Collectanea Mathematica (electronic version): http://www.collectanea.ub.edu

Collect. Math. **61**, 2 (2010), 205–221 © 2010 Universitat de Barcelona

Jacobi transplantations and Weyl integrals

V.I. KOLYADA

Department of Mathematics, Karlstad University, Universitetsgatan 1, 651 88 Karlstad, Sweden E-mail: viktor.kolyada@kau.se

L. Roncal

Departamento de Matemáticas y Computación, Universidad de La Rioja, Edificio J.L. Vives, Calle Luis de Ulloa s/n, 26004 Logroño, Spain

E-mail: luz.roncal@unirioja.es

Received August 18, 2009. Revised October 9, 2009

Abstract

We prove that transplantations for Jacobi polynomials can be derived from representation of a special integral operator as fractional Weyl's integral. Furthermore, we show that, in a sense, Jacobi transplantation can be reduced to transplantations for ultraspherical polynomials. As an application of these results, we obtain transplantation theorems for Jacobi polynomials in Re H^1 and BMO. The paper gives an extension of the results obtained for ultraspherical polynomials by the first named author (MR2148530 (2006a:42045)).

1. Introduction

Let $P_n^{\alpha,\beta}(z)$ be the Jacobi polynomial of degree *n* and order (α,β) , where $\alpha,\beta > -1$ (see [14, 4.1]). The Jacobi polynomials are orthogonal on (-1,1) with respect to the

Keywords: Transplantation, Fourier coefficients, Jacobi series, Hardy space *ReH*¹, *BMO*. *MSC2000:* Primary 42C10.

Research of the second author supported by grant MTM2006-13000-C03-03 of the DGI and a FPI grant of the University of La Rioja.

The authors are grateful to the referee for his/her useful remarks.

measure $(1-z)^{\alpha}(1+z)^{\beta} dz$ and

$$\int_{-1}^{1} [P_n^{(\alpha,\beta)}(z)]^2 (1-z)^{\alpha} (1+z)^{\beta} dz = \frac{2^{\alpha+\beta+1}\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{(2n+\alpha+\beta+1)\Gamma(n+1)\Gamma(n+\alpha+\beta+1)} = [s_n^{(\alpha,\beta)}]^2$$

(see [14, (4.3.3), p.68]). The functions

$$\varphi_n^{(\alpha,\beta)}(y) = \frac{2^{(\alpha+\beta+1)/2} P_n^{(\alpha,\beta)}(\cos y)(\sin y/2)^{\alpha+1/2}(\cos y/2)^{\beta+1/2}}{s_n^{(\alpha,\beta)}} \tag{1.1}$$

form an orthonormal system on $(0, \pi)$ with respect to Lebesgue measure. For $\alpha = \beta$ we obtain the system of ultraspherical polynomials

$$u_n^{(\lambda)}(y) = \varphi_n^{(\alpha,\alpha)}(y), \quad \lambda = \alpha + \frac{1}{2}.$$

Transplantations of coefficients from one orthonormal system to another have a long history. One of the first transplantation theorems was obtained by Askey and Wainger [2] for ultraspherical polynomials. This theorem was extended by Askey [1] to general Jacobi series. Later on, the boundedness of the Jacobi transplantation operator in weighted L^p -spaces (1 was studied in [8] and [13] (see also [4]). $It is well known that this operator fails to be bounded in <math>L^1$ and L^∞ (see [3]). Thus, it is natural to ask whether transplantation holds in the spaces Re H^1 and BMO. This problem was first studied in [9, 11] for ultraspherical polynomials. Afterwards, sharp results on Jacobi transplantation for weighted Hardy spaces were obtained in [12]. We mention also the work [10] in which a transplantation theorem for the Hankel transform in the space Re $H^1(\mathbb{R})$ was proved.

Recall that the real Hardy space $\operatorname{Re} H^1$ is the space of all 2π -periodic functions $\varphi \in L^1[0, 2\pi]$ for which the conjugate function $\tilde{\varphi}$ also belongs to $L^1[0, 2\pi]$. The norm in $\operatorname{Re} H^1$ is defined by

$$\|\varphi\|_{\operatorname{Re} H^1} = \|\varphi\|_{L^1} + \|\widetilde{\varphi}\|_{L^1}.$$

The space BMO consists of all 2π -periodic functions $f \in L^1[0, 2\pi]$ such that

$$||f||_* \equiv \sup_I \frac{1}{|I|} \int_I |f(x) - f_I| \, dx < \infty, \qquad f_I = \int_I f(t) \, dt,$$

where the supremum is taken over all intervals $I \subset \mathbb{R}$. We set

$$||f||_{BMO} = \left| \int_0^{2\pi} f(x) \, dx \right| + ||f||_*.$$
(1.2)

By the Spanne–Stein theorem [15, p. 207], for any function $f \in BMO$ its conjugate function \tilde{f} also belongs to BMO, and $\|\tilde{f}\|_* \leq c \|f\|_*$.

In [11], there were proved two-sided transplantation theorems in the spaces $\operatorname{Re} H^1$ and BMO betweeen ultraspherical series and trigonometric series. With the use of

Mehler's integral representation of ultraspherical polynomials, the proofs were reduced to representation of a special integral operator as fractional Weyl's integral.

In this paper we show that the approach developed in [11] can be extended to Jacobi polynomials. We shall give a brief description of our main results.

Let $f \in L^1[0,\pi]$ and $\alpha, \beta > -1/2$. The Fourier-Jacobi coefficients of f are defined by

$$a_n^{(\alpha,\beta)}(f) = \int_0^\pi f(y)\varphi_n^{(\alpha,\beta)}(y)\,dy.$$
(1.3)

We will apply a Mehler type formula for Jacobi polynomials, to obtain that

$$a_n^{(\alpha,\beta)}(f) = t_n^{(\alpha,\beta)} \int_0^\pi K_{\alpha,\beta}(f;x) \cos(n+\gamma) x \, dx \quad (\gamma = (\alpha+\beta+1)/2),$$

where

$$K_{\alpha,\beta}(f;x) = \int_{|x|}^{\pi} f(y) J_{\alpha,\beta}(x,y) \, dy \quad (|x| \le \pi)$$
(1.4)

and $J_{\alpha,\beta}(x,y)$ is a special kernel. In the case $\alpha = \beta$ this kernel has a comparatively simple form,

$$J_{\alpha,\alpha}(x,y) = \left(\frac{\sin y}{\cos x - \cos y}\right)^{1/2-\alpha}, \quad 0 \le x < y \le \pi.$$

We show explicitly that under quite weak conditions on a function space X, the transplantation from Jacobi polynomials to the trigonometric system in X can be immediately derived from representation of the operator (1.4) as fractional Weyl's integral (see Theorem 3.1).

It is clear that if supp $f \subset [0, 2\pi/3]$, then the value of β does not have an essential influence on the behaviour of $a_n^{(\alpha,\beta)}(f)$. Roughly speaking, one can expect that in this case the Jacobi coefficients $a_n^{(\alpha,\beta)}(f)$ behave as ultraspherical coefficients $a_n^{(\alpha,\alpha)}(f)$. We give a quantitative form of this phenomenon in terms of $J_{\alpha,\beta}(x,y)$. Namely, we prove that for $0 \leq x < y \leq 2\pi/3$ the ultraspherical kernel $J_{\alpha,\alpha}(x,y)$ gives a good approximation of the Jacobi kernel $J_{\alpha,\beta}(x,y)$ (see Proposition 2.3 below).

We show that these results and representations of the operator (1.4) (with $\alpha = \beta$) proved in [11] readily yield transplantation theorems in Re H^1 and BMO for Jacobi polynomials in the range $\alpha, \beta \in (-1/2, 1/2)$ (see Theorems 4.6 and 4.7 below).

2. Dirichlet-Mehler type formula and Jacobi kernels

We will use a Dirichlet–Mehler type integral representation for Jacobi polynomials. This representation was first found in [7].

Let F(a, b; c; z) be the Gauss hypergeometric function (see [14, Chapter 4]),

$$F(a,b;c;z) = 1 + \sum_{n=1}^{\infty} \frac{(a)_n (b)_n}{(c)_n} \frac{z^n}{n!},$$
(2.1)

where $(\mu)_n = \mu(\mu+1)\cdots(\mu+n-1)$. Note that for $\mu > 0$ and $n \in \mathbb{N}$ we have

$$(\mu)_n = \frac{\Gamma(n+\mu)}{\Gamma(\mu)} \text{ and } \Gamma(n+\mu) = \Gamma(n)[n^{\mu} + O(n^{\mu-1})].$$
 (2.2)

Lemma 2.1

For $\alpha > -1/2$, $\beta > -1$ and $0 < y < \pi$, we have the integral representation

$$\frac{P_n^{(\alpha,\beta)}(\cos y)}{P_n^{(\alpha,\beta)}(1)} = \frac{2^{(\alpha+\beta+1)/2}\Gamma(\alpha+1)}{\Gamma(1/2)\Gamma(\alpha+1/2)}(1-\cos y)^{-\alpha}\int_0^y \cos(n+(\alpha+\beta+1)/2)x \\ \times \frac{(\cos x - \cos y)^{\alpha-1/2}}{(1+\cos x)^{(\alpha+\beta)/2}}F\left(\frac{\alpha+\beta+1}{2},\frac{\alpha+\beta}{2};\alpha+\frac{1}{2};\frac{\cos x - \cos y}{1+\cos x}\right)dx.$$

Note that (see [14, (4.1.1), p. 58])

$$P_n^{(\alpha,\beta)}(1) = \binom{n+\alpha}{n}.$$

Thus, the functions (1.1) can be written as

$$\varphi_n^{(\alpha,\beta)}(y) = t_n^{(\alpha,\beta)} \int_0^y J_{\alpha,\beta}(x,y) \cos\left(n + \frac{\alpha + \beta + 1}{2}\right) x \, dx,\tag{2.3}$$

where

$$J_{\alpha,\beta}(x,y) = \left(\frac{\sin y}{\cos x - \cos y}\right)^{1/2-\alpha} G_{\alpha,\beta}(x,y), \quad |x| < |y| \le \pi,$$

$$G_{\alpha,\beta}(x,y) = \left(\frac{1+\cos y}{1+\cos x}\right)^{\alpha+\beta/2} F\left(\frac{\alpha+\beta+1}{2}, \frac{\alpha+\beta}{2}; \alpha+\frac{1}{2}; \frac{\cos x - \cos y}{1+\cos x}\right),$$
(2.4)

and

$$t_n^{(\alpha,\beta)} = c_{\alpha,\beta} n^{\alpha+1/2} + O(n^{\alpha-1/2}).$$
(2.5)

If $\alpha = \beta$, denote $\lambda = \alpha + 1/2$. In this case (2.3) is the Mehler formula for ultraspherical polynomials (see [5, p. 177]). We set for $\lambda > 0$,

$$U_{\lambda}(x,y) = \left(\frac{\sin y}{\cos x - \cos y}\right)^{1-\lambda}, \quad |x| < |y| \le \pi.$$
(2.6)

It follows from (2.1) that $G_{\alpha,\alpha}(x,y) = 1$ and $J_{\alpha,\alpha}(x,y) = U_{\alpha+1/2}(x,y)$.

In what follows we denote

$$\Omega = \{ (x, y) : 0 \le x < y \le 2\pi/3 \}.$$

Set also

$$D_{\alpha,\beta}(x,y) = J_{\alpha,\beta}(x,y) - U_{\alpha+1/2}(x,y), \quad |x| < |y| \le \pi.$$
(2.7)

Our main result in this section is that the derivatives of $D_{\alpha,\beta}(x,y)$ with respect to x in Ω are comparatively small. First we prove the following lemma.

Lemma 2.2

Let $\lambda > 0$ and let ν be the least integer such that $\nu \ge \lambda$. Set

$$\psi(x,y) = (\cos x - \cos y)^{\lambda} (\sin y)^{1-\lambda}, \quad (x,y) \in \Omega.$$

Then

$$\left|\frac{\partial^r \psi}{\partial x^r}(x,y)\right| \le C_\lambda y(y-x)^{\lambda-r} \tag{2.8}$$

for any $(x, y) \in \Omega$ and $0 \leq r \leq \nu$.

Proof. We have that

$$\psi(x,y) = 2^{\lambda} \left(\sin\frac{y-x}{2}\right)^{\lambda} \left(\sin\frac{y+x}{2}\right)^{\lambda} (\sin y)^{1-\lambda}$$

For r = 0, (2.8) is obvious. Set $\omega(t) = (\sin t)^{\lambda}$. Then

$$\omega(t) = t^{\lambda} (1 + g(t))^{\lambda},$$

where

$$g(t) = \sum_{k=1}^{\infty} (-1)^k \frac{t^{2k}}{(2k+1)!}$$

It is clear that $g \in C^{\infty}[0, 2\pi/3]$. Moreover,

$$1 + g(t) = \frac{\sin t}{t} \ge \frac{1}{4}, \quad 0 \le t \le \frac{2\pi}{3}.$$

It follows easily that

$$\left| \frac{d^r}{dt^r} \omega(t) \right| \le c_\lambda t^{\lambda - r}, \quad 0 < t \le 2\pi/3,$$
(2.9)

for any $1 \le r \le \nu$. Applying (2.9) and the Leibniz formula, we obtain

$$\left|\frac{\partial^r \psi}{\partial x^r}(x,y)\right| \le c_\lambda y^{1-\lambda} \sum_{k=0}^r \binom{r}{k} (y-x)^{\lambda-k} (y+x)^{\lambda-r+k}$$
$$\le 2^r c_\lambda y^{1-\lambda} (y-x)^{\lambda-r} (y+x)^\lambda \le c'_\lambda y (y-x)^{\lambda-r}$$

for any $(x,y) \in \Omega$ and any $1 \le r \le \nu$.

Let $D_{\alpha,\beta}(x,y)$ be defined by (2.7).

Proposition 2.3

Let $\alpha, \beta > -1/2$. Suppose that ν is the least integer such that $\nu \ge \alpha + 1/2$. Then

$$\left|\frac{\partial^r D_{\alpha,\beta}}{\partial x^r}(x,y)\right| \le c_{\alpha,\beta} \ y(y-x)^{\alpha-r+1/2},\tag{2.10}$$

for any $0 \le r \le \nu$ and $(x, y) \in \Omega$.

Proof. The functions $(1-z)^{(\alpha+\beta)/2}$ and

$$F_{\alpha,\beta}(z) = F\left(\frac{\alpha+\beta+1}{2}, \frac{\alpha+\beta}{2}; \alpha+\frac{1}{2}; z\right)$$

are both analytic in |z| < 1. Set $g(z) = (1-z)^{(\alpha+\beta)/2} F_{\alpha,\beta}(z)$. Then

$$g(z) = 1 + \sum_{k=1}^{\infty} \gamma_k(\alpha, \beta) z^k, \qquad (2.11)$$

where the series at the right hand side has radius of convergence at least 1. Thus, by the Cauchy-Hadamard formula,

$$\overline{\lim_{k \to \infty}} \sqrt[k]{|\gamma_k(\alpha, \beta)|} \le 1.$$
(2.12)

Denote

$$\zeta(x,y) = \frac{\cos x - \cos y}{1 + \cos x}, \quad (x,y) \in \Omega.$$

Then

$$0 \le \zeta(x, y) \le \frac{3}{4}, \quad (x, y) \in \Omega.$$
(2.13)

Further, we have $G_{\alpha,\beta}(x,y) = g(\zeta(x,y))$. Thus, by (2.11) and (2.13), for any $(x,y) \in \Omega$

$$G_{\alpha,\beta}(x,y) = 1 + \sum_{k=1}^{\infty} \gamma_k(\alpha,\beta) \zeta(x,y)^k.$$

Now, we get

$$D_{\alpha,\beta}(x,y) = U_{\alpha+1/2}(x,y)(G_{\alpha,\beta}(x,y)-1)$$
$$= U_{\alpha+1/2}(x,y)\sum_{k=1}^{\infty}\gamma_k(\alpha,\beta)\zeta^k(x,y)$$
$$= (\sin y)^{1/2-\alpha}(\cos x - \cos y)^{\alpha+1/2}\Phi_{\alpha,\beta}(x,y),$$

where

$$\Phi_{\alpha,\beta}(x,y) = (1 + \cos x)^{-1} \sum_{k=1}^{\infty} \gamma_k(\alpha,\beta) \zeta^{k-1}(x,y).$$

It is obvious that

$$\left|\frac{\partial^r}{\partial x^r}\zeta(x,y)\right| \le c_\nu, \quad (x,y) \in \Omega,$$

for any $1 \leq r \leq \nu$, where c_{ν} depends only on ν . It easily follows from this estimate that

$$\left|\frac{\partial^r}{\partial x^r}\zeta^k(x,y)\right| \le c'_{\nu}, \quad (x,y) \in \Omega,$$

for any $1 \le k \le \nu$, and

$$\left|\frac{\partial^r}{\partial x^r}\zeta^k(x,y)\right| \le c'_{\nu}k^r\zeta^{k-r}, \quad (x,y)\in\Omega,$$

for any $k > \nu$, where $1 \le r \le \nu$. Thus, applying (2.12) and (2.13), we obtain that

$$\left|\frac{\partial^r}{\partial x^r}\Phi_{\alpha,\beta}(x,y)\right| \le c_{\alpha,\beta}, \quad (x,y) \in \Omega,$$

for any $0 \le r \le \nu$. Using this estimate and Lemma 2.2, we get (2.10).

3. Weyl fractional integrals

We recall the definition of Weyl fractional integrals. Let $0 < \lambda < 1$. Set

$$(ik)^{\lambda} = |k|^{\lambda} \exp\left(\frac{\lambda \pi i}{2} \operatorname{sign} k\right) \quad (k \in \mathbb{Z}, k \neq 0)$$

Further, denote

$$\Psi_{\lambda}(t) = \sum_{n \in \mathbb{Z}, n \neq 0} \frac{e^{int}}{(in)^{\lambda}} = 2 \sum_{k=1}^{\infty} \frac{\cos(kt - \lambda\pi/2)}{k^{\lambda}}.$$
(3.1)

These series converge for all $t \in (0, 2\pi)$ and $\Psi_{\lambda} \in L^{1}[0, 2\pi]$; moreover,

$$|\Psi_{\lambda}(t)| \le c_{\lambda} |t|^{\lambda - 1}, \quad 0 < |t| \le \pi,$$
(3.2)

(see $[16, Chapter 12, \S 8]$).

Let $\varphi \in L^1[0, 2\pi]$ be a 2π -periodic function. The Weyl fractional integral of order $\lambda > 0$ of the function φ is defined by the equality

$$I_{\lambda}\varphi(x) = \frac{1}{2\pi} \int_0^{2\pi} \Psi_{\lambda}(x-t)\varphi(t) \, dt.$$

The last integral converges absolutely for almost all x. Moreover, if $\varphi \in L^p[0, 2\pi]$ $(1 \le p \le \infty)$, then by (3.2) and Minkowski inequality,

$$\|I_{\lambda}\varphi\|_{L^p} \le c \|\varphi\|_{L^p}.$$

It follows from (3.1) that

$$I_{\lambda}(I_{\mu}\varphi) = I_{\lambda+\mu}\varphi \quad (\lambda,\mu>0). \tag{3.3}$$

Let X be a linear normed space of 2π -periodic functions. In what follows we assume that X satisfies the following conditions:

(i) $X \subset L^1[0, 2\pi]$ and there exists a constant c_X such that

$$||f||_{L^1} \le c_X ||f||_X$$
 for any $f \in X$;

- (ii) if $f \in X$ and g(x) = f(-x), then $g \in X$ and $||g||_X \le c_X ||f||_X$;
- (iii) if $\gamma = \{\gamma_n\}_{n \in \mathbb{N}}$ is a bounded sequence, and

$$\sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \tag{3.4}$$

is the Fourier series of a function $f \in X$, then the series

$$\sum_{n=1}^{\infty} \frac{\gamma_n}{n} (a_n \cos nx + b_n \sin nx) \tag{3.5}$$

is the Fourier series of some function $g \in X$, and $||g||_X \leq c||f||_X$, where c depends only on X and γ .

We observe that the spaces $L^p[0, 2\pi]$ $(1 \le p \le \infty)$, $\operatorname{Re} H^1$, BMO satisfy these conditions. Indeed, properties (i) and (ii) are obvious. Further, let $||\gamma||_{L^{\infty}} = \sup_n |\gamma_n|$. If $f \in L^p[0, 2\pi]$ $(1 \le p < 2)$, and (3.4) is the Fourier series of f, then

$$\left(\sum_{n=1}^{\infty} (a_n^2 + b_n^2) \frac{\gamma_n^2}{n^2}\right)^{1/2} \le ||\gamma||_{L^{\infty}} ||f||_{L^1}.$$

Thus, (3.5) is the Fourier series of some function $g \in L^2[0,2\pi]$ and $||g||_{L^2} \leq ||\gamma||_{L^{\infty}}||f||_{L^1}$. In particular, this implies that $||g||_{\operatorname{Re} H^1} \leq c||\gamma||_{L^{\infty}}||f||_{L^1}$. Further, if $f \in L^p[0,2\pi]$ $(2 \leq p \leq \infty)$, then

$$\sum_{n=1}^{\infty} \left(|a_n| + |b_n| \right) \frac{\gamma_n}{n} \le c ||\gamma||_{L^{\infty}} ||f||_{L^2} \le c' ||\gamma||_{L^{\infty}} ||f||_{L^p}.$$

Hence, (3.5) is the Fourier series of some function $g \in L^{\infty}[0, 2\pi]$ and $||g||_{L^{\infty}} \leq c||\gamma||_{L^{\infty}}||f||_{L^{p}}$. This implies also that $||g||_{\infty} \leq c||\gamma||_{L^{\infty}}||f||_{BMO}$.

For any 2π -periodic function $f \in L^1[-\pi,\pi]$ we henceforth denote

$$a_n(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx, \quad b_n(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$$

(n = 0, 1, ...).

For $\lambda > 0$, we denote by $L^{\lambda}(X)$ the class of all functions $f \in L^{1}[0, 2\pi]$ that can be represented a.e. in the form

$$f(x) = \frac{a_0(f)}{2} + I_\lambda \varphi(x),$$

where $\varphi \in X$ and $a_0(\varphi) = 0$. The function φ is defined uniquely. We denote $\varphi = D^{\lambda} f$. Set also

$$||f||_{L^{\lambda}(X)} = \frac{|a_0(f)|}{2} + ||\varphi||_X.$$

If $X = L^p[-\pi,\pi]$ $(1 \le p \le \infty)$, then we write $L^{\lambda}(X) = L_p^{\lambda}$.

The following theorem shows that transplantation theorems follow directly from representation of the operator (1.4) as Weyl's integral. We use notations (1.3) and (2.4).

Theorem 3.1

Let $\alpha, \beta > -1/2$, $\alpha + 1/2 \notin \mathbb{N}$, and let $\gamma = (\alpha + \beta + 1)/2$. Let a space X satisfy the conditions (i) - (iii). Let $f \in X$. Set

$$F(x) = \int_{|x|}^{\pi} f(y) J_{\alpha,\beta}(x,y) \, dy \quad (|x| \le \pi),$$

$$F_1(x) = F(x) \cos \gamma x, \quad F_2(x) = F(x) \sin \gamma x \quad (-\pi < x \le \pi)$$

and extend F_1 and F_2 to the whole line with the period 2π . Assume that F_1 and F_2 belong to $L^{\alpha+1/2}(X)$. Then the series

$$\sum_{n=1}^{\infty} a_n^{(\alpha,\beta)}(f) \cos nx \quad and \quad \sum_{n=1}^{\infty} a_n^{(\alpha,\beta)}(f) \sin nx \tag{3.6}$$

are the Fourier series of some functions $\varphi_1, \varphi_2 \in X$ such that

$$||\varphi_1||_X + ||\varphi_2||_X \le c (||D^{\alpha+1/2}F_1||_X + ||D^{\alpha+1/2}F_2||_X).$$

Proof. From (1.3) and (2.3), for any $n \in \mathbb{N}$,

$$a_{n}^{(\alpha,\beta)}(f) = t_{n}^{(\alpha,\beta)} \int_{0}^{\pi} F(x) \cos(n+\gamma) x \, dx$$

$$= \frac{\pi}{2} t_{n}^{(\alpha,\beta)} \left[a_{n}(F_{1}) - b_{n}(F_{2}) \right].$$
(3.7)

Let $\lambda = \alpha + 1/2$. By our assumption, there exist functions $g_1, g_2 \in X$ such that

$$F_1(x) = \frac{a_0(F_1)}{2} + \frac{1}{2\pi} \int_0^{2\pi} \Psi_\lambda(x-t)g_1(t) dt,$$

$$F_2(x) = \frac{1}{2\pi} \int_0^{2\pi} \Psi_\lambda(x-t)g_2(t) dt,$$

and $a_0(g_1) = a_0(g_2) = 0$.

Since F_1 is even, from (3.1) we obtain that

$$n^{\lambda}a_n(F_1) = a_n(g_1)\cos(\lambda\pi/2) - b_n(g_1)\sin(\lambda\pi/2)$$

and

$$b_n(g_1)\cos(\lambda\pi/2) + a_n(g_1)\sin(\lambda\pi/2) = 0.$$

Thus,

$$a_n(F_1) = \frac{a_n(g_1)}{n^\lambda \cos(\lambda \pi/2)}, \quad n \in \mathbb{N}.$$

Similarly, since F_2 is odd, we have that

$$b_n(F_2) = \frac{a_n(g_2)}{n^\lambda \sin(\lambda \pi/2)}, \quad n \in \mathbb{N}.$$

 Set

$$g_0(x) = \frac{1}{2} \left(\frac{g_1(x) + g_1(-x)}{\cos(\lambda \pi/2)} - \frac{g_2(x) + g_2(-x)}{\sin(\lambda \pi/2)} \right).$$

Then g_0 is an even function and $a_0(g_0) = 0$,

$$a_n(g_0) = n^{\lambda} \big[a_n(F_1) - b_n(F_2) \big], \quad n \in \mathbb{N}.$$

Moreover, by the property (ii), $g_0 \in X$ and

$$||g_0||_X \le c \big(||g_1||_X + ||g_2||_X \big). \tag{3.8}$$

KOLYADA AND RONCAL

By (3.7) and (2.5),

$$a_n^{(\alpha,\beta)}(f) = \frac{\pi}{2} t_n^{(\alpha,\beta)} n^{-\lambda} a_n(g_0) = \left(c_{\alpha,\beta} + \frac{\gamma_n}{n}\right) a_n(g_0), \quad n \in \mathbb{N},$$

where $\{\gamma_n\}$ is a bounded sequence. Applying property (iii) and (3.8), we obtain that the first series in (3.6) is the Fourier series of a function $\varphi_1 \in X$ such that

$$\|\varphi_1\|_X \le c\big(||g_1||_X + ||g_2||_X\big).$$

Similarly, using the equalities

$$a_n(F_1) = -\frac{b_n(g_1)}{n^{\lambda} \sin(\lambda \pi/2)}, \quad b_n(F_2) = \frac{b_n(g_2)}{n^{\lambda} \cos(\lambda \pi/2)}, \quad n \in \mathbb{N},$$

we obtain that the second series in (3.6) is the Fourier series of a function $\varphi_2 \in X$ for which

$$\|\varphi_2\|_X \le c(\|g_1\|_X + \|g_2\|_X).$$

Remark 3.2 The statement of Theorem 3.1 may fail if $\alpha + 1/2 \in \mathbb{N}$. However, it remains true if we assume, in addition, that the conjugate function operator is bounded in X.

Lemma 3.3

Let $0 \le \sigma < 1$, $1 \le p < q \le \infty$, and $0 \le 1/p - 1/q < 1 - \sigma$. Assume that $f \in L^p[-\pi,\pi]$ and set

$$h(x) = \int_{-\pi}^{\pi} f(y) \frac{dy}{|y-x|^{\sigma}}, \quad x \in [-\pi,\pi].$$

Then $h \in L^q[-\pi,\pi]$ and

 $||h||_{L^q} \le c ||f||_{L^p}.$

This lemma is well known and follows immediately from the Young inequality for convolutions.

The definition of the fractional integral immediately implies that if ψ is a 2π -periodic absolutely continuous function, then

$$\psi(x) = \frac{a_0(\psi)}{2} + I_1 \psi'(x). \tag{3.9}$$

Let $D_{\alpha,\beta}(x,y)$ be defined by (2.7) (note that $D_{\alpha,\beta}(x,y)$ is even in each of variables x, y).

Lemma 3.4

Let $-1/2 < \alpha < 1/2$ and $\beta > -1/2$. Assume that $f \in L^1[-\pi, \pi]$ is a 2π -periodic function such that

$$f(x) = 0$$
 for $2\pi/3 \le |x| \le \pi$.

Set

$$H(x) = \int_{|x|}^{\pi} f(y) D_{\alpha,\beta}(x,y) \, dy, \quad |x| \le \pi$$

Suppose that η is a 2π -periodic function, differentiable in $(-\pi, \pi)$, and

$$|\eta(x)| \le 1, \ |\eta'(x)| \le 1 \quad \text{for all} \quad x \in (-\pi, \pi).$$
 (3.10)

Set $\psi = \eta H$ and extend ψ with the period 2π to the whole line. Then:

(1) if $f \in L^p[-\pi,\pi]$ $(1 \le p < \infty)$, $p \le q \le \infty$, and 1/p - 1/q < 1, then $\psi \in L_q^{\alpha+1/2}$, and

$$\|D^{\alpha+1/2}\psi\|_{L^q} \le c\|f\|_{L^p}; \tag{3.11}$$

(2) $\psi \in L^{\alpha+1/2}(\operatorname{Re} H^1)$, and

$$\|D^{\alpha+1/2}\psi\|_{\operatorname{Re}H^{1}} \le c\|f\|_{L^{1}}; \qquad (3.12)$$

(3) if $f \in BMO$, then $\psi \in L_{\infty}^{\alpha+1/2}$, and

$$\|D^{\alpha+1/2}\psi\|_{L^{\infty}} \le c\|f\|_{\text{BMO}}.$$
(3.13)

Proof. Denote $\lambda = \alpha + 1/2$; then $0 < \lambda < 1$. By virtue of Proposition 2.3,

$$|D_{\alpha,\beta}(x,y)| \le c \text{ and } \left|\frac{\partial D_{\alpha,\beta}}{\partial x}(x,y)\right| \le c(y-x)^{\lambda-1}$$
 (3.14)

for $(x, y) \in \Omega$. This implies that H is absolutely continuous on $[-\pi, \pi]$. We have also that H(x) = 0 if $2\pi/3 \le |x| \le \pi$. Thus, taking into account (3.10), we obtain that ψ is absolutely continuous on $[-\pi, \pi]$. By Proposition 2.3, $D_{\alpha,\beta}(x, x) = 0$ for $|x| \le 2\pi/3$. Hence,

$$\psi'(x) = \eta'(x)H(x) + \eta(x)\operatorname{sign} x \int_{|x|}^{\pi} f(y) \frac{\partial D_{\alpha,\beta}}{\partial x}(x,y) \, dy$$

for almost all $x \in [-\pi, \pi]$. By (3.10) and (3.14), we get

$$|\psi'(x)| \le c \int_{|x|}^{\pi} |f(y)| \frac{dy}{(y-|x|)^{1-\lambda}}, \quad |x| \le \pi.$$
(3.15)

Further, by (3.9) and (3.3)

$$\psi - \frac{a_0(\psi)}{2} = I_1 \psi' = I_\lambda \varphi$$
, where $\varphi = I_{1-\lambda} \psi'$ $(a_0(\varphi) = 0)$.

Thus, we have $\varphi = D^{\alpha + 1/2} \psi$.

Assume that $f \in L^p[-\pi,\pi]$ $(1 \le p < \infty)$. Let $0 \le 1/p - 1/q < 1$. Choose such $r \in [p,q]$ that $1/p - 1/r < \lambda$ and $1/r - 1/q < 1 - \lambda$. By (3.15) and Lemma 3.3,

$$\|\psi'\|_{L^r} \le c \|f\|_{L^p}. \tag{3.16}$$

Further, by (3.2),

$$|\varphi(x)| = |I_{1-\lambda}\psi'(x)| \le c \int_{-\pi}^{\pi} |\psi'(y)| \frac{dy}{|y-x|^{\lambda}}.$$

Thus, applying Lemma 3.3 and (3.16), we get

$$\|\varphi\|_{L^{q}} \le c \|\psi'\|_{L^{r}} \le c' \|f\|_{L^{p}}$$

This implies (3.11).

Since $\|\varphi\|_{\operatorname{Re} H^1} \leq c ||\varphi||_q$ for any q > 1, we obtain also (3.12). Finally, if $f \in \operatorname{BMO}$, then $f \in L^p$ for any $p < \infty$, and

 $||f||_{L^p} \le c ||f||_{\text{BMO}}$

(see [6, p. 226]). Let 1 . Then, by (3.11),

$$\|\varphi\|_{L^{\infty}} \le c ||f||_{L^p} \le c' \|f\|_{\text{BMO}}.$$

This estimate implies (3.13).

4. Transplantation theorems

In this section we obtain transplantation theorems for Jacobi polynomials in Re H^1 and BMO. We derive these theorems using the approach applied in [11] to ultraspherical polynomials. The core of this approach is made up of the following lemmas proved therein.

Lemma 4.1

Let $f \in \operatorname{Re} H^1$, $0 < \lambda < 1$, and

$$G(x) = \int_{|x|}^{\pi} f(y) \left(\frac{\sin y}{\cos x - \cos y}\right)^{1-\lambda} dy, \quad |x| \le \pi.$$

$$(4.1)$$

Suppose that η is a 2π -periodic function, differentiable in $(-\pi, \pi)$, and

$$|\eta(x)| \le 1, \ |\eta'(x)| \le 1 \quad \text{for all} \quad x \in (-\pi, \pi).$$
 (4.2)

Then the function $\chi = \eta G$ belongs to $L^{\lambda}(\operatorname{Re} H^1)$ and

$$||D^{\lambda}\chi||_{\operatorname{Re}H^{1}} \le c||f||_{\operatorname{Re}H^{1}}.$$

Lemma 4.2

Let $f \in BMO$ be an odd function such that

$$f(x) = 0$$
 for $2\pi/3 \le |x| \le \pi$.

Let $0 < \lambda < 1$ and let G be defined by (4.1). Suppose that η is a 2π -periodic function, differentiable in $(-\pi, \pi)$ and satisfying (4.2). Then the function $\chi = \eta G$ belongs to $L^{\lambda}(BMO)$ and

$$||D^{\lambda}\chi||_{*} \le c||f||_{*}.$$

216

We observe that even for $\lambda < 1$ the proofs of Lemmas 4.1 and 4.2 are rather long and complicated. Using these lemmas, we shall extend the results obtained in [11] for ultraspherical polynomials to the Jacobi polynomials $\varphi_n^{(\alpha,\beta)}$ for the values $\alpha, \beta \in$ (-1/2, 1/2).

As in [11], we first prove one-sided transplantation inequalities in Re H^1 and BMO. We use the notation (1.3) for Jacobi coefficients.

Proposition 4.3

Let $f \in \operatorname{Re} H^1$ and $\alpha, \beta \in (-1/2, 1/2)$. Then the series

$$\sum_{n=1}^{\infty} a_n^{(\alpha,\beta)}(f) \cos nx \tag{4.3}$$

is the Fourier series of some function $\varphi \in \operatorname{Re} H^1$ such that

$$||\varphi||_{\operatorname{Re} H^1} \le c||f||_{\operatorname{Re} H^1}.$$

Proof. Let $\xi(x)$ be a continuous 2π -periodic function defined in $[-\pi,\pi]$ as follows:

$$\xi(x) = \begin{cases} 1 & \text{if } |x| \le \pi/3, \\ 0 & \text{if } 2\pi/3 \le |x| \le \pi, \\ \text{linear in } [\pi/3, 2\pi/3] \text{ and } [-2\pi/3, -\pi/3]. \end{cases}$$
(4.4)

Then

$$|\xi(x') - \xi(x'')| \le \frac{3}{\pi} |x' - x''|.$$
(4.5)

Let $u(x) = f(x)\xi(x)$. Then u(x) = 0 for $2\pi/3 \le |x| \le \pi$. Furthermore, for the conjugate function \tilde{u} , we have

$$\begin{split} |\tilde{u}(x)| &= \frac{1}{\pi} \left| \mathbf{v}.\,\mathbf{p}.\,\int_{-\pi}^{\pi} \frac{\xi(x+t)f(x+t)}{2\tan(t/2)}\,dt \right| \\ &\leq \frac{3}{\pi^2} \int_{-\pi}^{\pi} |f(x+t)|\,dt + \xi(x)|\tilde{f}(x)| \leq \frac{3}{\pi^2} ||f||_{L^1} + |\tilde{f}(x)|. \end{split}$$

This implies that $u \in \operatorname{Re} H^1$ and

$$||u||_{\operatorname{Re} H^1} \le 3||f||_{\operatorname{Re} H^1}.$$
(4.6)

Setting

$$F(x) = \int_{|x|}^{\pi} u(y) J_{\alpha,\beta}(x,y) \, dy \quad (|x| \le \pi),$$

we have that F = G + H, where

$$G(x) = \int_{|x|}^{\pi} u(y) U_{\alpha+1/2}(x, y) \, dy \quad \text{and} \quad H(x) = \int_{|x|}^{\pi} u(y) D_{\alpha, \beta}(x, y) \, dy$$

(see (2.4), (2.6), and (2.7)). Further, let $\gamma = (\alpha + \beta + 1)/2$. Denote

$$\chi(x) = G(x) \cos \gamma x$$
 and $\psi(x) = H(x) \cos \gamma x$ $(-\pi < x \le \pi).$

By Lemma 4.1, $\chi \in L^{\alpha+1/2}(\operatorname{Re} H^1)$ and

$$||D^{\alpha+1/2}\chi||_{\operatorname{Re}H^1} \le c||u||_{\operatorname{Re}H^1} \le 3c||f||_{\operatorname{Re}H^1}$$

(see (4.6)). Further, by Lemma 3.4, $\psi \in L^{\alpha+1/2}(\operatorname{Re} H^1)$ and

$$||D^{\alpha+1/2}\psi||_{\operatorname{Re} H^1} \le c||u||_{\operatorname{Re} H^1} \le 3c||f||_{\operatorname{Re} H^1}.$$

Using these inequalities, we obtain that the function $F_1(x) = F(x) \cos \gamma x$ belongs to $L^{\alpha+1/2}(\operatorname{Re} H^1)$ and

$$||D^{\alpha+1/2}F_1||_{\operatorname{Re}H^1} \le c||f||_{\operatorname{Re}H^1}.$$

Similarly, setting $F_2(x) = F(x) \sin \gamma x$, we have that $F_2 \in L^{\alpha+1/2}(\operatorname{Re} H^1)$ and

$$||D^{\alpha+1/2}F_2||_{\operatorname{Re}H^1} \le c||f||_{\operatorname{Re}H^1}.$$

Thus, by Theorem 3.1, the series

$$\sum_{n=1}^{\infty} a_n^{(\alpha,\beta)}(u) \cos nx$$

is the Fourier series of a function $\mu \in \operatorname{Re} H^1$ such that

$$\|\mu\|_{\operatorname{Re} H^1} \le c(\|D^{\alpha+1/2}F_1\|_{\operatorname{Re} H^1} + \|D^{\alpha+1/2}F_2\|_{\operatorname{Re} H^1}) \le c'\|f\|_{\operatorname{Re} H^1}.$$

Set now v(x) = f(x) - u(x). By (4.6),

$$||v||_{\operatorname{Re} H^1} \le 4||f||_{\operatorname{Re} H^1}.$$

Let $\overline{v}(x) = v(\pi - x)$. Clearly, $||\overline{v}||_{\operatorname{Re} H^1} = ||v||_{\operatorname{Re} H^1}$. Observe also that

$$\overline{v}(x) = 0 \quad \text{for} \quad 2\pi/3 \le |x| \le \pi.$$
(4.7)

Further, we have

$$\varphi_n^{(\alpha,\beta)}(\pi-x) = (-1)^n \varphi_n^{(\beta,\alpha)}(x)$$

(see (1.1) and [14, (4.1.3)]). Thus,

$$a_n^{(\alpha,\beta)}(v) = (-1)^n a_n^{(\beta,\alpha)}(\overline{v}).$$

$$(4.8)$$

Taking into account (4.7) and applying the same reasonings as above, we obtain that there exists a function $\overline{\nu} \in \operatorname{Re} H^1$ such that $\|\overline{\nu}\|_{\operatorname{Re} H^1} \leq c ||f||_{\operatorname{Re} H^1}$ and

$$a_n(\overline{\nu}) = a_n^{(\beta,\alpha)}(\overline{\nu}) \quad (n \in \mathbb{N}), \quad a_0(\overline{\nu}) = 0.$$
(4.9)

Set $\nu(x) = \overline{\nu}(\pi - x)$. Then $\|\nu\|_{\operatorname{Re} H^1} \leq c ||f||_{\operatorname{Re} H^1}$. Since $a_n(\nu) = (-1)^n a_n(\overline{\nu})$, by (4.8) and (4.9), we have

$$a_n(\nu) = a_n^{(\alpha,\beta)}(\nu) \quad (n \in \mathbb{N}), \quad a_0(\nu) = 0$$

Finally, set $\varphi = \mu + \nu$. Then $\|\varphi\|_{\operatorname{Re} H^1} \leq c \|f\|_{\operatorname{Re} H^1}$. We have f = u + v and $a_n^{(\alpha,\beta)}(f) = a_n^{(\alpha,\beta)}(u) + a_n^{(\alpha,\beta)}(v)$. Thus, series (4.3) is the Fourier series of φ .

Proposition 4.4

Let $f \in BMO$ be an odd function and $\alpha, \beta \in (-1/2, 1/2)$. Then the series (4.3) is the Fourier series of some function $\varphi \in BMO$ such that

$$||\varphi||_* \le c||f||_*.$$

Proof. The proof is the same as in Proposition 4.3. We need only a few additional remarks. Let ξ be defined by (4.4) and set $u = f\xi$. Since ξ is even, u is odd. Thus, we have that

$$||u||_{\rm BMO} = ||u||_{*} \tag{4.10}$$

(see (1.2)). Further,

$$||u||_* \le c||f||_*. \tag{4.11}$$

Indeed, let I be an interval, $|I| \leq 2\pi$. Then, using (4.5), we have

$$\begin{split} \frac{1}{|I|} \int_{I} |u(x) - u_{I}| \, dx &\leq \frac{1}{|I|^{2}} \int_{I} \int_{I} |u(x) - u(y)| \, dx dy \\ &\leq \frac{1}{|I|^{2}} \int_{I} \int_{I} |f(x) - f(y)| \, dx dy \\ &+ \frac{1}{|I|^{2}} \int_{I} \int_{I} |f(y)| |\xi(x) - \xi(y)| \, dx dy \\ &\leq 2||f||_{*} + \int_{-\pi}^{\pi} |f(y)| \, dy \leq 2(\pi + 1)||f||_{*} \end{split}$$

(we have used the condition that f is odd). This implies (4.11).

Taking into account (4.10) and (4.11), and applying Lemmas 4.2 and 3.4, one can complete the proof exactly as in Proposition 4.3. $\hfill \Box$

Remark 4.5 The proofs of Propositions 4.3 and 4.4 are based on the use of Lemmas 4.1, 4.2, and 3.4. It is easy to extend Lemma 3.4 on the values $\alpha \ge 1/2$. However, the extension of Lemmas 4.1 and 4.2 to all $\lambda > 0$ is an open problem which may require complicated techniques.

Applying Propositions 4.3 and 4.4, and using duality arguments, we obtain the following theorems.

Theorem 4.6

Let $\alpha, \beta \in (-1/2, 1/2)$. Then: (i) if $f \in \operatorname{Re} H^1$, then the series

$$\sum_{n=1}^{\infty} a_n^{(\alpha,\beta)}(f) \cos nx$$

is the Fourier series of some function $\varphi \in \operatorname{Re} H^1$ such that

$$||\varphi||_{\operatorname{Re} H^1} \le c||f||_{\operatorname{Re} H^1};$$

(ii) if $\varphi \in \operatorname{Re} H^1$ and

$$\sum_{n=1}^{\infty} a_n(\varphi) \cos nx$$

is its Fourier series, then there exists an odd function $f \in \operatorname{Re} H^1$ such that

$$a_n^{(\alpha,\beta)}(f) = a_n(\varphi) \quad (n \in \mathbb{N})$$

and

$$||f||_{\operatorname{Re} H^1} \le c ||\varphi||_{\operatorname{Re} H^1}.$$

Theorem 4.7

Let $\alpha, \beta \in (-1/2, 1/2)$. Then: (i) if $f \in BMO$ is an odd function, then the series

$$\sum_{n=1}^{\infty} a_n^{(\alpha,\beta)}(f) \cos nx$$

is the Fourier series of some function $\varphi \in BMO$ such that

$$||\varphi||_* \le c||f||_*;$$

(ii) if $\varphi \in BMO$ and

$$\sum_{n=1}^{\infty} a_n(\varphi) \cos nx$$

is the Fourier series of φ , then there exists an odd function $f \in BMO$ such that

$$a_n^{(\alpha,\beta)}(f) = a_n(\varphi) \quad (n \in \mathbb{N})$$

and

$$||f||_* \le c ||\varphi||_*.$$

We omit the proofs of Theorems 4.6 and 4.7 because they are exactly the same as ones given in [11, Section 5] for ultraspherical polynomials.

We emphasize that the statement (i) in Theorem 4.7 fails if f is not odd. Indeed, failure of this statement for even functions was proved in [11] for the case $\alpha = \beta$ (see [11], Section 5, Remark 5; observe that it should be written there that the function $f - f_1$ is equal to $cu_0^{(\lambda)}$, where c is a constant). In the general case the proof is the same.

Acknowledgement. This research was started during the sojourn in Karlstad of the second-named author, who wants to thank Department of Mathematics of Karlstad University for the hospitality.

References

- 1. R. Askey, A transplantation theorem for Jacobi series, Illinois J. Math. 13 (1969), 583-590.
- 2. R. Askey and S. Wainger, A transplantation theorem between ultraspherical series, *Illinois J. Math.* **10** (1966), 322–344.
- 3. R. Askey and S. Wainger, On the behavior of special classes of ultraspherical expansions I, J. *Analyse Math.* **15** (1965), 193–220.
- 4. Ó. Ciaurri, A. Nowak, and K. Stempak, Jacobi transplantation revisited, *Math. Z.* 257 (2007), 355–380.
- 5. A. Erdélyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi, *Higher Transcendental Functions II*, New York-Toronto-London, 1953.
- 6. J.B. Garnett, *Bounded Analytic Functions*, Graduate Texts in Mathematics 236, Springer, New York, 2007.
- G. Gasper, Formulas of the Dirichlet–Mehler type, Fractional Calculus and its Applications (Proc. Internat. Conf., Univ. New Haven, West Haven, Conn., 1974), 207–215, Lecture Notes in Math. 457, Springer Berlin, 1975.
- 8. J.E. Gilbert, Maximal theorems for some orthogonal series I, *Trans. Amer. Math. Soc.* **145** (1969), 495–515.
- 9. J.L. Guadalupe and V.I. Kolyada, A transplantation theorem for ultraspherical polynomials at critical index, *Studia Math.* **147** (2001), 51–72.
- 10. Y. Kanjin, A transplantation theorem for the Hankel transform on the Hardy space, *Tohoku Math. J.* (2) **57** (2005), 231–246.
- 11. V.I. Kolyada, Transplantation theorems for ultraspherical polynomials in $\text{Re } H^1$ and BMO, *Constr. Approx.* 22 (2005), 149–191.
- 12. A. Miyachi, Transplantation theorem for Jacobi series in weighted Hardy spaces II, *Math. Ann.* **336** (2006), 111–153.
- 13. B. Muckenhoupt, Transplantation theorems and multiplier theorems for Jacobi series, *Mem. Amer. Math. Soc.* **64** (1986), 356.
- 14. G. Szegö, *Orthogonal Polynomials*, 4th ed. American Mathematical Society, Colloquium Publications 23, American Mathematical Society, Providence, R.I., 1975.
- 15. A. Torchinsky, *Real-Variable Methods in Harmonic Analysis*, Academic Press, Inc., New York, 1986.
- 16. A. Zygmund, Trigonometric Series I, II, Cambridge University Press, London-New York 1968.