functions f ∈ L1[0, 2π] that can

be represented a.e. in the form

f(x) =
a0(f)

2
+ Iλϕ(x),

where ϕ ∈ X and a0(ϕ) = 0. The function ϕ is defined uniquely. We denote ϕ = Dλf.
Set also

‖f‖Lλ(X) =
|a0(f)|

2
+ ‖ϕ‖X .

If X = Lp[−π, π] (1 ≤ p ≤ ∞), then we write Lλ(X) = Lλp .
The following theorem shows that transplantation theorems follow directly from

representation of the operator (1.4) as Weyl’s integral. We use notations (1.3)
and (2.4).

Theorem 3.1

Let α, β > −1/2, α + 1/2 6∈ N, and let γ = (α + β + 1)/2. Let a space X satisfy
the conditions (i) - (iii). Let f ∈ X. Set

F (x) =

∫ π

|x|
f(y)Jα,β(x, y) dy (|x| ≤ π),

F1(x) = F (x) cos γx, F2(x) = F (x) sin γx (−π < x ≤ π)
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and extend F1 and F2 to the whole line with the period 2π. Assume that F1 and F2

belong to Lα+1/2(X). Then the series

∞∑
n=1

a(α,β)n (f) cosnx and
∞∑
n=1

a(α,β)n (f) sinnx (3.6)

are the Fourier series of some functions ϕ1, ϕ2 ∈ X such that

||ϕ1||X + ||ϕ2||X ≤ c
(
||Dα+1/2F1||X + ||Dα+1/2F2||X

)
.

Proof. From (1.3) and (2.3), for any n ∈ N,

a(α,β)n (f) = t(α,β)n

∫ π

0
F (x) cos(n+ γ)x dx (3.7)

=
π

2
t(α,β)n

[
an(F1)− bn(F2)

]
.

Let λ = α+ 1/2. By our assumption, there exist functions g1, g2 ∈ X such that

F1(x) =
a0(F1)

2
+

1

2π

∫ 2π

0
Ψλ(x− t)g1(t) dt,

F2(x) =
1

2π

∫ 2π

0
Ψλ(x− t)g2(t) dt,

and a0(g1) = a0(g2) = 0.
Since F1 is even, from (3.1) we obtain that

nλan(F1) = an(g1) cos(λπ/2)− bn(g1) sin(λπ/2)

and
bn(g1) cos(λπ/2) + an(g1) sin(λπ/2) = 0.

Thus,

an(F1) =
an(g1)

nλ cos(λπ/2)
, n ∈ N.

Similarly, since F2 is odd, we have that

bn(F2) =
an(g2)

nλ sin(λπ/2)
, n ∈ N.

Set

g0(x) =
1

2

(
g1(x) + g1(−x)

cos(λπ/2)
− g2(x) + g2(−x)

sin(λπ/2)

)
.

Then g0 is an even function and a0(g0) = 0,

an(g0) = nλ
[
an(F1)− bn(F2)

]
, n ∈ N.

Moreover, by the property (ii), g0 ∈ X and

||g0||X ≤ c
(
||g1||X + ||g2||X

)
. (3.8)
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By (3.7) and (2.5),

a(α,β)n (f) =
π

2
t(α,β)n n−λan(g0) =

(
cα,β +

γn
n

)
an(g0), n ∈ N,

where {γn} is a bounded sequence. Applying property (iii) and (3.8), we obtain that
the first series in (3.6) is the Fourier series of a function ϕ1 ∈ X such that

‖ϕ1||X ≤ c
(
||g1||X + ||g2||X

)
.

Similarly, using the equalities

an(F1) = − bn(g1)

nλ sin(λπ/2)
, bn(F2) =

bn(g2)

nλ cos(λπ/2)
, n ∈ N,

we obtain that the second series in (3.6) is the Fourier series of a function ϕ2 ∈ X for
which

‖ϕ2||X ≤ c
(
||g1||X + ||g2||X

)
. �

Remark 3.2 The statement of Theorem 3.1 may fail if α+1/2 ∈ N. However, it remains
true if we assume, in addition, that the conjugate function operator is bounded in X.

Lemma 3.3

Let 0 ≤ σ < 1, 1 ≤ p < q ≤ ∞, and 0 ≤ 1/p − 1/q < 1 − σ. Assume that
f ∈ Lp[−π, π] and set

h(x) =

∫ π

−π
f(y)

dy

|y − x|σ
, x ∈ [−π, π].

Then h ∈ Lq[−π, π] and
‖h‖Lq ≤ c‖f‖Lp .

This lemma is well known and follows immediately from the Young inequality for
convolutions.

The definition of the fractional integral immediately implies that if ψ is a
2π−periodic absolutely continuous function, then

ψ(x) =
a0(ψ)

2
+ I1ψ

′(x). (3.9)

Let Dα,β(x, y) be defined by (2.7) (note that Dα,β(x, y) is even in each of vari-
ables x, y).

Lemma 3.4

Let −1/2 < α < 1/2 and β > −1/2. Assume that f ∈ L1[−π, π] is a 2π−periodic
function such that

f(x) = 0 for 2π/3 ≤ |x| ≤ π.

Set

H(x) =

∫ π

|x|
f(y)Dα,β(x, y) dy, |x| ≤ π.
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Suppose that η is a 2π−periodic function, differentiable in (−π, π), and

|η(x)| ≤ 1, |η′(x)| ≤ 1 for all x ∈ (−π, π). (3.10)

Set ψ = ηH and extend ψ with the period 2π to the whole line. Then:

(1) if f ∈ Lp[−π, π] (1 ≤ p < ∞), p ≤ q ≤ ∞, and 1/p − 1/q < 1, then ψ ∈ Lα+1/2
q ,

and

‖Dα+1/2ψ‖Lq ≤ c‖f‖Lp ; (3.11)

(2) ψ ∈ Lα+1/2(ReH1), and

‖Dα+1/2ψ‖ReH1 ≤ c‖f‖L1 ; (3.12)

(3) if f ∈ BMO, then ψ ∈ Lα+1/2
∞ , and

‖Dα+1/2ψ‖L∞ ≤ c‖f‖BMO. (3.13)

Proof. Denote λ = α+ 1/2; then 0 < λ < 1. By virtue of Proposition 2.3,

|Dα,β(x, y)| ≤ c and

∣∣∣∣∂Dα,β

∂x
(x, y)

∣∣∣∣ ≤ c(y − x)λ−1 (3.14)

for (x, y) ∈ Ω. This implies that H is absolutely continuous on [−π, π]. We have also
that H(x) = 0 if 2π/3 ≤ |x| ≤ π. Thus, taking into account (3.10), we obtain that ψ
is absolutely continuous on [−π, π]. By Proposition 2.3, Dα,β(x, x) = 0 for |x| ≤ 2π/3.
Hence,

ψ′(x) = η′(x)H(x) + η(x) signx

∫ π

|x|
f(y)

∂Dα,β

∂x
(x, y) dy

for almost all x ∈ [−π, π]. By (3.10) and (3.14), we get

|ψ′(x)| ≤ c
∫ π

|x|
|f(y)| dy

(y − |x|)1−λ
, |x| ≤ π. (3.15)

Further, by (3.9) and (3.3)

ψ − a0(ψ)

2
= I1ψ

′ = Iλϕ, where ϕ = I1−λψ
′ (a0(ϕ) = 0).

Thus, we have ϕ = Dα+1/2ψ.
Assume that f ∈ Lp[−π, π] (1 ≤ p < ∞). Let 0 ≤ 1/p − 1/q < 1. Choose such

r ∈ [p, q] that 1/p− 1/r < λ and 1/r − 1/q < 1− λ. By (3.15) and Lemma 3.3,

‖ψ′‖Lr ≤ c‖f‖Lp . (3.16)

Further, by (3.2),

|ϕ(x)| = |I1−λψ′(x)| ≤ c
∫ π

−π
|ψ′(y)| dy

|y − x|λ
.
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Thus, applying Lemma 3.3 and (3.16), we get

‖ϕ‖Lq ≤ c‖ψ′‖Lr ≤ c′‖f‖Lp .

This implies (3.11).
Since ‖ϕ‖ReH1 ≤ c||ϕ||q for any q > 1, we obtain also (3.12).
Finally, if f ∈ BMO, then f ∈ Lp for any p <∞, and

‖f‖Lp ≤ c‖f‖BMO

(see [6, p. 226]). Let 1 < p <∞. Then, by (3.11),

‖ϕ‖L∞ ≤ c||f ||Lp ≤ c′‖f‖BMO.

This estimate implies (3.13). �

4. Transplantation theorems

In this section we obtain transplantation theorems for Jacobi polynomials in ReH1 and
BMO . We derive these theorems using the approach applied in [11] to ultraspherical
polynomials. The core of this approach is made up of the following lemmas proved
therein.

Lemma 4.1

Let f ∈ ReH1, 0 < λ < 1, and

G(x) =

∫ π

|x|
f(y)

(
sin y

cosx− cos y

)1−λ
dy, |x| ≤ π. (4.1)

Suppose that η is a 2π−periodic function, differentiable in (−π, π), and

|η(x)| ≤ 1, |η′(x)| ≤ 1 for all x ∈ (−π, π). (4.2)

Then the function χ = ηG belongs to Lλ(ReH1) and

||Dλχ||ReH1 ≤ c||f ||ReH1 .

Lemma 4.2

Let f ∈ BMO be an odd function such that

f(x) = 0 for 2π/3 ≤ |x| ≤ π.

Let 0 < λ < 1 and let G be defined by (4.1). Suppose that η is a 2π−periodic function,
differentiable in (−π, π) and satisfying (4.2). Then the function χ = ηG belongs to
Lλ(BMO) and

||Dλχ||∗ ≤ c||f ||∗.
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We observe that even for λ < 1 the proofs of Lemmas 4.1 and 4.2 are rather long
and complicated. Using these lemmas, we shall extend the results obtained in [11]

for ultraspherical polynomials to the Jacobi polynomials ϕ
(α,β)
n for the values α, β ∈

(−1/2, 1/2).
As in [11], we first prove one-sided transplantation inequalities in ReH1 and BMO.
We use the notation (1.3) for Jacobi coefficients.

Proposition 4.3

Let f ∈ ReH1 and α, β ∈ (−1/2, 1/2). Then the series

∞∑
n=1

a(α,β)n (f) cosnx (4.3)

is the Fourier series of some function ϕ ∈ ReH1 such that

||ϕ||ReH1 ≤ c||f ||ReH1 .

Proof. Let ξ(x) be a continuous 2π−periodic function defined in [−π, π] as follows:

ξ(x) =


1 if |x| ≤ π/3,

0 if 2π/3 ≤ |x| ≤ π,

linear in [π/3, 2π/3] and [−2π/3,−π/3].

(4.4)

Then

|ξ(x′)− ξ(x′′)| ≤ 3

π
|x′ − x′′|. (4.5)

Let u(x) = f(x)ξ(x). Then u(x) = 0 for 2π/3 ≤ |x| ≤ π. Furthermore, for the conjugate
function ũ, we have

|ũ(x)| = 1

π

∣∣∣∣v. p. ∫ π

−π

ξ(x+ t)f(x+ t)

2 tan(t/2)
dt

∣∣∣∣
≤ 3

π2

∫ π

−π
|f(x+ t)| dt+ ξ(x)|f̃(x)| ≤ 3

π2
||f ||L1 + |f̃(x)|.

This implies that u ∈ ReH1 and

||u||ReH1 ≤ 3||f ||ReH1 . (4.6)

Setting

F (x) =

∫ π

|x|
u(y)Jα,β(x, y) dy (|x| ≤ π),

we have that F = G+H, where

G(x) =

∫ π

|x|
u(y)Uα+1/2(x, y) dy and H(x) =

∫ π

|x|
u(y)Dα,β(x, y) dy
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(see (2.4), (2.6), and (2.7)). Further, let γ = (α+ β + 1)/2. Denote

χ(x) = G(x) cos γx and ψ(x) = H(x) cos γx (−π < x ≤ π).

By Lemma 4.1, χ ∈ Lα+1/2(ReH1) and

||Dα+1/2χ||ReH1 ≤ c||u||ReH1 ≤ 3c||f ||ReH1

(see (4.6)). Further, by Lemma 3.4, ψ ∈ Lα+1/2(ReH1) and

||Dα+1/2ψ||ReH1 ≤ c||u||ReH1 ≤ 3c||f ||ReH1 .

Using these inequalities, we obtain that the function F1(x) = F (x) cos γx belongs to
Lα+1/2(ReH1) and

||Dα+1/2F1||ReH1 ≤ c||f ||ReH1 .

Similarly, setting F2(x) = F (x) sin γx, we have that F2 ∈ Lα+1/2(ReH1) and

||Dα+1/2F2||ReH1 ≤ c||f ||ReH1 .

Thus, by Theorem 3.1, the series

∞∑
n=1

a(α,β)n (u) cosnx

is the Fourier series of a function µ ∈ ReH1 such that

‖µ‖ReH1 ≤ c(||Dα+1/2F1||ReH1 + ||Dα+1/2F2||ReH1) ≤ c′||f ||ReH1 .

Set now v(x) = f(x)− u(x). By (4.6),

||v||ReH1 ≤ 4||f ||ReH1 .

Let v(x) = v(π − x). Clearly, ||v||ReH1 = ||v||ReH1 . Observe also that

v(x) = 0 for 2π/3 ≤ |x| ≤ π. (4.7)

Further, we have
ϕ(α,β)
n (π − x) = (−1)nϕ(β,α)

n (x)

(see (1.1) and [14, (4.1.3)]). Thus,

a(α,β)n (v) = (−1)na(β,α)n (v). (4.8)

Taking into account (4.7) and applying the same reasonings as above, we obtain that
there exists a function ν ∈ ReH1 such that ‖ν‖ReH1 ≤ c||f ||ReH1 and

an(ν) = a(β,α)n (v) (n ∈ N), a0(ν) = 0. (4.9)

Set ν(x) = ν(π − x). Then ‖ν‖ReH1 ≤ c||f ||ReH1 . Since an(ν) = (−1)nan(ν), by (4.8)
and (4.9), we have

an(ν) = a(α,β)n (v) (n ∈ N), a0(ν) = 0.

Finally, set ϕ = µ+ν. Then ‖ϕ‖ReH1 ≤ c||f ||ReH1 . We have f = u+v and a
(α,β)
n (f) =

a
(α,β)
n (u) + a

(α,β)
n (v). Thus, series (4.3) is the Fourier series of ϕ. �
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Proposition 4.4

Let f ∈ BMO be an odd function and α, β ∈ (−1/2, 1/2). Then the series (4.3) is
the Fourier series of some function ϕ ∈ BMO such that

||ϕ||∗ ≤ c||f ||∗.

Proof. The proof is the same as in Proposition 4.3. We need only a few additional
remarks. Let ξ be defined by (4.4) and set u = fξ. Since ξ is even, u is odd. Thus, we
have that

||u||BMO = ||u||∗ (4.10)

(see (1.2)). Further,

||u||∗ ≤ c||f ||∗. (4.11)

Indeed, let I be an interval, |I| ≤ 2π. Then, using (4.5), we have

1

|I|

∫
I
|u(x)− uI | dx ≤

1

|I|2

∫
I

∫
I
|u(x)− u(y)| dxdy

≤ 1

|I|2

∫
I

∫
I
|f(x)− f(y)| dxdy

+
1

|I|2

∫
I

∫
I
|f(y)||ξ(x)− ξ(y)| dxdy

≤ 2||f ||∗ +

∫ π

−π
|f(y)| dy ≤ 2(π + 1)||f ||∗

(we have used the condition that f is odd). This implies (4.11).
Taking into account (4.10) and (4.11), and applying Lemmas 4.2 and 3.4, one can

complete the proof exactly as in Proposition 4.3. �

Remark 4.5 The proofs of Propositions 4.3 and 4.4 are based on the use of Lemmas 4.1,
4.2, and 3.4. It is easy to extend Lemma 3.4 on the values α ≥ 1/2. However, the
extension of Lemmas 4.1 and 4.2 to all λ > 0 is an open problem which may require
complicated techniques.

Applying Propositions 4.3 and 4.4, and using duality arguments, we obtain the
following theorems.

Theorem 4.6

Let α, β ∈ (−1/2, 1/2). Then:
(i) if f ∈ ReH1, then the series

∞∑
n=1

a(α,β)n (f) cosnx

is the Fourier series of some function ϕ ∈ ReH1 such that

||ϕ||ReH1 ≤ c||f ||ReH1 ;
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(ii) if ϕ ∈ ReH1 and
∞∑
n=1

an(ϕ) cosnx

is its Fourier series, then there exists an odd function f ∈ ReH1 such that

a(α,β)n (f) = an(ϕ) (n ∈ N)

and

||f ||ReH1 ≤ c||ϕ||ReH1 .

Theorem 4.7

Let α, β ∈ (−1/2, 1/2). Then:
(i) if f ∈ BMO is an odd function, then the series

∞∑
n=1

a(α,β)n (f) cosnx

is the Fourier series of some function ϕ ∈ BMO such that

||ϕ||∗ ≤ c||f ||∗;

(ii) if ϕ ∈ BMO and
∞∑
n=1

an(ϕ) cosnx

is the Fourier series of ϕ, then there exists an odd function f ∈ BMO such that

a(α,β)n (f) = an(ϕ) (n ∈ N)

and

||f ||∗ ≤ c||ϕ||∗.

We omit the proofs of Theorems 4.6 and 4.7 because they are exactly the same
as ones given in [11, Section 5] for ultraspherical polynomials.

We emphasize that the statement (i) in Theorem 4.7 fails if f is not odd. Indeed,
failure of this statement for even functions was proved in [11] for the case α = β
(see [11], Section 5, Remark 5; observe that it should be written there that the function

f − f1 is equal to cu
(λ)
0 , where c is a constant). In the general case the proof is the

same.
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