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Abstract

In this paper some numerical restrictions for surfaces with an involution are
obtained. These formulas are used to study surfaces of general type S with
pg = q = 1 having an involution i such that S/i is a non-ruled surface and
such that the bicanonical map of S is not composed with i. A complete list
of possibilities is given and several new examples are constructed, as bidouble
covers of surfaces. In particular the first example of a minimal surface of general
type with pg = q = 1 and K2 = 7 having birational bicanonical map is
obtained.

1. Introduction

Several authors have studied surfaces of general type with pg = q = 1 ([6, 7, 8, 9, 10,
17, 18, 16, 15]), but these surfaces are still not completely understood.

In [19], the author gives several new examples of double planes of general type with
pg = q = 1 having bicanonical map φ2 composed with the corresponding involution.
The case S/i non-ruled and φ2 composed with i is considered in [20].

In this paper we study the case φ2 not composed with i.More precisely, we consider
surfaces of general type S with pg = q = 1 having an involution i such that S/i is a
non-ruled surface and φ2 is not composed with i. A list of possibilities is given and
new examples are obtained for each value of the birational invariants of S/i (only the
existence of the case Kod(S/i) = 2, χ(S/i) = 1 and q(S/i) = 0 remains an open
problem).

Keywords: Involution, double cover, bidouble cover, surface of general type, bicanonical map.
MSC2000: 14J29.

81

mmlozano
Collectanea Mathematica



82 Rito

The paper is organized as follows. In Section 2.2 we obtain formulas which, for a
surface S with an involution i, relate the invariants of S and S/i with the branch locus
of the cover S → S/i, its singularities and the number of nodes of S/i. Section 2.3
contains a description of the action of the involution i on the Albanese fibration of S.
In Section 3 we apply the numerical formulas of Section 2.2 to the case pg = q = 1,
obtaining a list of possibilities (Theorems 7, 8 and 9). Results of Miyaoka and Sakai
on the maximal number of disjoint smooth rational or elliptic curves on a surface are
also used here. Finally Section 4 contains the construction of examples, as bidouble
covers of surfaces: the surfaces constructed in Sections 4.1, 4.2 and 4.3 are Du Val
double planes (cf. [19]) which have other interesting involutions; Section 4.4 contains
the construction of a surface with K2 = 4, Albanese fibration of genus g = 2 and
deg(φ2) = 2 (thus it is not the example in [7], for which φ2 is composed with the three
involutions associated to the bidouble cover); in Section 4.5 a new surface with K2 = 8
is obtained (it is not a standard isotrivial fibration); Sections 4.6 and 4.7 contain the
construction of new surfaces with K2 = 7, 6 and deg(φ2) = 1 (it is the first example
with pg = q = 1 and K2 = 7 having birational bicanonical map); bidouble covers of
irregular ruled surfaces give interesting examples in Sections 4.8 and 4.9.

Some branch curves for these bidouble cover examples are computed in Ap-
pendix A.2, using the Computational Algebra System Magma ([4]).

Notation and conventions

We work over the complex numbers; all varieties are assumed to be projective
algebraic. For a projective smooth surface S, the canonical class is denoted by K, the
geometric genus by pg := h0(S,OS(K)), the irregularity by q := h1(S,OS(K)) and the
Euler characteristic by χ = χ(OS) = 1 + pg − q.

An (−n)-curve C on a surface is a curve isomorphic to P1 such that C2 = −n. We
say that a curve singularity is negligible if it is either a double point or a triple point
which resolves to at most a double point after one blow-up. An (m1,m2, . . .)-point, or
point of order (m1,m2, . . .), is a point of multiplicity m1, which resolves to a point of
multiplicity m2 after one blow-up, etc.

An involution of a surface S is an automorphism of S of order 2. We say that
a map is composed with an involution i of S if it factors through the double cover
S → S/i.

The rest of the notation is standard in Algebraic Geometry.
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dade Técnica de Lisboa. This research was partially supported by FCT (Portugal)
through Project POCTI/MAT/44068/2002.
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2. Results on involutions

2.1 General facts

Let S be a smooth minimal surface of general type with an involution i. Since S is
minimal of general type, this involution is biregular. The fixed locus of i is the union
of a smooth curve R′′ (possibly empty) and of t ≥ 0 isolated points P1, . . . , Pt. Let S/i
be the quotient of S by i and p : S → S/i be the projection onto the quotient. The
surface S/i has nodes at the points Qi := p(Pi), i = 1, . . . , t, and is smooth elsewhere.
If R′′ 6= ∅, the image via p of R′′ is a smooth curve B′′ not containing the singular
points Qi, i = 1, . . . , t. Let now h : V → S be the blow-up of S at P1, . . . , Pt and set
R′ = h∗(R′′). The involution i induces a biregular involution ĩ on V whose fixed locus
is R := R′+

∑t
1 h
−1(Pi). The quotient W := V/̃i is smooth and one has a commutative

diagram:

V
h−−−−→ S

π

y yp
W

g−−−−→ S/i

where π : V →W is the projection onto the quotient and g : W → S/i is the minimal
desingularization map. Notice that

Ai := g−1(Qi), i = 1, . . . , t,

are (−2)-curves and π∗(Ai) = 2 · h−1(Pi).
Set B′ := g∗(B′′). Since π is a double cover with branch locus B′ +

∑t
1Ai, it is

determined by a line bundle L on W such that

2L ≡ B := B′ +
t∑
1

Ai.

It is well known that (cf. [1, Chapter V, Section 22]):

pg(S) = pg(V ) = pg(W ) + h0
(
W,OW (KW + L)

)
,

q(S) = q(V ) = q(W ) + h1
(
W,OW (KW + L)

) (1)

and

K2
S − t = K2

V = 2(KW + L)2,

χ(OS) = χ(OV ) = 2χ(OW ) + 1
2L(KW + L).

(2)

Denote by φ2 the bicanonical map of S (given by |2K|). From the papers [11] and [5],

φ2 is composed with i if and only if h0
(
W,OW (2KW + L)

)
= 0.



84 Rito

2.2 Numerical restrictions

Let P be a minimal model of the resolution W of S/i and ρ : W → P be the cor-
responding projection. Denote by B the projection ρ(B) and by δ the “projection”
of L.

Remark 1 If B is singular, there are exceptional divisors Ei and numbers ri ∈ 2N such
that

E2
i = −1,

KW ≡ ρ∗(KP ) +
∑

Ei,

2L ≡ B = ρ∗(B)−
∑

riEi ≡ ρ∗(2δ)−
∑

riEi.

Proposition 2

With the previous notation, if S is a surface of general type then:

a) χ(OP )− χ(OS) = KP (KP + δ) + 1
2

∑
(ri − 2)− h0

(
W,OW (2KW + L)

)
;

b) δ2 = −2χ(OP )− 2K2
P − 3KP δ + 1

4

∑
(ri − 2)(ri − 4) + 2h0

(
W,OW (2KW + L)

)
.

Proposition 3

Let t be the number of nodes of S/i. One has:

a) t = K2
S + 6χ(OW )− 2χ(OS)− 2h0

(
W,OW (2KW + L)

)
;

b) t = KSR
′′ + 8χ(OW )− 4χ(OS) ≥ 8χ(OW )− 4χ(OS);

c) K2
S ≥ 2χ(OW )− 2χ(OS) + 2h0

(
W,OW (2KW + L)

)
.

Proposition 4

With the above notation:

a) h0
(
W,OW (2KW + L)

)
≤ 1

3 K
2
W − χ(OW ) + 11

3 χ(OS) + 1
27 K

2
S ;

b) h0
(
W,OW (2KW + L)

)
≤ 1

2 K
2
W + 5χ(OS) + 2q(S)− 3χ(OW )− 2q(W ).

Proof of Proposition 2: (cf. [11])

a) From the Kawamata-Viehweg’s vanishing theorem (see e.g. [12, Corollary 5.12,
c)]), one has

hi(W,OW (2KW + L)) = 0, i = 1, 2.

The Riemann-Roch theorem implies

χ
(
OW (2KW + L)

)
= χ(OW ) +

1

2
L(KW + L) +KW (KW + L),

thus, using (2),

h0
(
W,OW (2KW + L)

)
= χ(OS)− χ(OW ) +KW (KW + L). (3)
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With the notation of Remark 1, we can write

χ(OP )− χ(OS) =
1

2
KW (2KW + 2L)− h0(W,OW (2KW + L))

=
1

2

(
ρ∗(KP ) +

∑
Ei

)(
2ρ∗(KP + δ) +

∑
(2− ri)Ei

)
− h0(W,OW (2KW + L))

= KP (KP + δ) +
1

2

∑
(ri − 2)− h0(W,OW (2KW + L)).

b) From the proof of a),

h0
(
W,OW (2KW + L)

)
= χ

(
OW (2KW + L)

)
= χ(OW ) +

1

2
(2KW + L)(KW + L).

Using Remark 1 this means

h0(W,OW (2KW + L)) = χ(OP )

+
1

2

(
ρ∗(2KP + δ) +

1

2

∑
(4− ri)Ei

)
×
(
ρ∗(KP + δ) +

1

2

∑
(2− ri)Ei

)
= χ(OP ) +K2

P +
3

2
KP δ +

1

2
δ2 − 1

8

∑
(ri − 2)(ri − 4).

�

Proof of Proposition 3:

a) From formulas (2) and (3),

t = K2
S − 2KW (KW + L)− 2L(KW + L)

= K2
S + 2χ(OS)− 2χ(OW )− 2h0(W,OW (2KW + L))− 4χ(OS) + 8χ(OW ).

b) (This is also a consequence of the holomorphic fixed point formula.) From (2),

4χ(OS)− 8χ(OW ) = 2L(KW + L) =

(
B′ +

t∑
1

Ai

)
(KW + L)

= B′(KW + L)− t =
1

2
π∗(B′)π∗(KW + L)− t = R′′KS − t.

Since S is of general type, KSR
′′ ≥ 0, thus

t ≥ 8χ(OW )− 4χ(OS).

c) This is immediate from a) and b). �

Proof of Proposition 4:

a) This inequality is given by the following three claims.
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Claim 1:
1− pa(B′) = 3χ(OW )− 3χ(OS)−K2

S −K2
W + 3h0(W,OW (2KW + L)).

Proof. Formulas (2) and (3) give

L2 −K2
W = [2χ(OS)− 4χ(OW )− LKW ]

− [h0(W,OW (2KW + L))− χ(OS) + χ(OW )−KWL],

thus
L2 = K2

W + 3χ(OS)− 5χ
(
OW )− h0(W,OW (2KW + L)

)
. (4)

Now we perform a straightforward calculation using the adjunction formula, (2),
Proposition 3, a) and (4):

2pa(B
′)− 2 = KWB

′ +B′2 = KW 2L+ (2L)2 + 2t

= 2L(KW + L) + 2t+ 2L2 = 2[2χ(OS)− 4χ(OW )]

+ 2[K2
S + 6χ(OW )− 2χ(OS)− 2h0(W,OW (2KW + L))]

+ 2[K2
W + 3χ(OS)− 5χ(OW )− h0(W,OW (2KW + L))]

= 2K2
S + 2K2

W + 6χ(OS)− 6χ(OW )− 6h0(W,OW (2KW + L)). �

Denote by τ the number of rational curves of B′.

Claim 2:
1− pa(B′) ≤ τ.

Proof. Write

B′ =

τ∑
1

B′i +

h∑
τ+1

B′i

as a decomposition of B′ in (smooth) connected components such that B′i, i ≤ τ, are
the rational ones. The adjunction formula gives

2pa(B
′)− 2 =

h∑
1

(
KWB

′
i +B′2i

)
=

τ∑
1

(2g(B′i)− 2) +
h∑
τ+1

(2g(B′i)− 2) ≥ −2τ. �

Claim 3:

τ ≤ 8

(
χ(OS)− 1

9
K2
S

)
.

Proof. Since B′ does not contain (−2)-curves and it is contained in the branch locus
of the cover π : V →W, then each rational curve in B′ corresponds to a rational curve
in S. Now the result follows from Proposition 5 below. �

Therefore 1− pa(B′) ≤ 8
(
χ(OS)− 1

9K
2
S

)
and using Claim 1 we obtain the desired

inequality.

b) Proposition 3, a) says that

K2
V = K2

S − t = 2χ(OS)− 6χ(OW ) + 2h0
(
W,OW (2KW + L)

)
.
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The second Betti number b2 of a surface X satisfies

b2(X) = 12χ(OX)−K2
X + 4q(X)− 2.

Therefore

b2(V ) = 10χ(OV ) + 6χ(OW ) + 4q(V )− 2− 2h0(W,OW (2KW + L)).

Since b2(V ) ≥ b2(W ), one has the result. �

Proposition 5 ([13, Proposition 2.1.1])

Let X be a minimal surface of non-negative Kodaira dimension. Then the number
of disjoint smooth rational curves in X is bounded by

8

(
χ(OX)− 1

9
K2
X

)
.

2.3 Surfaces with an involution and q = 1

Let S be a surface of general type with q = 1. Then the Albanese variety of S is an
elliptic curve E and the Albanese map is a connected fibration (see e.g. [2] or [1]).

Suppose that S has an involution i. Then i preserves the Albanese fibration (be-
cause q(S) = 1) and so we have a commutative diagram

V
h−−−−→ S −−−−→ E

π

y yp y
W −−−−→ S/i −−−−→ ∆

(5)

where ∆ is a curve of genus ≤ 1. Denote by

fA : W → ∆

the fibration induced by the Albanese fibration of S.
Recall that

ρ : W → P

is the projection of W onto its minimal model P and

B := ρ(B),

where B := B′ +
∑t

1Ai ⊂W is the branch locus of π. Let

B′ := ρ(B′) and Ai = ρ(Ai).

When B has only negligible singularities the map ρ contracts only exceptional
curves contained in fibres of fA. In fact otherwise there exists a (−1)-curve J ⊂ W
such that JB = 2 and π∗(J) is transverse to the fibres of the (genus 1 base) Albanese
fibration of S. This is impossible because π∗(J) is a rational curve. Moreover ρ con-
tracts no curve meeting

∑
Ai, thus the singularities of B are exactly the singularities

of B′, i.e. B′
⋂∑

Ai = ∅. We denote the image of fA on P by fA.
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If ∆ ∼= P1 then the double cover E → ∆ is ramified over 4 points pj of ∆, thus
the branch locus B′ +

∑t
1Ai is contained in 4 fibres

F jA := f∗A(pj), j = 1, ..., 4,

of the fibration fA. Hence by Zariski’s Lemma (see e.g. [1]) the irreducible components

B′i of B′ satisfy B′2i ≤ 0. If B has only negligible singularities then also B′
2 ≤ 0. Since

π∗(F jA) has even multiplicity, each component of F jA which is not a component of the
branch locus B′ +

∑t
1Ai must be of even multiplicity.

3. List of possibilities

From now on S is a smooth minimal surface of general type with pg = q = 1 having
an involution i such that the bicanonical map φ2 of S is not composed with i. Notice
that then 2 ≤ K2

S ≤ 9, by the Debarre’s inequality for an irregular surface
(
K2
S ≥ 2pg

)
and by the Miyaoka-Yau inequality

(
K2
S ≤ 9χ(OS)

)
.

Recall from Section 2.2 that

h0(W,OW (2KW + L)) 6= 0,

where W is the minimal resolution of S/i and L ≡ 1
2B is the line bundle which

determines the double cover V →W.
Let P be a minimal model of W and δ, B ≡ 2δ and the numbers ri be as de-

fined in Section 2.2. Recall that t denotes the number of nodes of S/i. Notice that
pg(P ) ≤ pg(S) = 1 and q(P ) ≤ q(S) = 1.

In the next sections the following result is useful:

Proposition 6 ([21])

Let S be a minimal smooth surface of general type and C ⊂ S be a disjoint union
of smooth elliptic curves. Then

−C2 ≤ 36χ(OS)− 4K2
S .

Proof. This follows from the inequality of [21, Corollary 7.8], using KC + C2 =
2pa(C)− 2 = 0. �

3.1 The case Kod(S/i) = 0

Here we give a list of possibilities for the case Kod(S/i) = 0.

Theorem 7

Let S and P be as above. If Kod(P ) = 0, only the following cases can occur:

a) P is an Enriques surface and

· {ri 6= 2} = {4}, B2
= 0, t− 2 = K2

S ∈ {2, . . . , 7}, or

· {ri 6= 2} = {4, 4}, B2
= 8, t = K2

S ∈ {4, . . . , 8}, or
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· {ri 6= 2} = {6}, B2
= 16, t = K2

S ∈ {4, . . . , 8};

b) P is a bielliptic surface and

· {ri 6= 2} = ∅, B2
= 8, t = 0, K2

S = 4, or

· {ri 6= 2} = {4}, B2
= 16, t+ 6 = K2

S = 6 or 7, or

· {ri 6= 2} = {4, 4}, B2
= 24, t = 0, K2

S = 8, or

· {ri 6= 2} = {6}, B2
= 32, t = 0, K2

S = 8.

Furthermore, there are examples for

· a) with K2
S = 8;

· b) with K2
S = 4, 6, 7 or 8.

Proof. It is easy to see that P cannot be a K3 surface: in this case we get from
Proposition 4, b) that

K2
W ≥ 2h0(W,OW (2KW + L))− 2,

which implies h0(W,OW (2KW + L)) = 1 and K2
W = 0. This contradicts the fact∑

(ri − 2) = 4 6= 0, given by Proposition 2, a).
So, from the classification of surfaces (see e.g. [2] or [1]), pg(P ) = q(P ) = 0 or

pg(P ) = 0, q(P ) = 1 (notice that pg(P ), q(P ) ≤ 1), i.e. P is an Enriques surface or a
bielliptic surface.

a) Suppose P is an Enriques surface: Proposition 4, a) implies that
h0(W,OW (2KW +L)) ≤ 3, with equality holding only if K2

W = 0. In this case the
branch locus B is smooth, i.e.

∑
(ri − 2) = 0, which contradicts Proposition 2,

a). Therefore h0(W,OW (2KW + L)) = 1 or 2.

Now the only possibilities allowed by Propositions 2 and 3, a), b) are:

1)
∑

(ri − 2) = 2, B
2

= 0, t = K2
S + 2 ≥ 4;

2)
∑

(ri − 2) = 4, B
2

= 8 or 16, t = K2
S ≥ 4.

Moreover, if a nodal curve Ai ⊂ B is not contracted to a point, then it is
mapped onto a nodal curve of the Enriques surface P. Indeed, from the adjunction
formula, KWAi = 0, which means that Ai does not intersect any (−1)-curve of W.

An Enriques surface has at most 8 disjoint (−2)-curves. In case 1), the non-
negligible singularities of B are a 4-uple or (3, 3)-point, hence t ≤ 9. In case 2),
t = 9 only if B has a (3, 3)-point, which implies that S has an elliptic curve
with negative self-intersection. Since in this case K2

S = 9, this is impossible from
Proposition 6, therefore t ≤ 8.

b) Suppose P is a bielliptic surface: from Proposition 4, a), one has
h0(W,OW (2KW + L)) ≤ 4, with equality holding only if K2

W = 0. In this case
we get from Proposition 2, a) that∑

(ri − 2) = 2h0(W,OW (2KW + L))− 2 = 6 6= 0,

which contradicts K2
W = 0. Hence h0(W,OW (2KW + L)) ≤ 3.
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As in a), if a (−2)-curve Ai ⊂ B is not contracted to a point, then it is mapped
onto a (−2)-curve of P. But a bielliptic surface has no (−2)-curves (from Propo-
sition 5), thus the nodal curves of B are contracted to singularities of B.

Using Propositions 2 and 3, a) one obtains the following possibilities:

1)
∑

(ri − 2) = 0, B
2

= 8, K2
S = t+ 4;

2)
∑

(ri − 2) = 2, B
2

= 16, K2
S = t+ 6;

3)
∑

(ri − 2) = 4, B
2

= 24, K2
S = t+ 8;

4)
∑

(ri − 2) = 4, B
2

= 32, K2
S = t+ 8.

In case 1), t = 0, because B has only negligible singularities. In case 2), B can
have a (3, 3)-point, thus t = 0 or 1. In case 3), t = 1 only if B has a (3, 3)-
point, but then K2

S = 9 and S has an elliptic curve, which is impossible from
Proposition 6. Finally, in case 4), the only non-negligible singularity of B is a
point of multiplicity 6 (from Proposition 2, b)), thus t = 0.

The examples are constructed in Sections 4.3, 4.5, 4.6, 4.7 and 4.9. �

3.2 The case Kod(S/i) = 1

Now we give a list of possibilities for the case Kod(S/i) = 1.

Theorem 8

Let S and P be as above. If Kod(P ) = 1, only the following cases can occur:

a) χ(OP ) = 2, q(P ) = 0 and

· {ri} = ∅, KPB = 4, B
2

= −32, t− 8 = K2
S ∈ {4, . . . , 8};

b) χ(OP ) = 1, q(P ) = 0 and

· {ri 6= 2} = ∅, KPB = 2, B
2

= −12, t− 2 = K2
S ∈ {2, 3, 4}, or

· {ri 6= 2} = ∅, KPB = 4, B
2

= −16, t = K2
S ∈ {4, . . . , 8}, or

· {ri 6= 2} = {4}, KPB = 2, B
2

= −4, t = K2
S ∈ {4, . . . , 8};

c) χ(OP ) = 1, q(P ) = 1 and

· {ri 6= 2} = ∅, KPB = 2, B
2

= −12, t− 2 = K2
S ∈ {2, . . . , 6}, or

· {ri} = ∅, KPB = 4, B
2

= −16, t = K2
S ∈ {4, . . . , 8}.

d) χ(OP ) = 0, q(P ) = 1 and

· {ri 6= 2} = ∅, KPB = 2, B
2

= 4, t = 0, K2
S = 6, or

· {ri 6= 2} = ∅, KPB = 4, B
2

= 0, t = 0, K2
S = 8, or

· {ri 6= 2} = {4}, KPB = 2, B
2

= 12, t = 0, K2
S = 8.
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Furthermore, there exist examples for

· a) with K2
S = 8;

· b) with K2
S = 4, 6 or 7;

· c) with K2
S = 8;

· d) with K2
S = 6 or 8.

Proof. Since pg(P ), q(P ) ≤ 1, we have the following cases:

a) χ(OP ) = 2, q(P ) = 0.
From Proposition 4, b) it is immediate that h0(W,OW (2KW + L)) = 1 and

K2
W = 0 (thus B is smooth). Proposition 2 gives KPB = 4 and B

2
= −32.

If K2
S = 9, then the number of nodal curves of B is t = K2

S + 8 = 17, from
Proposition 3, a). This is impossible because Proposition 5 implies t ≤ 16.
Proposition 3, c) gives K2

S ≥ 4.

b) χ(OP ) = 1, q(P ) = 0.
Proposition 4, a) implies h0(W,OW (2KW +L)) ≤ 3, with equality only if K2

S = 9
and K2

W = 0 (hence
∑

(ri − 2) = 0 and W = P ). In this case Proposition 2, a)
implies KWB

′ = 6 and then B′ 6= ∅. Now pa(B
′) = 1 (see Claim 1 in the proof of

Proposition 4), thus B′ has a rational or elliptic component. But Propositions 5
and 6 imply that a minimal surface of general type with χ = 1 and K2 = 9
contains no rational or elliptic curves. Therefore h0(W,OW (2KW + L)) ≤ 2.

Since Kod(P ) = 1, KPB = 0 implies that B is contained in the elliptic fibration
of P and then S has an elliptic fibration, which is impossible because S is of
general type.

So KPB 6= 0. Now Propositions 2 and 3, a) give the following possibilities:

1)
∑

(ri − 2) = 0, KPB = 2, B
2

= −12, t = K2
S + 2;

2)
∑

(ri − 2) = 0, KPB = 4, B
2

= −16, t = K2
S ;

3)
∑

(ri − 2) = 2, KPB = 2, B
2

= −4, t = K2
S .

In case 1), t > 6 implies B′
2

= B
2

+ 2t > 0, a contradiction (see Section 2.3).

Similarly t ≤ 8, in case 2). Proposition 3, c) gives K2
S ≥ 4, in this case.

In case 3), the quadruple or (3, 3)-point of B gives rise to an elliptic curve in S,
thus K2

S 6= 9, from Proposition 6. Again Proposition 3, c) implies K2
S ≥ 4.

c) χ(OP ) = 1, q(P ) = 1.
This is analogous to the proof of b): just notice that Proposition 4, b) excludes
case 3) and implies K2

W = 0 in case 2); in case 1) is no longer true that t ≤ 6,
instead use Proposition 5 to obtain t ≤ 8 (thus K2

S ≤ 6).

d) χ(OP ) = 0, q(P ) = 1.
As in b), one shows that h0(W,OW (2KW +L)) ≤ 3 and KPB 6= 0. Propositions 2
and 3, a) give the following possibilities:
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1)
∑

(ri − 2) = 0, KPB = 2, B
2

= 4, t = K2
S − 6;

2)
∑

(ri − 2) = 0, KPB = 4, B
2

= 0, t = K2
S − 8;

3)
∑

(ri − 2) = 2, KPB = 2, B
2

= 12, t = K2
S − 8.

As in the proof of b), the existence of a quadruple or (3, 3)-point on B implies
K2
S 6= 9, in case 3).

Consider now cases 1) and 2). From Proposition 5, P has no smooth rational
curves. Since pg(P ) = 0 and q(P ) = 1, the Albanese variety of P is an elliptic
curve (see e.g. [2]). Therefore any singular rational curve D of B is necessarily
contained in a fibre of the Albanese fibration of P and as such satisfies D2 ≤ 0.
So a desingularization D̂ of D verifies D̂2 ≤ −4 and thus B has no (−2)-curves,
i.e. t = 0.

The examples are given in Sections 4.1, 4.2, 4.4, 4.6, 4.7 and 4.8. �

3.3 The case Kod(S/i) = 2

Finally we give a list of possibilities for the case Kod(S/i) = 2.

Theorem 9

Let S and P be as above. If Kod(P ) = 2, then B has at most negligible singula-
rities and only the following cases can occur:

a) χ(OP ) = 2, q(P ) = 0 and

· KPB = 0, B
2

= −24, t = 12, K2
S = 2K2

P , K
2
P = 2, 3, 4, or

· KPB = 2, B
2

= −28, t− 10 + 2K2
P = K2

S ∈ {2K2
P + 2, . . . , 2K2

P + 4}, K2
P = 1, 2;

b) χ(OP ) = 1, q(P ) = 1 and

· KPB = 0, B
2

= −8, t = 4, K2
S = 2K2

P , K
2
P = 2, 3, 4, or

· KPB = 2, B
2

= −12, K2
P = 2, t+ 2 = K2

S ∈ {6, 7, 8};
c) χ(OP ) = 1, q(P ) = 0 and

· KPB = 0, B
2

= −8, t = 4, K2
S = 2K2

P , K
2
P = 1, . . . , 4, or

· KPB = 2, B
2

= −12, t+ 2K2
P − 2 = K2

S ∈ {2K2
P + 2, . . . , 2K2

P + 4}, K2
P = 1, 2,

or

· KPB = 4, B
2

= −16, K2
P = 1, t+ 2 = K2

S ∈ {6, 7, 8}.

Moreover, there exist examples for

· a) with K2
S = 4, 6, 7 or 8;

· b) with K2
S = 4.

Proof.



Involutions on surfaces with pg = q = 1 93

Claim : If KPB = 0, then B = B is a disjoint union of nodal curves.

Proof. Since P is minimal of general type, KP is nef and big and therefore every
component of B is a nodal curve (i.e. a (−2)-curve) and the intersection form on the
components of the reduced effective divisor B is negative definite by the Algebraic
Index Theorem. The claim is true if each connected component of B is irreducible.
Let C be a connected component of B. Then, if C is not irreducible, there is one
component θ of C such that θ(C − θ) = 1 and this implies that B has a (−3)-curve,
contradicting B ≡ 0 (mod 2). �

Since pg(P ), q(P ) ≤ 1 and pg(P ) ≥ q(P ), we have only the following three cases:

a) χ(OP ) = 2, q(P ) = 0.
Propositions 2, a) and 4, b) give:

h0(W,OW (2KW + L)) = K2
P +KP δ +

1

2

∑
(ri − 2)− 1,

h0(W,OW (2KW + L)) ≤ 1

2
K2
W + 1 ≤ 1

2
K2
P + 1.

From this we get
1

2
K2
P +KP δ +

1

2

∑
(ri − 2) ≤ 2, (6)

with equality only if K2
W = K2

P . Since K2
P > 0, KP δ = 0 or 1.

If KP δ = 1, then
∑

(ri − 2) = 0 and K2
P = 1 or 2.

If KP δ = 0, then
∑

(ri−2) = 0, from the Claim above. As K2
S ≤ 9, Proposition 3

implies h0(W,OW (2KW + L)) ≤ 3.

Now the result follows from Propositions 2 and 3, a). Notice that Proposition 2

gives B
2 ≥ −2(12+2KP δ). This implies t ≤ 12+2KP δ, because, since q(P ) = 0

and B has only negligible singularities, every component of B has non-positive
self-intersection.

b) χ(OP ) = 1, q(P ) = 1.
Propositions 2, a) and 4, b) give:

h0(W,OW (2KW + L)) = K2
P +KP δ +

1

2

∑
(ri − 2),

h0(W,OW (2KW + L)) ≤ 1

2
K2
W + 2 ≤ 1

2
K2
P + 2,

thus equation (6) is still valid here, which implies KP δ = 0 or 1. As
pg(P ) = q(P ) = 1, then K2

P ≥ 2.

If KP δ = 1, then K2
P = 2 and

∑
(ri − 2) = 0, from equation (6). Since then

h0(W,OW (2KW + L)) = 3, Proposition 2, b) implies B
2

= −12.
If KP δ = 0, then B is a disjoint union of (−2)-curves, from the Claim above.
Hence

∑
(ri − 2) = 0, h0(W,OW (2KW + L)) = K2

P and K2
P = 2, 3 or 4. In this

case Proposition 2, b) gives δ2 = −2. Therefore B
2

= −8 and then t = 4, from
the Claim above.
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Now the result follows from Proposition 3, a) (notice that K2
P = 2 implies t 6= 7,

by Theorem 5).

c) χ(OP ) = 1, q(P ) = 0.

Propositions 2, a), 3, c) and 4, a) imply

h0(W,OW (2KW + L)) = KP (KP + δ) +
1

2

∑
(ri − 2) ≤ 4 (7)

and

h0(W,OW (2KW + L)) ≤ 3 +
1

3
K2
W , (8)

with equality only if K2
S = 9. As K2

P ≥ 1 and K2
W ≤ K2

P , this implies KP δ ≤ 2.

• Suppose KP δ = 0.

We have
∑

(ri − 2) = 0, by the Claim above. Hence

h0(W,OW (2KW + L)) = K2
P ≤ 4,

by (7). Now from Proposition 2, b) and Proposition 3, b), we have B
2

= (2δ)2 =
−8 and t ≥ 4. Thus t = 4 and, using Proposition 3, a), we conclude that

K2
S = 2K2

P , 1 ≤ K2
P ≤ 4.

• Suppose KP δ = 1.

Then h0(W,OW (2KW + L)) = 4 only if K2
S = 9, from (7) and (8). In this case

Propositions 3, b) and 2, a) imply K2
P = 3 and B contains an elliptic curve,

which contradicts Proposition 6.

If K2
P = 1/2

∑
(ri − 2) = 1, then K2

W = 0 and K2
S = 9, by (8). The quadruple

or (3, 3)-point of B gives rise to an elliptic curve in S, which is impossible from
Proposition 6.

Now using (7), Proposition 2, b) and Proposition 3, we obtain

K2
P = 2,

∑
(ri − 2) = 0, δ2 = −3, t = K2

S − 2 ≥ 4

or
K2
P = 1,

∑
(ri − 2) = 0, δ2 = −3, t = K2

S ≥ 4.

Hence B
2

= −12 and then t ≤ 6, because, since q(P ) = 0 and B has only
negligible singularities, every component of B has non-positive self-intersection.

• Suppose KP δ = 2.

Then K2
P ≤ 2, from (7), and h0(W,OW (2KW + L)) ≤ 3, from (8). The only

possibility allowed by (7), Proposition 2, b) and Proposition 3 is:

K2
P = 1, δ2 = −4, t = K2

S − 2 ≥ 4.

It remains to be shown that K2
S 6= 9. In this case, the curve B has at least 8

disjoint components contained in a fibration fA of P (see Section 2.3). These are
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independent in Pic(P ) from a general fibre of fA and from KP , so Pic(P ) has 10
independent classes. This is a contradiction because the second Betti number
of P is

b2(P ) = 12χ(OP )−K2
P + 4q(P )− 2 = 9.

The examples can be found in Sections 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 and 4.9. �

4. (Bi)double cover examples

The next sections contain constructions of minimal smooth surfaces of general type S
with pg = q = 1 which present examples for cases a), b), ... of Theorems 7, 8 and 9.
Only the existence of case c) of Theorem 9 remains an open problem.

Each example is obtained as the smooth minimal model of a bidouble cover of a
ruled surface (irregular only in Sections 4.8 and 4.9).

The verifications that the surfaces S and the corresponding quotient surfaces are
as claimed are not written here. These can be found in the author’s Ph.D. thesis,
available at http://home.utad.pt/~crito .

A bidouble cover is a finite flat Galois morphism with Galois group Z2
2. Follow-

ing [7] or [14], to define a bidouble cover cover ψ : V → X, with V, X smooth surfaces,
it suffices to present:

· smooth divisors D1, D2, D3 ⊂ X with pairwise transverse intersections and no com-
mon intersection;

· line bundles L1, L2, L3 such that 2Lg ≡ Dj + Dk for each permutation (g, j, k) of
(1, 2, 3).

If Pic(X) has no 2-torsion, the Li’s are uniquely determined by the Di’s.
Let N := 2KX +

∑3
1 Li. One has:

pg(V ) = pg(X) +

3∑
1

h0
(
X,OX(KX + Li)

)
,

χ(OV ) = 4χ(OX) +
1

2

3∑
1

Li(KX + Li),

2KV ≡ ψ∗ (N)

and

H0
(
V,OV (2KV )

)
' H0

(
X,OX(N)

)
⊕

3⊕
i=1

H0
(
X,OX(N − Li)

)
.

The bicanonical map of V is composed with the involution ig, associated to Lg,
if and only if

h0
(
X,OX(2KX + Lg + Lj)

)
= h0

(
X,OX(2KX + Lg + Lk)

)
= 0.

For more information on bidouble covers see [7] or [14].
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Denote by i1, i2, i3 the involutions of V corresponding to L1, L2, L3, respectively.
In each example we give the invariants of the quotient surfaces Wj := V/ij , j = 1, 2, 3.

We use the following:

Notation 10

Let p0, . . . , pj , . . . , pj+s ∈ P2 be distinct points and define Ti as the line through
p0 and pi, i = 1, . . . , j. We say that a plane curve is of type

d(m, (n, n)jT , r
s)

if it is of degree d and if it has: an m-uple point at p0, an (n, n)-point at p1, . . . , pj , an
r-uple point at pj+1, . . . , pj+s and no other non-negligible singularities. The index T is
used if Ti is tangent to the (n, n)-point at pi.

An obvious generalization is used if there are other singularities.

Let p′1, . . . , p
′
j be the infinitely near points to p1, . . . , pj , respectively. We denote

by
µ : X → P2

the blow-up with centers

p0, p1, p
′
1, . . . , pj , p

′
j , pj+1, . . . , pj+s

and by
E0, E1, E

′
1, . . . , Ej , E

′
j , Ej+1, . . . , Ej+s

the corresponding exceptional divisors (with self-intersection −1).
The notation ·̃ stands for the total transform µ∗(·) of a curve.
The letter T is reserved for a general line of P2.

The genus of a general Albanese fibre of S is denoted by g.

4.1 K2 = 8, g = 3,
S/i1 ruled, S/i2 rational, Kod(S/i1) = 1

Let Q be a reduced curve of type 4(0, (2, 2)2T ), i.e. Q is the union of two conics tangent
to the lines T1 and T2 at p1, p2. Let C be another non-degenerate conic tangent to T1,
T2 at p1, p2 and let T3, . . . , T6 6= T1, T2 be distinct lines through p0 ∈ T1

⋂
T2.

Set
D1 := T̃1 + · · ·+ T̃6 −

∑2
1(Ei + E′i)− 6E0,

D2 := Q̃−
∑2

1(Ei + 3E′i),

D3 := C̃ −
∑2

1(Ei + E′i)

and let V → X be the bidouble cover determined by D1, D2, D3. One has pg(V ) =
χ(OV ) = 1 and the bicanonical map of V is composed with the involution i2 and is
not composed with the involutions i1 and i3. The quotients Wj := V/ij , j = 1, 2, 3,
satisfy:

· W1 is ruled, q(W1) = 1;
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· W2 is rational;

· Kod(W3) = pg(W3) = 1, q(W3) = 0.

Moreover K2
S = 8, where S is the minimal model of V. The pencil of conics tangent to

T1, T2 at p1, p2 induces the Albanese fibration of S, which is of genus 3.
This gives an example for case a) of Theorem 8.
The surface S is a Du Val double plane of type III described in [16].

4.2 K2 = 6, g = 4,
Kod(S/i1) = 2, S/i2 rational, Kod(S/i3) = 1

From Proposition 12 in Appendix A.1, there is a pencil l, with no base component,
of curves of type 7(3, (2, 2)5T ). Let Q be a general element of this pencil and C be a
reduced curve of type 4(2, (1, 1)5T ).

Set
D1 := T̃1 + · · ·+ T̃4 −

∑4
1(Ei + E′i) + (E5 − E′5)− 4E0,

D2 := T̃5 + Q̃−
∑4

1(Ei + 3E′i)− 3E5 − 3E′5 − 4E0,

D3 := C̃ −
∑5

1(Ei + E′i)− 2E0

and let V → X be the bidouble cover determined by D1, D2, D3. One has pg(V ) =
χ(OV ) = 1 and the bicanonical map of V is composed with the involution i2 and is
not composed with the involutions i1 and i3. The quotients Wj := V/ij satisfy:

· Kod(W1) = 2, pg(W1) = 1, q(W1) = 0;

· W2 is rational;

· Kod(W3) = 1, pg(W3) = 0, q(W3) = 1.

MoreoverK2
S = 6, where S is the minimal model of V. The pencil l induces the Albanese

fibration of S, which is of genus 4.
This is an example for Theorems 8, d) and 9, a).
One can verify that S is a Du Val double plane obtained imposing a 4-uple point

to the branch locus of a Du Val’s ancestor of type D5 (cf. [19]).

4.3 K2 = 4, g = 3,
Kod(S/i1) = 2, S/i2 rational, Kod(S/i3) = 0

From Proposition 12, there is a pencil l, with no base component, of curves of type
6(2, (2, 2)4T ), through points p0, . . . , p4 (i.e. of plane curves of degree 6 with a double
point at p0 and a tacnode at pi with tangent line through p0, pi, i = 1, . . . , 4). Let Q
be a general element of this pencil, C be a reduced curve of type 4(2, (1, 1)4T ) and set

D1 := T̃1 + · · ·+ T̃4 −
∑4

1(Ei + E′i)− 4E0,

D2 := Q̃−
∑4

1(Ei + 3E′i)− 2E0,

D3 := C̃ −
∑4

1(Ei + E′i)− 2E0.
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Let V → X be the bidouble cover determined by D1, D2, D3 and S be the minimal
model of V. One has pg(S) = χ(OS) = 1, K2

S = 4 and the bicanonical map of V is
composed with the involution i2 and is not composed with the involutions i1 and i3,
associated to the bidouble cover. The quotients Wj := V/ij satisfy:

· Kod(W1) = 2, pg(W1) = 1, q(W1) = 0;

· W2 is rational;

· Kod(W3) = 0, pg(W3) = 0, q(W3) = 1.

The pencil l induces the (genus 3) Albanese fibration of S.
This gives an example for Theorems 7, b) and 9, a).
One can verify that S is a Du Val double plane obtained imposing two 4-uple

points to the branch locus of a Du Val’s ancestor of type D4 (cf. [19]).

4.4 K2 = 4, g = 2,
S/i1 ruled, Kod(S/i2) = 1, Kod(S/i3) = 2

We recall Notation 10.
This section contains the construction of a surface of general type S with

pg = q = 1, K2 = 4, g = 2 and bicanonical map φ2 of degree 2.
By Proposition 12 in Appendix A.1, there is a pencil l, with no base component, of

curves of type 6(2, (2, 2)4T ). Let Q1 be a general element of this pencil, Q2 be a smooth
curve of type 3(1, (1, 1)4T ) and Q := Q1 + Q2. Let T5 be a line through p0 transverse
to Q and set

D1 := T̃1 + Q̃− 4E1 − 4E′1 −
∑4

2(3Ei + 3E′i)− 4E0,

D2 := T̃2 + · · ·+ T̃5 −
∑4

2(Ei + E′i)− 4E0,

D3 :=
∑4

2(Ei − E′i).

Let ψ : V → X be the bidouble cover determined by D1, D2, D3. The bicanonical map
of V is composed with the involution i1 and is not composed with the involutions i2
and i3. The quotients Wj := V/ij satisfy:

· W1 is ruled, q(W1) = 1;

· Kod(W2) = 1, pg(W2) = q(W2) = 0;

· Kod(W3) = 2, pg(W3) = 1, q(W3) = 0.

The surface S is the minimal model of V. The Albanese fibration of S is induced
by the pullback of the pencil of lines through p0. It is of genus 2.

This gives an example for Theorems 8, b) and 9, a).

Let N be as above. One has deg(φ2) = 2 because the system |ψ∗(N)| is strictly
contained in the bicanonical system of V, φ2 is composed with i1 and the map X 99K P2

induced by |N | is birational (this can be verified using the Magma function IsInver-
tible).



Involutions on surfaces with pg = q = 1 99

4.5 K2 = 8, g = 3,
Kod(S/i1) = 2, Kod(S/i2) = 0, Kod(S/i3) = 0

A smooth projective surface S of general type is said to be a standard isotrivial fibration
if there exists a finite group G which acts faithfully on two smooth projective curves C
and F so that S is isomorphic to the minimal desingularization of T := (C × F )/G.
The paper [17] contains examples of such surfaces with K2 = 8.

This section contains the construction of the first surface of general type with
pg = q = 1, K2 = 8 and g = 3 which is not a standard isotrivial fibration.

Let G be a curve of type 6(2, (2, 2)4T ) and C be a curve of type 8(4, (2, 2)4T , (3, 3))
such that G+C is reduced and the (3, 3)-point of C is tangent to G. The existence of
these curves is shown in Appendix A.2.

Set

D1 := T̃1 + T̃2 −
∑2

1 2E′i + (E5 − E′5)− 2E0,

D2 := G̃−
∑4

1(2Ei + 2E′i)− (E5 + E′5)− 2E0,

D3 := T̃3 + T̃4 + C̃ −
∑2

1(2Ei + 2E′i)−
∑4

3(2Ei + 4E′i)− (3E5 + 3E′5)− 6E0

and let V → X be the bidouble cover determined by D1, D2, D3. The bicanonical map
of V is not composed with any of the involutions i1, i2, i3, associated to the bidouble
cover. The quotients Wj := V/ij satisfy:

· Kod(W1) = 2, pg(W1) = 1, q(W1) = 0;

· Kod(W2) = 0, pg(W2) = 0, q(W2) = 1;

· Kod(W3) = 0, pg(W3) = 0, q(W3) = 0.

Let S be the minimal model of V. One has pg(S) = q(S) = 1 and K2
S = 8. The

Albanese fibration of S is induced by a pencil of curves of type 14(6, (4, 4)4T , (4, 4)),
which contains an element equal to G+C (see Appendix A.2). From [18, Theorem 3.2],
the existence of such reducible fibre implies that S is not a standard isotrivial fibration,
so this is not one of Polizzi’s examples.

This is an example for Theorems 7 a), b) and 9 a).

4.6 K2 = 7, g = 3,
Kod(S/i1) = 2, Kod(S/i2) = 1, Kod(S/i3) = 0

This section contains the construction of a bidouble cover V → X, with X rational,
such that the minimal model S of V is a surface of general type with K2 = 7, pg = q = 1
and g = 3 having birational bicanonical map.

From Appendix A.2, there exist a curve C of type 7(3, (2, 2)4T , 3) (i.e. C is a plane
curve of degree 7 with triple points at p0, p5 and a tacnode at pi tangent to the line Ti
through p0, pi, i = 1, . . . , 4) and a curve G of type 6(2, (2, 2)4T , 1), both through points
p0, . . . , p5, such that C +G is reduced.
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Set

D1 := T̃1 + T̃2 + T̃3 −
∑3

1 2E′i + E5 − 3E0,

D2 := T̃4 + G̃−
∑3

1(2Ei + 2E′i)− (2E4 + 4E′4)− E5 − 3E0,

D3 := C̃ −
∑4

1(2Ei + 2E′i)− 3E5 − 3E0

and let ψ : V → X be the bidouble cover determined by D1, D2, D3. The bicanonical
map of V is not composed with any of the involutions i1, i2, i3, associated to the
bidouble cover. The quotients Wj := V/ij , j = 1, 2, 3, satisfy:

· Kod(W1) = 2, pg(W1) = 1, q(W1) = 0;

· Kod(W2) = 1, pg(W2) = 0, q(W2) = 0;

· Kod(W3) = 0, pg(W3) = 0, q(W3) = 1.

One has pg(S) = χ(S) = 1 and K2
S = 7, where S is the minimal model of V. The

Albanese fibration of S is induced by the pencil of curves of type 6(2, (2, 2)4T ). It is of
genus 3.

This is an example for Theorems 7, b), 8, b) and 9, a).

It remains to verify that the bicanonical map of S is birational. Let N be as
above. The system |ψ∗(N)| is strictly contained in the bicanonical system of V. The
bicanonical map of V is not composed with any of the involutions i1, i2, i3, hence it
is birational if the map τ given by |N | = N1 + |N2| is birational. This is in fact the
case, see Appendix A.2, where Magma is used to show that the image of τ is of degree
7 = N2

2 .

4.7 K2 = 6, g = 3,
Kod(S/i1) = 2, Kod(S/i2) = 1, Kod(S/i3) = 0

One can obtain a construction analogous to the one in Section 4.6, but with K2
S = 6

instead: replace the triple point of C by a (2, 2)-point, tangent to G. Such a curve
exists, see Appendix A.2. With this change the branch locus in W3 has a 4-uple point
instead of a (3, 3)-point.

4.8 K2 = 8, g = 3,
Kod(S/i1) = 1, S/i2 ruled, Kod(S/i3) = 1

Here we give the construction of a surface of general type S, with K2 = 8, pg = q = 1
and g = 3, as a bidouble cover of a ruled surface Z with q(Z) = 1.

Let F1, . . . , F4 be disjoint fibres of the Hirzebruch surface F0 and Z → F0 be
the double cover with branch locus F1 + · · · + F4. Clearly Z is a ruled surface with
irregularity 1. Denote by γ the rational fibration of Z.

Let G,G1, . . . , G6 be distinct smooth elliptic sections of γ and Γ1, . . . ,Γ4 be dis-
tinct fibres of γ such that Γ1 + Γ2 ≡ 2Γ3 ≡ 2Γ4.

Set
D1 := Γ1 + Γ2,

D2 := G1 + · · ·+G4,

D3 := G5 +G6
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and

L1 := 3G+ Γ3 − Γ4,

L2 := G+ Γ4,

L3 := 2G+ Γ3.

The bidouble cover V → Z is determined by the curves Di and by the divisors Li. The
surface S is the minimal model of V.

The bicanonical map of V is not composed with any of the involutions i1, i2, i3,
associated to the bidouble cover. The quotients Wj := S/ij , j = 1, 2, 3, satisfy:

· Kod(W1) = 1, pg(W1) = 0, q(W1) = 1;

· W2 is ruled, q(W2) = 1;

· Kod(W3) = pg(W3) = q(W3) = 1.

This is an example for cases c) and d) of Theorem 8.

4.9 K2 = 4, g = 3,
S/i1 ruled, Kod(S/i2) = 0, Kod(S/i3) = 2

This section contains the construction of a bidouble cover V → Z, with Z ruled and
q(Z) = 1, such that the minimal model S of V is a surface of general type with K2 = 4,
pg = q = 1, g = 3 and that the bicanonical map φ2 of S is not composed with any of
the involutions i1, i2, i3 associated to the bidouble cover.

We use Notation 10.

Let Q1 be a general curve of type 5(1, (2, 2)3T ) (there is a pencil of such curves,
see Appendix A.1) and Q2 be a general curve of type 3(1, (1, 1)3T ), both through points
p0, . . . , p3.

Let

Q′1 := Q̃1 −
3∑
1

(2Ei + 2E′i)− E0 ≡ 5T̃ −
3∑
1

(2Ei + 2E′i)− E0,

Q′2 := Q̃2 −
3∑
1

(Ei + E′i)− E0 ≡ 3T̃ −
3∑
1

(Ei + E′i)− E0

and consider the double cover ψ : Z → X with branch locus

T̃1 + · · ·+ T̃4 −
3∑
1

2E′i − 4E0,

where T4 is a general line through p0.
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Let

Γ :=
1

2
ψ∗(T̃4 − E0), Γi :=

1

2
ψ∗(T̃i − E0),

C0 := ψ∗(E0),

ei :=
1

2
ψ∗(Ei − E′i),

e′i := ψ∗(E′i), i = 1, 2, 3,

and set
D1 := ψ∗(Q′1) ≡ 4C0 + 10Γ−

∑3
1(4ei + 4e′i),

D2 := ψ∗(Q′2) ≡ 2C0 + 6Γ−
∑3

1(2ei + 2e′i),

D3 := 0,

L1 := C0 + 3Γ−
∑3

1(ei + e′i),

L2 := 2C0 + 5Γ−
∑3

1(2ei + 2e′i),

L3 := 3C0 + 8Γ−
∑3

1(3ei + 3e′i).

The bidouble cover V → Z is determined by the curves Di and by the divisors Li. The
surface S is the minimal model of V.

The quotients Wj := V/ij , j = 1, 2, 3, satisfy:

· W1 is ruled, q(W1) = 1;

· Kod(W2) = 0, pg(W2) = 0, q(W2) = 1;

· Kod(W3) = 2, pg(W3) = 1, q(W3) = 1; the branch locus of the cover V → W3 is an
union of four (−2)-curves.

This is an example for Theorems 7, b) and 9, b).

A. Appendix: Construction of plane curves

A.1 Useful pencils

Here we show the existence of some pencils of plane curves that are useful on some of
the constructions of Section 4. Recall Notation 10.

Lemma 11

Let C ⊂ P2 be a smooth conic and p0 /∈ C, p1, . . . , p4 ∈ C be distinct points.
Consider the points p5, p6 ∈ C such that the lines through p0, p5 and p0, p6 are tangent
to C.

There exists a smooth curve Q of type 3(1, (1, 1)4T , 1
2), through p0, . . . , p6.

Proof. Let Cx, x ∈ P1, be a parametrization of the pencil of conics through p1, . . . , p4.
Let p1x, p

2
x be the points of Cx (not distinct if Cx is singular) such that the lines through

p0, p
1
x and p0, p

2
x are tangent to Cx.
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The correspondence
{p1x, p2x} ↔ x

gives a plane algebraic curve Q which is a double cover of P1. This cover is ramified
over four points, corresponding to the three degenerate conics which contain the points
p1, . . . , p4 plus the conic which contains p0. Therefore, by the Hurwitz formula, Q is a
cubic.

The conic through p0, . . . , p4 is not tangent to the line Ti (through p0, pi) at p0,
thus also Q is not tangent to Ti at p0, i = 1, . . . , 4. Since each conic Cx can be tangent
to Ti only at pi, i = 1, . . . , 4, then Q intersects Ti only at p0 and pi, i = 1, . . . , 4. This
means that Q is tangent to Ti at pi, i = 1, . . . , 4, and then Q is smooth. �

Proposition 12

In the notation of Notation 10, there exist pencils, without base components, of
plane curves of type:

[3] a) 5(1, (2, 2)3T );

b) 6(2, (2, 2)4T );

c) 7(3, (2, 2)5T );

d) 8(4, (2, 2)6T ).

Proof.

a) This is proved in [3]. Notice that we are imposing 19 conditions to a linear system
of dimension 20.

b) Let A(C) be an affine plane and a, b, c, d ∈ C\{0} be numbers such that a 6= c
and bc 6= ±ad. Consider the points of A :

p0 := (0, 0), p1 := (a, b), p2 := (c, d), p3 := (c,−d), p4 := (a,−b)

and let Ti be the line through p0 and pi, i = 1, . . . , 4. Let C1 be the conic through
p1, . . . , p4 tangent to T1, T4 and C2 be the conic through p1, . . . , p4 tangent to
T2, T3.

The curves
2C1 + T2 + T3 and 2C2 + T1 + T4

generate a pencil whose general member is a curve of type 6(2, (2, 2)4T ).

c) Let C ⊂ P2 be a non-degenerate conic and p0 6∈ C, p1, . . . , p5 ∈ C be distinct
points such that the lines T1, T5, defined by p0, p1 and p0, p5, are tangent to C.
From Lemma 11, there exists a curve Q of type 3(1, (1, 1)4T , 1), through p0, . . . , p5,
respectively.

The curves
2C + T2 + T3 + T4 and 2Q+ T5

generate a pencil whose general member is a curve of type 7(3, (2, 2)5T ).

d) This is analogous to the previous case, but now the pencil is generated by

2C + T2 + · · ·+ T5 and 2Q+ T1 + T6. �
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A.2 Constructions using Magma

In this appendix we construct some plane curves using the Computational Algebra
System Magma ([4]). We use the Magma procedure LinSys, defined in [19]. This
procedure calculates the linear system L of plane curves of degree d, in an affine plane
A, having singular points pi of order (m1i,m2i) with tangent direction given by the
slope tdi.

Consider, in a affine plane A, the points

p0 := (0, 0), p1 := (2, 2), p2 := (−2, 2), p3 := (3, 1), p4 := (−3, 1).

From Appendix A.1, there exists a pencil of curves of type 6(2, (2, 2)4T ), with singular-
ities at p0, . . . , p4, respectively. Let G be the element of this pencil which contains the
point p5 := (0, 5). Using the above Magma procedure, it is easy to verify the following
(the respective code lines are available at http://home.utad.pt/~crito/thesis.html ):

· the curve G is reduced and the tangent line to G at p5 is horizontal;
· there exists a reduced curve C of type 8(4, (2, 2)4T , (3, 3)), singular at p0, . . . , p5, such
that the (3, 3)-point is tangent to G. Moreover, G+C is a reduced element of a pencil
of curves of type 14(6, (4, 4)4T , (4, 4));
· there exists a reduced curve of type 7(3, (2, 2)4T , (2, 2)), singular at p0, . . . , p5, such
that the (2, 2)-point is tangent to G.

Now we will see that p5 can be chosen such that

· there exist reduced curves C1 of type 7(3, (2, 2)4T , 3) and C2 of type 6(2, (2, 2)4T , 1),
both through p0, . . . , p5, such that C1 + C2 is reduced and the singularity of C1 + C2

at p5 is ordinary.

> A<x,y>:=AffineSpace(Rationals(),2);

> p:=[A![2,2],A![-2,2],A![3,1],A![-3,1],Origin(A)];

> d:=7;m1:=[2,2,2,2,3];m2:=[2,2,2,2];

> td:=[p[i][2]/p[i][1]:i in [1..#m2]];

> LinSys(A,d,p,m1,m2,td,~L);

> #Sections(L);BaseComponent(L);

6

Scheme over Rational Field defined by

1

Now we impose a triple point to the elements of L. This is done by asking for the
vanishing of minors of a matrix of derivatives.

> R<x,y,n>:=PolynomialRing(Rationals(),3);

> h:=hom<PolynomialRing(L)->R|[x,y]>;

> H:=h(Sections(L));

> M:=[[H[i],D(H[i],1),D(H[i],2),D2(H[i],1,1),D2(H[i],1,2),\

> D2(H[i],2,2)]:i in [1..#H]];

> Mt:=Matrix(M);min:=Minors(Mt,#H);
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> A:=AffineSpace(R);

> S:=Scheme(A,min cat [x-3,1+n*(y-x)*(y+x)*(3*y-x)*(3*y+x)]);

> //The condition 1+n*(..)=0 implies that

> //the solution is not in p.

> Dimension(S);

0

> PointsOverSplittingField(S);

We choose one of the solutions and we compute the curves C1 and C2:

> R<r1>:=PolynomialRing(Rationals());

> K<r1>:=NumberField(r1^2 - 1761803/139426560*r1 + \

> 1387488001/33730073395200);

> A<x,y>:=AffineSpace(K,2);

> y1:=-33462374400/102856069*r1 + 419793163/102856069;

> p:=[A![2,2],A![-2,2],A![3,1],A![-3,1],A![3,y1],Origin(A)];

> d:=7;m1:=[2,2,2,2,3,3];m2:=[2,2,2,2];

> td:=[p[i][2]/p[i][1]:i in [1..#m2]];

> LinSys(A,d,p,m1,m2,td,~L);#Sections(L);

1

> C1:=Curve(A,Sections(L)[1]);

> d:=6;m1:=[2,2,2,2,1,2];m2:=[2,2,2,2];

> LinSys(A,d,p,m1,m2,td,~L);#Sections(L);

1

> C2:=Curve(A,Sections(L)[1]);

The verification that the singularities are no worst than stated is left to the reader (use
the Magma functions ProjectiveClosure, SingularPoints, HasSingularPointsOverExten-
sion and ResolutionGraph).

The calculations for Section 4.6 (verification that φ2 is birational) are as follows:

> d:=7;m1:=[2,2,2,2,1,3];m2:=[2,2,2,2];

> LinSys(A,d,p,m1,m2,td,~L);

> #Sections(L);BaseComponent(L);

5 Scheme over K defined by

1

> P4:=ProjectiveSpace(K,4);

> tau:=map<A->P4|Sections(L)>;

> Degree(tau(Scheme(A,Sections(L)[3])));

7

thus an hyperplane section of the image of τ is of degree 7.
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