Collectanea Mathematica (electronic version): http://www.collectanea.ub.edu

Collect. Math. 61, 1 (2010), 81-106
(C) 2010 Universitat de Barcelona

Involutions on surfaces with $p_{g}=q=1$
 Carlos Rito
 Departamento de Matemática, Ed. de Ciências Florestais, Quinta de Prados, Apartado 1013
 5001-801 Vila Real - Portugal
 E-mail: crito@utad.pt

Received November 19, 2008

Abstract

In this paper some numerical restrictions for surfaces with an involution are obtained. These formulas are used to study surfaces of general type S with $p_{g}=q=1$ having an involution i such that S / i is a non-ruled surface and such that the bicanonical map of S is not composed with i. A complete list of possibilities is given and several new examples are constructed, as bidouble covers of surfaces. In particular the first example of a minimal surface of general type with $p_{g}=q=1$ and $K^{2}=7$ having birational bicanonical map is obtained.

1. Introduction

Several authors have studied surfaces of general type with $p_{g}=q=1([6,7,8,9,10$, $17,18,16,15])$, but these surfaces are still not completely understood.

In [19], the author gives several new examples of double planes of general type with $p_{g}=q=1$ having bicanonical map ϕ_{2} composed with the corresponding involution. The case S / i non-ruled and ϕ_{2} composed with i is considered in [20].

In this paper we study the case ϕ_{2} not composed with i. More precisely, we consider surfaces of general type S with $p_{g}=q=1$ having an involution i such that S / i is a non-ruled surface and ϕ_{2} is not composed with i. A list of possibilities is given and new examples are obtained for each value of the birational invariants of S / i (only the existence of the case $\operatorname{Kod}(S / i)=2, \chi(S / i)=1$ and $q(S / i)=0$ remains an open problem).

Keywords: Involution, double cover, bidouble cover, surface of general type, bicanonical map. MSC2000: 14J29.

The paper is organized as follows. In Section 2.2 we obtain formulas which, for a surface S with an involution i, relate the invariants of S and S / i with the branch locus of the cover $S \rightarrow S / i$, its singularities and the number of nodes of S / i. Section 2.3 contains a description of the action of the involution i on the Albanese fibration of S. In Section 3 we apply the numerical formulas of Section 2.2 to the case $p_{g}=q=1$, obtaining a list of possibilities (Theorems 7, 8 and 9). Results of Miyaoka and Sakai on the maximal number of disjoint smooth rational or elliptic curves on a surface are also used here. Finally Section 4 contains the construction of examples, as bidouble covers of surfaces: the surfaces constructed in Sections 4.1, 4.2 and 4.3 are Du Val double planes ($c f .[19]$) which have other interesting involutions; Section 4.4 contains the construction of a surface with $K^{2}=4$, Albanese fibration of genus $g=2$ and $\operatorname{deg}\left(\phi_{2}\right)=2$ (thus it is not the example in [7], for which ϕ_{2} is composed with the three involutions associated to the bidouble cover); in Section 4.5 a new surface with $K^{2}=8$ is obtained (it is not a standard isotrivial fibration); Sections 4.6 and 4.7 contain the construction of new surfaces with $K^{2}=7,6$ and $\operatorname{deg}\left(\phi_{2}\right)=1$ (it is the first example with $p_{g}=q=1$ and $K^{2}=7$ having birational bicanonical map); bidouble covers of irregular ruled surfaces give interesting examples in Sections 4.8 and 4.9.

Some branch curves for these bidouble cover examples are computed in Appendix A.2, using the Computational Algebra System Magma ([4]).

Notation and conventions

We work over the complex numbers; all varieties are assumed to be projective algebraic. For a projective smooth surface S, the canonical class is denoted by K, the geometric genus by $p_{g}:=h^{0}\left(S, \mathcal{O}_{S}(K)\right)$, the irregularity by $q:=h^{1}\left(S, \mathcal{O}_{S}(K)\right)$ and the Euler characteristic by $\chi=\chi\left(\mathcal{O}_{S}\right)=1+p_{g}-q$.

An $(-n)$-curve C on a surface is a curve isomorphic to \mathbb{P}^{1} such that $C^{2}=-n$. We say that a curve singularity is negligible if it is either a double point or a triple point which resolves to at most a double point after one blow-up. An (m_{1}, m_{2}, \ldots)-point, or point of order $\left(m_{1}, m_{2}, \ldots\right)$, is a point of multiplicity m_{1}, which resolves to a point of multiplicity m_{2} after one blow-up, etc.

An involution of a surface S is an automorphism of S of order 2. We say that a map is composed with an involution i of S if it factors through the double cover $S \rightarrow S / i$.

The rest of the notation is standard in Algebraic Geometry.
Acknowledgements. The author wishes to thank Margarida Mendes Lopes for all the support. He is a member of the Mathematics Center of the Universidade de Trás-os-Montes e Alto Douro and is a collaborator of the Center for Mathematical Analysis, Geometry and Dynamical Systems of Instituto Superior Técnico, Universidade Técnica de Lisboa. This research was partially supported by FCT (Portugal) through Project POCTI/MAT/44068/2002.

2. Results on involutions

2.1 General facts

Let S be a smooth minimal surface of general type with an involution i. Since S is minimal of general type, this involution is biregular. The fixed locus of i is the union of a smooth curve $R^{\prime \prime}$ (possibly empty) and of $t \geq 0$ isolated points P_{1}, \ldots, P_{t}. Let S / i be the quotient of S by i and $p: S \rightarrow S / i$ be the projection onto the quotient. The surface S / i has nodes at the points $Q_{i}:=p\left(P_{i}\right), i=1, \ldots, t$, and is smooth elsewhere. If $R^{\prime \prime} \neq \emptyset$, the image via p of $R^{\prime \prime}$ is a smooth curve $B^{\prime \prime}$ not containing the singular points $Q_{i}, i=1, \ldots, t$. Let now $h: V \rightarrow S$ be the blow-up of S at P_{1}, \ldots, P_{t} and set $R^{\prime}=h^{*}\left(R^{\prime \prime}\right)$. The involution i induces a biregular involution \widetilde{i} on V whose fixed locus is $R:=R^{\prime}+\sum_{1}^{t} h^{-1}\left(P_{i}\right)$. The quotient $W:=V / \widetilde{i}$ is smooth and one has a commutative diagram:

where $\pi: V \rightarrow W$ is the projection onto the quotient and $g: W \rightarrow S / i$ is the minimal desingularization map. Notice that

$$
A_{i}:=g^{-1}\left(Q_{i}\right), \quad i=1, \ldots, t,
$$

are (-2)-curves and $\pi^{*}\left(A_{i}\right)=2 \cdot h^{-1}\left(P_{i}\right)$.
Set $B^{\prime}:=g^{*}\left(B^{\prime \prime}\right)$. Since π is a double cover with branch locus $B^{\prime}+\sum_{1}^{t} A_{i}$, it is determined by a line bundle L on W such that

$$
2 L \equiv B:=B^{\prime}+\sum_{1}^{t} A_{i} .
$$

It is well known that ($c f .[1$, Chapter V, Section 22]):

$$
\begin{gather*}
p_{g}(S)=p_{g}(V)=p_{g}(W)+h^{0}\left(W, \mathcal{O}_{W}\left(K_{W}+L\right)\right) \\
q(S)=q(V)=q(W)+h^{1}\left(W, \mathcal{O}_{W}\left(K_{W}+L\right)\right) \tag{1}
\end{gather*}
$$

and

$$
\begin{align*}
K_{S}^{2}-t & =K_{V}^{2}=2\left(K_{W}+L\right)^{2} \\
\chi\left(\mathcal{O}_{S}\right) & =\chi\left(\mathcal{O}_{V}\right)=2 \chi\left(\mathcal{O}_{W}\right)+\frac{1}{2} L\left(K_{W}+L\right) \tag{2}
\end{align*}
$$

Denote by ϕ_{2} the bicanonical map of S (given by $|2 K|$). From the papers [11] and [5],
ϕ_{2} is composed with i if and only if $h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)=0$.

2.2 Numerical restrictions

Let P be a minimal model of the resolution W of S / i and $\rho: W \rightarrow P$ be the corresponding projection. Denote by \bar{B} the projection $\rho(B)$ and by δ the "projection" of L.

Remark 1 If \bar{B} is singular, there are exceptional divisors E_{i} and numbers $r_{i} \in 2 \mathbb{N}$ such that

$$
\begin{aligned}
E_{i}^{2} & =-1, \\
K_{W} & \equiv \rho^{*}\left(K_{P}\right)+\sum E_{i}, \\
2 L & \equiv B=\rho^{*}(\bar{B})-\sum r_{i} E_{i} \equiv \rho^{*}(2 \delta)-\sum r_{i} E_{i} .
\end{aligned}
$$

Proposition 2

With the previous notation, if S is a surface of general type then:
a) $\chi\left(\mathcal{O}_{P}\right)-\chi\left(\mathcal{O}_{S}\right)=K_{P}\left(K_{P}+\delta\right)+\frac{1}{2} \sum\left(r_{i}-2\right)-h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)$;
b) $\delta^{2}=-2 \chi\left(\mathcal{O}_{P}\right)-2 K_{P}^{2}-3 K_{P} \delta+\frac{1}{4} \sum\left(r_{i}-2\right)\left(r_{i}-4\right)+2 h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)$.

Proposition 3

Let t be the number of nodes of S / i. One has:
a) $t=K_{S}^{2}+6 \chi\left(\mathcal{O}_{W}\right)-2 \chi\left(\mathcal{O}_{S}\right)-2 h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)$;
b) $t=K_{S} R^{\prime \prime}+8 \chi\left(\mathcal{O}_{W}\right)-4 \chi\left(\mathcal{O}_{S}\right) \geq 8 \chi\left(\mathcal{O}_{W}\right)-4 \chi\left(\mathcal{O}_{S}\right)$;
c) $K_{S}^{2} \geq 2 \chi\left(\mathcal{O}_{W}\right)-2 \chi\left(\mathcal{O}_{S}\right)+2 h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)$.

Proposition 4

With the above notation:
a) $h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right) \leq \frac{1}{3} K_{W}^{2}-\chi\left(\mathcal{O}_{W}\right)+\frac{11}{3} \chi\left(\mathcal{O}_{S}\right)+\frac{1}{27} K_{S}^{2}$;
b) $h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right) \leq \frac{1}{2} K_{W}^{2}+5 \chi\left(\mathcal{O}_{S}\right)+2 q(S)-3 \chi\left(\mathcal{O}_{W}\right)-2 q(W)$.

Proof of Proposition 2: (cf. [11])
a) From the Kawamata-Viehweg's vanishing theorem (see e.g. [12, Corollary 5.12, c)]), one has

$$
h^{i}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)=0, i=1,2 .
$$

The Riemann-Roch theorem implies

$$
\chi\left(\mathcal{O}_{W}\left(2 K_{W}+L\right)\right)=\chi\left(\mathcal{O}_{W}\right)+\frac{1}{2} L\left(K_{W}+L\right)+K_{W}\left(K_{W}+L\right),
$$

thus, using (2),

$$
\begin{equation*}
h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)=\chi\left(\mathcal{O}_{S}\right)-\chi\left(\mathcal{O}_{W}\right)+K_{W}\left(K_{W}+L\right) . \tag{3}
\end{equation*}
$$

With the notation of Remark 1, we can write

$$
\begin{aligned}
\chi\left(\mathcal{O}_{P}\right)-\chi\left(\mathcal{O}_{S}\right)= & \frac{1}{2} K_{W}\left(2 K_{W}+2 L\right)-h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right) \\
= & \frac{1}{2}\left(\rho^{*}\left(K_{P}\right)+\sum E_{i}\right)\left(2 \rho^{*}\left(K_{P}+\delta\right)+\sum\left(2-r_{i}\right) E_{i}\right) \\
& -h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right) \\
= & K_{P}\left(K_{P}+\delta\right)+\frac{1}{2} \sum\left(r_{i}-2\right)-h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right) .
\end{aligned}
$$

b) From the proof of a),

$$
h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)=\chi\left(\mathcal{O}_{W}\left(2 K_{W}+L\right)\right)=\chi\left(\mathcal{O}_{W}\right)+\frac{1}{2}\left(2 K_{W}+L\right)\left(K_{W}+L\right)
$$

Using Remark 1 this means

$$
\begin{aligned}
h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)= & \chi\left(\mathcal{O}_{P}\right) \\
& +\frac{1}{2}\left(\rho^{*}\left(2 K_{P}+\delta\right)+\frac{1}{2} \sum\left(4-r_{i}\right) E_{i}\right) \\
& \times\left(\rho^{*}\left(K_{P}+\delta\right)+\frac{1}{2} \sum\left(2-r_{i}\right) E_{i}\right) \\
= & \chi\left(\mathcal{O}_{P}\right)+K_{P}^{2}+\frac{3}{2} K_{P} \delta+\frac{1}{2} \delta^{2}-\frac{1}{8} \sum\left(r_{i}-2\right)\left(r_{i}-4\right)
\end{aligned}
$$

Proof of Proposition 3:
a) From formulas (2) and (3),

$$
\begin{aligned}
t & =K_{S}^{2}-2 K_{W}\left(K_{W}+L\right)-2 L\left(K_{W}+L\right) \\
& =K_{S}^{2}+2 \chi\left(\mathcal{O}_{S}\right)-2 \chi\left(\mathcal{O}_{W}\right)-2 h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)-4 \chi\left(\mathcal{O}_{S}\right)+8 \chi\left(\mathcal{O}_{W}\right)
\end{aligned}
$$

b) (This is also a consequence of the holomorphic fixed point formula.) From (2),

$$
\begin{aligned}
4 \chi\left(\mathcal{O}_{S}\right)-8 \chi\left(\mathcal{O}_{W}\right) & =2 L\left(K_{W}+L\right)=\left(B^{\prime}+\sum_{1}^{t} A_{i}\right)\left(K_{W}+L\right) \\
& =B^{\prime}\left(K_{W}+L\right)-t=\frac{1}{2} \pi^{*}\left(B^{\prime}\right) \pi^{*}\left(K_{W}+L\right)-t=R^{\prime \prime} K_{S}-t
\end{aligned}
$$

Since S is of general type, $K_{S} R^{\prime \prime} \geq 0$, thus

$$
t \geq 8 \chi\left(\mathcal{O}_{W}\right)-4 \chi\left(\mathcal{O}_{S}\right)
$$

c) This is immediate from a) and b).

Proof of Proposition 4:
a) This inequality is given by the following three claims.

Claim 1:

$$
1-p_{a}\left(B^{\prime}\right)=3 \chi\left(\mathcal{O}_{W}\right)-3 \chi\left(\mathcal{O}_{S}\right)-K_{S}^{2}-K_{W}^{2}+3 h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right) .
$$

Proof. Formulas (2) and (3) give

$$
\begin{aligned}
L^{2}-K_{W}^{2}= & {\left[2 \chi\left(\mathcal{O}_{S}\right)-4 \chi\left(\mathcal{O}_{W}\right)-L K_{W}\right] } \\
& -\left[h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)-\chi\left(\mathcal{O}_{S}\right)+\chi\left(\mathcal{O}_{W}\right)-K_{W} L\right],
\end{aligned}
$$

thus

$$
\begin{equation*}
L^{2}=K_{W}^{2}+3 \chi\left(\mathcal{O}_{S}\right)-5 \chi\left(\mathcal{O}_{W}\right)-h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right) . \tag{4}
\end{equation*}
$$

Now we perform a straightforward calculation using the adjunction formula, (2), Proposition 3, a) and (4):

$$
\begin{aligned}
2 p_{a}\left(B^{\prime}\right)-2= & K_{W} B^{\prime}+B^{\prime 2}=K_{W} 2 L+(2 L)^{2}+2 t \\
= & 2 L\left(K_{W}+L\right)+2 t+2 L^{2}=2\left[2 \chi\left(\mathcal{O}_{S}\right)-4 \chi\left(\mathcal{O}_{W}\right)\right] \\
& +2\left[K_{S}^{2}+6 \chi\left(\mathcal{O}_{W}\right)-2 \chi\left(\mathcal{O}_{S}\right)-2 h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)\right] \\
& +2\left[K_{W}^{2}+3 \chi\left(\mathcal{O}_{S}\right)-5 \chi\left(\mathcal{O}_{W}\right)-h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)\right] \\
= & 2 K_{S}^{2}+2 K_{W}^{2}+6 \chi\left(\mathcal{O}_{S}\right)-6 \chi\left(\mathcal{O}_{W}\right)-6 h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right) .
\end{aligned}
$$

Denote by τ the number of rational curves of B^{\prime}.

Claim 2:

$$
1-p_{a}\left(B^{\prime}\right) \leq \tau .
$$

Proof. Write

$$
B^{\prime}=\sum_{1}^{\tau} B_{i}^{\prime}+\sum_{\tau+1}^{h} B_{i}^{\prime}
$$

as a decomposition of B^{\prime} in (smooth) connected components such that $B_{i}^{\prime}, i \leq \tau$, are the rational ones. The adjunction formula gives
$2 p_{a}\left(B^{\prime}\right)-2=\sum_{1}^{h}\left(K_{W} B_{i}^{\prime}+B_{i}^{\prime 2}\right)=\sum_{1}^{\tau}\left(2 g\left(B_{i}^{\prime}\right)-2\right)+\sum_{\tau+1}^{h}\left(2 g\left(B_{i}^{\prime}\right)-2\right) \geq-2 \tau$.

Claim 3:

$$
\tau \leq 8\left(\chi\left(\mathcal{O}_{S}\right)-\frac{1}{9} K_{S}^{2}\right)
$$

Proof. Since B^{\prime} does not contain (-2)-curves and it is contained in the branch locus of the cover $\pi: V \rightarrow W$, then each rational curve in B^{\prime} corresponds to a rational curve in S. Now the result follows from Proposition 5 below.

Therefore $1-p_{a}\left(B^{\prime}\right) \leq 8\left(\chi\left(\mathcal{O}_{S}\right)-\frac{1}{9} K_{S}^{2}\right)$ and using Claim 1 we obtain the desired inequality.
b) Proposition 3, a) says that

$$
K_{V}^{2}=K_{S}^{2}-t=2 \chi\left(\mathcal{O}_{S}\right)-6 \chi\left(\mathcal{O}_{W}\right)+2 h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right) .
$$

The second Betti number b_{2} of a surface X satisfies

$$
b_{2}(X)=12 \chi\left(\mathcal{O}_{X}\right)-K_{X}^{2}+4 q(X)-2
$$

Therefore

$$
b_{2}(V)=10 \chi\left(\mathcal{O}_{V}\right)+6 \chi\left(\mathcal{O}_{W}\right)+4 q(V)-2-2 h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)
$$

Since $b_{2}(V) \geq b_{2}(W)$, one has the result.
Proposition 5 ([13, Proposition 2.1.1])
Let X be a minimal surface of non-negative Kodaira dimension. Then the number of disjoint smooth rational curves in X is bounded by

$$
8\left(\chi\left(\mathcal{O}_{X}\right)-\frac{1}{9} K_{X}^{2}\right)
$$

2.3 Surfaces with an involution and $q=1$

Let S be a surface of general type with $q=1$. Then the Albanese variety of S is an elliptic curve E and the Albanese map is a connected fibration (see e.g. [2] or [1]).

Suppose that S has an involution i. Then i preserves the Albanese fibration (because $q(S)=1$) and so we have a commutative diagram

where Δ is a curve of genus ≤ 1. Denote by

$$
f_{A}: W \rightarrow \Delta
$$

the fibration induced by the Albanese fibration of S.
Recall that

$$
\rho: W \rightarrow P
$$

is the projection of W onto its minimal model P and

$$
\bar{B}:=\rho(B)
$$

where $B:=B^{\prime}+\sum_{1}^{t} A_{i} \subset W$ is the branch locus of π. Let

$$
\overline{B^{\prime}}:=\rho\left(B^{\prime}\right) \quad \text { and } \quad \overline{A_{i}}=\rho\left(A_{i}\right)
$$

When \bar{B} has only negligible singularities the map ρ contracts only exceptional curves contained in fibres of f_{A}. In fact otherwise there exists a (-1)-curve $J \subset W$ such that $J B=2$ and $\pi^{*}(J)$ is transverse to the fibres of the (genus 1 base) Albanese fibration of S. This is impossible because $\pi^{*}(J)$ is a rational curve. Moreover ρ contracts no curve meeting $\sum A_{i}$, thus the singularities of \bar{B} are exactly the singularities of $\overline{B^{\prime}}$, i.e. $\overline{B^{\prime}} \cap \sum \overline{A_{i}}=\emptyset$. We denote the image of f_{A} on P by $\overline{f_{A}}$.

If $\Delta \cong \mathbb{P}^{1}$ then the double cover $E \rightarrow \Delta$ is ramified over 4 points p_{j} of Δ, thus the branch locus $B^{\prime}+\sum_{1}^{t} A_{i}$ is contained in 4 fibres

$$
F_{A}^{j}:=f_{A}^{*}\left(p_{j}\right), j=1, \ldots, 4
$$

of the fibration f_{A}. Hence by Zariski's Lemma (see e.g. [1]) the irreducible components B_{i}^{\prime} of B^{\prime} satisfy $B_{i}^{\prime 2} \leq 0$. If \bar{B} has only negligible singularities then also ${\overline{B^{\prime}}}^{2} \leq 0$. Since $\pi^{*}\left(F_{A}^{j}\right)$ has even multiplicity, each component of F_{A}^{j} which is not a component of the branch locus $B^{\prime}+\sum_{1}^{t} A_{i}$ must be of even multiplicity.

3. List of possibilities

From now on S is a smooth minimal surface of general type with $p_{g}=q=1$ having an involution i such that the bicanonical map ϕ_{2} of S is not composed with i. Notice that then $2 \leq K_{S}^{2} \leq 9$, by the Debarre's inequality for an irregular surface $\left(K_{S}^{2} \geq 2 p_{g}\right)$ and by the Miyaoka-Yau inequality $\left(K_{S}^{2} \leq 9 \chi\left(\mathcal{O}_{S}\right)\right)$.

Recall from Section 2.2 that

$$
h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right) \neq 0
$$

where W is the minimal resolution of S / i and $L \equiv \frac{1}{2} B$ is the line bundle which determines the double cover $V \rightarrow W$.

Let P be a minimal model of W and $\delta, \bar{B} \equiv 2 \delta$ and the numbers r_{i} be as defined in Section 2.2. Recall that t denotes the number of nodes of S / i. Notice that $p_{g}(P) \leq p_{g}(S)=1$ and $q(P) \leq q(S)=1$.

In the next sections the following result is useful:
Proposition 6 ([21])
Let S be a minimal smooth surface of general type and $C \subset S$ be a disjoint union of smooth elliptic curves. Then

$$
-C^{2} \leq 36 \chi\left(\mathcal{O}_{S}\right)-4 K_{S}^{2}
$$

Proof. This follows from the inequality of [21, Corollary 7.8], using $K C+C^{2}=$ $2 p_{a}(C)-2=0$.

3.1 The case $\operatorname{Kod}(S / i)=0$

Here we give a list of possibilities for the case $\operatorname{Kod}(S / i)=0$.

Theorem 7

Let S and P be as above. If $\operatorname{Kod}(P)=0$, only the following cases can occur:
a) P is an Enriques surface and

$$
\begin{aligned}
& \cdot\left\{r_{i} \neq 2\right\}=\{4\}, \bar{B}^{2}=0, t-2=K_{S}^{2} \in\{2, \ldots, 7\}, \text { or } \\
& \cdot\left\{r_{i} \neq 2\right\}=\{4,4\}, \bar{B}^{2}=8, t=K_{S}^{2} \in\{4, \ldots, 8\}, \text { or }
\end{aligned}
$$

$$
\left\{r_{i} \neq 2\right\}=\{6\}, \bar{B}^{2}=16, t=K_{S}^{2} \in\{4, \ldots, 8\}
$$

b) P is a bielliptic surface and

$$
\begin{aligned}
& \cdot\left\{r_{i} \neq 2\right\}=\emptyset, \bar{B}^{2}=8, t=0, K_{S}^{2}=4, \text { or } \\
& \cdot \\
& \cdot\left\{r_{i} \neq 2\right\}=\{4\}, \bar{B}^{2}=16, t+6=K_{S}^{2}=6 \text { or } 7, \text { or } \\
& \cdot\left\{r_{i} \neq 2\right\}=\{4,4\}, \bar{B}^{2}=24, t=0, K_{S}^{2}=8, \text { or } \\
& \cdot \\
& \cdot\left\{r_{i} \neq 2\right\}=\{6\}, \bar{B}^{2}=32, t=0, K_{S}^{2}=8 .
\end{aligned}
$$

Furthermore, there are examples for

- a) with $K_{S}^{2}=8$;
- b) with $K_{S}^{2}=4,6,7$ or 8 .

Proof. It is easy to see that P cannot be a $K 3$ surface: in this case we get from Proposition 4, b) that

$$
K_{W}^{2} \geq 2 h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)-2
$$

which implies $h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)=1$ and $K_{W}^{2}=0$. This contradicts the fact $\sum\left(r_{i}-2\right)=4 \neq 0$, given by Proposition 2 , a).

So, from the classification of surfaces (see e.g. [2] or [1]), $p_{g}(P)=q(P)=0$ or $p_{g}(P)=0, q(P)=1$ (notice that $p_{g}(P), q(P) \leq 1$), i.e. P is an Enriques surface or a bielliptic surface.
a) Suppose P is an Enriques surface: Proposition 4, a) implies that $h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right) \leq 3$, with equality holding only if $K_{W}^{2}=0$. In this case the branch locus \bar{B} is smooth, i.e. $\sum\left(r_{i}-2\right)=0$, which contradicts Proposition 2, a). Therefore $h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)=1$ or 2 .

Now the only possibilities allowed by Propositions 2 and 3 , a), b) are:

1) $\sum\left(r_{i}-2\right)=2, \bar{B}^{2}=0, t=K_{S}^{2}+2 \geq 4$;
2) $\sum\left(r_{i}-2\right)=4, \bar{B}^{2}=8$ or $16, t=K_{S}^{2} \geq 4$.

Moreover, if a nodal curve $A_{i} \subset B$ is not contracted to a point, then it is mapped onto a nodal curve of the Enriques surface P. Indeed, from the adjunction formula, $K_{W} A_{i}=0$, which means that A_{i} does not intersect any (-1)-curve of W.
An Enriques surface has at most 8 disjoint (-2 -curves. In case 1), the nonnegligible singularities of \bar{B} are a 4 -uple or (3,3)-point, hence $t \leq 9$. In case 2), $t=9$ only if \bar{B} has a (3,3)-point, which implies that S has an elliptic curve with negative self-intersection. Since in this case $K_{S}^{2}=9$, this is impossible from Proposition 6, therefore $t \leq 8$.
b) Suppose P is a bielliptic surface: from Proposition 4, a), one has $h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right) \leq 4$, with equality holding only if $K_{W}^{2}=0$. In this case we get from Proposition 2, a) that

$$
\sum\left(r_{i}-2\right)=2 h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)-2=6 \neq 0
$$

which contradicts $K_{W}^{2}=0$. Hence $h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right) \leq 3$.

As in a), if a (-2)-curve $A_{i} \subset B$ is not contracted to a point, then it is mapped onto a (-2)-curve of P. But a bielliptic surface has no (-2)-curves (from Proposition 5), thus the nodal curves of B are contracted to singularities of \bar{B}.
Using Propositions 2 and 3 , a) one obtains the following possibilities:

1) $\sum\left(r_{i}-2\right)=0, \bar{B}^{2}=8, K_{S}^{2}=t+4$;
2) $\sum\left(r_{i}-2\right)=2, \bar{B}^{2}=16, K_{S}^{2}=t+6$;
3) $\sum\left(r_{i}-2\right)=4, \bar{B}^{2}=24, K_{S}^{2}=t+8$;
4) $\sum\left(r_{i}-2\right)=4, \bar{B}^{2}=32, K_{S}^{2}=t+8$.

In case 1), $t=0$, because \bar{B} has only negligible singularities. In case 2), \bar{B} can have a $(3,3)$-point, thus $t=0$ or 1 . In case 3$), t=1$ only if \bar{B} has a $(3,3)$ point, but then $K_{S}^{2}=9$ and S has an elliptic curve, which is impossible from Proposition 6. Finally, in case 4), the only non-negligible singularity of \bar{B} is a point of multiplicity 6 (from Proposition 2, b)), thus $t=0$.

The examples are constructed in Sections 4.3, 4.5, 4.6, 4.7 and 4.9.

3.2 The case $\operatorname{Kod}(S / i)=1$

Now we give a list of possibilities for the case $\operatorname{Kod}(S / i)=1$.

Theorem 8

Let S and P be as above. If $\operatorname{Kod}(P)=1$, only the following cases can occur:
a) $\chi\left(\mathcal{O}_{P}\right)=2, q(P)=0$ and

$$
\left\{r_{i}\right\}=\emptyset, K_{P} \bar{B}=4, \bar{B}^{2}=-32, t-8=K_{S}^{2} \in\{4, \ldots, 8\}
$$

b) $\chi\left(\mathcal{O}_{P}\right)=1, q(P)=0$ and

$$
\begin{aligned}
& \cdot\left\{r_{i} \neq 2\right\}=\emptyset, K_{P} \bar{B}=2, \bar{B}^{2}=-12, t-2=K_{S}^{2} \in\{2,3,4\}, \text { or } \\
& \cdot\left\{r_{i} \neq 2\right\}=\emptyset, K_{P} \bar{B}=4, \bar{B}^{2}=-16, t=K_{S}^{2} \in\{4, \ldots, 8\}, \text { or } \\
& \cdot\left\{r_{i} \neq 2\right\}=\{4\}, K_{P} \bar{B}=2, \bar{B}^{2}=-4, t=K_{S}^{2} \in\{4, \ldots, 8\}
\end{aligned}
$$

c) $\chi\left(\mathcal{O}_{P}\right)=1, q(P)=1$ and

$$
\begin{aligned}
& \cdot\left\{r_{i} \neq 2\right\}=\emptyset, K_{P} \bar{B}=2, \bar{B}^{2}=-12, t-2=K_{S}^{2} \in\{2, \ldots, 6\}, \text { or } \\
& \cdot\left\{r_{i}\right\}=\emptyset, K_{P} \bar{B}=4, \bar{B}^{2}=-16, t=K_{S}^{2} \in\{4, \ldots, 8\}
\end{aligned}
$$

d) $\chi\left(\mathcal{O}_{P}\right)=0, q(P)=1$ and
. $\left\{r_{i} \neq 2\right\}=\emptyset, K_{P} \bar{B}=2, \bar{B}^{2}=4, t=0, K_{S}^{2}=6$, or

- $\left\{r_{i} \neq 2\right\}=\emptyset, K_{P} \bar{B}=4, \bar{B}^{2}=0, t=0, K_{S}^{2}=8$, or
- $\left\{r_{i} \neq 2\right\}=\{4\}, K_{P} \bar{B}=2, \bar{B}^{2}=12, t=0, K_{S}^{2}=8$.

Furthermore, there exist examples for

- a) with $K_{S}^{2}=8$;
- b) with $K_{S}^{2}=4,6$ or 7 ;
. c) with $K_{S}^{2}=8$;
- d) with $K_{S}^{2}=6$ or 8 .

Proof. Since $p_{g}(P), q(P) \leq 1$, we have the following cases:
a) $\chi\left(\mathcal{O}_{P}\right)=2, q(P)=0$.

From Proposition 4, b) it is immediate that $h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)=1$ and $K_{W}^{2}=0$ (thus \bar{B} is smooth). Proposition 2 gives $K_{P} \bar{B}=4$ and $\bar{B}^{2}=-32$. If $K_{S}^{2}=9$, then the number of nodal curves of B is $t=K_{S}^{2}+8=17$, from Proposition 3, a). This is impossible because Proposition 5 implies $t \leq 16$. Proposition 3, c) gives $K_{S}^{2} \geq 4$.
b) $\chi\left(\mathcal{O}_{P}\right)=1, q(P)=0$.

Proposition 4, a) implies $h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right) \leq 3$, with equality only if $K_{S}^{2}=9$ and $K_{W}^{2}=0$ (hence $\sum\left(r_{i}-2\right)=0$ and $W=P$). In this case Proposition 2, a) implies $K_{W} B^{\prime}=6$ and then $B^{\prime} \neq \emptyset$. Now $p_{a}\left(B^{\prime}\right)=1$ (see Claim 1 in the proof of Proposition 4), thus B^{\prime} has a rational or elliptic component. But Propositions 5 and 6 imply that a minimal surface of general type with $\chi=1$ and $K^{2}=9$ contains no rational or elliptic curves. Therefore $h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right) \leq 2$.
Since $\operatorname{Kod}(P)=1, K_{P} \bar{B}=0$ implies that \bar{B} is contained in the elliptic fibration of P and then S has an elliptic fibration, which is impossible because S is of general type.
So $K_{P} \bar{B} \neq 0$. Now Propositions 2 and 3 , a) give the following possibilities:

1) $\sum\left(r_{i}-2\right)=0, K_{P} \bar{B}=2, \bar{B}^{2}=-12, t=K_{S}^{2}+2$;
2) $\sum\left(r_{i}-2\right)=0, K_{P} \bar{B}=4, \bar{B}^{2}=-16, t=K_{S}^{2}$;
3) $\sum\left(r_{i}-2\right)=2, K_{P} \bar{B}=2, \bar{B}^{2}=-4, t=K_{S}^{2}$.

In case 1), $t>6$ implies ${\overline{B^{\prime}}}^{2}=\bar{B}^{2}+2 t>0$, a contradiction (see Section 2.3).
Similarly $t \leq 8$, in case 2). Proposition $3, \mathrm{c})$ gives $K_{S}^{2} \geq 4$, in this case.
In case 3), the quadruple or (3,3)-point of \bar{B} gives rise to an elliptic curve in S, thus $K_{S}^{2} \neq 9$, from Proposition 6. Again Proposition 3, c) implies $K_{S}^{2} \geq 4$.
c) $\chi\left(\mathcal{O}_{P}\right)=1, q(P)=1$.

This is analogous to the proof of b): just notice that Proposition 4, b) excludes case 3) and implies $K_{W}^{2}=0$ in case 2); in case 1) is no longer true that $t \leq 6$, instead use Proposition 5 to obtain $t \leq 8$ (thus $\left.K_{S}^{2} \leq 6\right)$.
d) $\chi\left(\mathcal{O}_{P}\right)=0, q(P)=1$.

As in b), one shows that $h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right) \leq 3$ and $K_{P} \bar{B} \neq 0$. Propositions 2 and 3 , a) give the following possibilities:

1) $\sum\left(r_{i}-2\right)=0, K_{P} \bar{B}=2, \bar{B}^{2}=4, t=K_{S}^{2}-6$;
2) $\sum\left(r_{i}-2\right)=0, K_{P} \bar{B}=4, \bar{B}^{2}=0, t=K_{S}^{2}-8$;
3) $\sum\left(r_{i}-2\right)=2, K_{P} \bar{B}=2, \bar{B}^{2}=12, t=K_{S}^{2}-8$.

As in the proof of b), the existence of a quadruple or (3,3)-point on \bar{B} implies $K_{S}^{2} \neq 9$, in case 3).
Consider now cases 1) and 2). From Proposition 5, P has no smooth rational curves. Since $p_{g}(P)=0$ and $q(P)=1$, the Albanese variety of P is an elliptic curve (see e.g. [2]). Therefore any singular rational curve D of \bar{B} is necessarily contained in a fibre of the Albanese fibration of P and as such satisfies $D^{2} \leq 0$. So a desingularization \widehat{D} of D verifies $\widehat{D}^{2} \leq-4$ and thus B has no (-2)-curves, i.e. $t=0$.

The examples are given in Sections 4.1, 4.2, 4.4, 4.6, 4.7 and 4.8.

3.3 The case $\operatorname{Kod}(S / i)=2$

Finally we give a list of possibilities for the case $\operatorname{Kod}(S / i)=2$.

Theorem 9

Let S and P be as above. If $\operatorname{Kod}(P)=2$, then \bar{B} has at most negligible singularities and only the following cases can occur:
a) $\chi\left(\mathcal{O}_{P}\right)=2, q(P)=0$ and

- $K_{P} \bar{B}=0, \bar{B}^{2}=-24, t=12, K_{S}^{2}=2 K_{P}^{2}, K_{P}^{2}=2,3,4$, or
- $K_{P} \bar{B}=2, \bar{B}^{2}=-28, t-10+2 K_{P}^{2}=K_{S}^{2} \in\left\{2 K_{P}^{2}+2, \ldots, 2 K_{P}^{2}+4\right\}, K_{P}^{2}=1,2$;
b) $\chi\left(\mathcal{O}_{P}\right)=1, q(P)=1$ and
- $K_{P} \bar{B}=0, \bar{B}^{2}=-8, t=4, K_{S}^{2}=2 K_{P}^{2}, K_{P}^{2}=2,3,4$, or
- $K_{P} \bar{B}=2, \bar{B}^{2}=-12, K_{P}^{2}=2, t+2=K_{S}^{2} \in\{6,7,8\} ;$
c) $\chi\left(\mathcal{O}_{P}\right)=1, q(P)=0$ and

$$
\begin{aligned}
& \cdot K_{P} \bar{B}=0, \bar{B}^{2}=-8, t=4, K_{S}^{2}=2 K_{P}^{2}, K_{P}^{2}=1, \ldots, 4, \text { or } \\
& \cdot K_{P} \bar{B}=2, \bar{B}^{2}=-12, t+2 K_{P}^{2}-2=K_{S}^{2} \in\left\{2 K_{P}^{2}+2, \ldots, 2 K_{P}^{2}+4\right\}, K_{P}^{2}=1,2 \\
& \quad \text { or } \\
& \cdot K_{P} \bar{B}=4, \bar{B}^{2}=-16, K_{P}^{2}=1, t+2=K_{S}^{2} \in\{6,7,8\}
\end{aligned}
$$

Moreover, there exist examples for

- a) with $K_{S}^{2}=4,6,7$ or 8 ;
- b) with $K_{S}^{2}=4$.

Proof.

Claim : If $K_{P} \bar{B}=0$, then $\bar{B}=B$ is a disjoint union of nodal curves.
Proof. Since P is minimal of general type, K_{P} is nef and big and therefore every component of \bar{B} is a nodal curve (i.e. a (-2 -curve) and the intersection form on the components of the reduced effective divisor \bar{B} is negative definite by the Algebraic Index Theorem. The claim is true if each connected component of \bar{B} is irreducible. Let C be a connected component of \bar{B}. Then, if C is not irreducible, there is one component θ of C such that $\theta(C-\theta)=1$ and this implies that B has a (-3)-curve, contradicting $B \equiv 0(\bmod 2)$.

Since $p_{g}(P), q(P) \leq 1$ and $p_{g}(P) \geq q(P)$, we have only the following three cases:
a) $\chi\left(\mathcal{O}_{P}\right)=2, q(P)=0$.

Propositions 2, a) and 4, b) give:

$$
\begin{gathered}
h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)=K_{P}^{2}+K_{P} \delta+\frac{1}{2} \sum\left(r_{i}-2\right)-1 \\
h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right) \leq \frac{1}{2} K_{W}^{2}+1 \leq \frac{1}{2} K_{P}^{2}+1
\end{gathered}
$$

From this we get

$$
\begin{equation*}
\frac{1}{2} K_{P}^{2}+K_{P} \delta+\frac{1}{2} \sum\left(r_{i}-2\right) \leq 2 \tag{6}
\end{equation*}
$$

with equality only if $K_{W}^{2}=K_{P}^{2}$. Since $K_{P}^{2}>0, K_{P} \delta=0$ or 1 .
If $K_{P} \delta=1$, then $\sum\left(r_{i}-2\right)=0$ and $K_{P}^{2}=1$ or 2 .
If $K_{P} \delta=0$, then $\sum\left(r_{i}-2\right)=0$, from the Claim above. As $K_{S}^{2} \leq 9$, Proposition 3 implies $h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right) \leq 3$.
Now the result follows from Propositions 2 and 3, a). Notice that Proposition 2 gives $\bar{B}^{2} \geq-2\left(12+2 K_{P} \delta\right)$. This implies $t \leq 12+2 K_{P} \delta$, because, since $q(P)=0$ and \bar{B} has only negligible singularities, every component of \bar{B} has non-positive self-intersection.
b) $\chi\left(\mathcal{O}_{P}\right)=1, q(P)=1$.

Propositions 2, a) and 4, b) give:

$$
\begin{gathered}
h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)=K_{P}^{2}+K_{P} \delta+\frac{1}{2} \sum\left(r_{i}-2\right) \\
h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right) \leq \frac{1}{2} K_{W}^{2}+2 \leq \frac{1}{2} K_{P}^{2}+2
\end{gathered}
$$

thus equation (6) is still valid here, which implies $K_{P} \delta=0$ or 1 . As $p_{g}(P)=q(P)=1$, then $K_{P}^{2} \geq 2$.
If $K_{P} \delta=1$, then $K_{P}^{2}=2$ and $\sum\left(r_{i}-2\right)=0$, from equation (6). Since then $h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)=3$, Proposition 2, b) implies $\bar{B}^{2}=-12$.
If $K_{P} \delta=0$, then \bar{B} is a disjoint union of (-2)-curves, from the Claim above. Hence $\sum\left(r_{i}-2\right)=0, h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)=K_{P}^{2}$ and $K_{P}^{2}=2,3$ or 4 . In this case Proposition 2, b) gives $\delta^{2}=-2$. Therefore $\bar{B}^{2}=-8$ and then $t=4$, from the Claim above.

Now the result follows from Proposition 3, a) (notice that $K_{P}^{2}=2$ implies $t \neq 7$, by Theorem 5).
c) $\chi\left(\mathcal{O}_{P}\right)=1, q(P)=0$.

Propositions 2, a), 3, c) and 4, a) imply

$$
\begin{equation*}
h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)=K_{P}\left(K_{P}+\delta\right)+\frac{1}{2} \sum\left(r_{i}-2\right) \leq 4 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right) \leq 3+\frac{1}{3} K_{W}^{2} \tag{8}
\end{equation*}
$$

with equality only if $K_{S}^{2}=9$. As $K_{P}^{2} \geq 1$ and $K_{W}^{2} \leq K_{P}^{2}$, this implies $K_{P} \delta \leq 2$.

- Suppose $K_{P} \delta=0$.

We have $\sum\left(r_{i}-2\right)=0$, by the Claim above. Hence

$$
h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)=K_{P}^{2} \leq 4
$$

by (7). Now from Proposition 2, b) and Proposition 3, b), we have $\bar{B}^{2}=(2 \delta)^{2}=$ -8 and $t \geq 4$. Thus $t=4$ and, using Proposition 3, a), we conclude that

$$
K_{S}^{2}=2 K_{P}^{2}, 1 \leq K_{P}^{2} \leq 4
$$

- Suppose $K_{P} \delta=1$.

Then $h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right)=4$ only if $K_{S}^{2}=9$, from (7) and (8). In this case Propositions 3, b) and 2, a) imply $K_{P}^{2}=3$ and B contains an elliptic curve, which contradicts Proposition 6.
If $K_{P}^{2}=1 / 2 \sum\left(r_{i}-2\right)=1$, then $K_{W}^{2}=0$ and $K_{S}^{2}=9$, by (8). The quadruple or (3,3)-point of \bar{B} gives rise to an elliptic curve in S, which is impossible from Proposition 6.
Now using (7), Proposition 2, b) and Proposition 3, we obtain

$$
K_{P}^{2}=2, \quad \sum\left(r_{i}-2\right)=0, \delta^{2}=-3, t=K_{S}^{2}-2 \geq 4
$$

or

$$
K_{P}^{2}=1, \sum\left(r_{i}-2\right)=0, \delta^{2}=-3, t=K_{S}^{2} \geq 4
$$

Hence $\bar{B}^{2}=-12$ and then $t \leq 6$, because, since $q(P)=0$ and \bar{B} has only negligible singularities, every component of \bar{B} has non-positive self-intersection.

- Suppose $K_{P} \delta=2$.

Then $K_{P}^{2} \leq 2$, from (7), and $h^{0}\left(W, \mathcal{O}_{W}\left(2 K_{W}+L\right)\right) \leq 3$, from (8). The only possibility allowed by (7), Proposition 2, b) and Proposition 3 is:

$$
K_{P}^{2}=1, \delta^{2}=-4, t=K_{S}^{2}-2 \geq 4
$$

It remains to be shown that $K_{S}^{2} \neq 9$. In this case, the curve \bar{B} has at least 8 disjoint components contained in a fibration $\overline{f_{A}}$ of P (see Section 2.3). These are
independent in $\operatorname{Pic}(P)$ from a general fibre of $\overline{f_{A}}$ and from K_{P}, so $\operatorname{Pic}(P)$ has 10 independent classes. This is a contradiction because the second Betti number of P is

$$
b_{2}(P)=12 \chi\left(\mathcal{O}_{P}\right)-K_{P}^{2}+4 q(P)-2=9
$$

The examples can be found in Sections 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 and 4.9.

4. (Bi)double cover examples

The next sections contain constructions of minimal smooth surfaces of general type S with $p_{g}=q=1$ which present examples for cases a), b), \ldots of Theorems 7,8 and 9 . Only the existence of case c) of Theorem 9 remains an open problem.

Each example is obtained as the smooth minimal model of a bidouble cover of a ruled surface (irregular only in Sections 4.8 and 4.9).

The verifications that the surfaces S and the corresponding quotient surfaces are as claimed are not written here. These can be found in the author's Ph.D. thesis, available at http://home.utad.pt/~ crito .

A bidouble cover is a finite flat Galois morphism with Galois group \mathbb{Z}_{2}^{2}. Following [7] or [14], to define a bidouble cover cover $\psi: V \rightarrow X$, with V, X smooth surfaces, it suffices to present:

- smooth divisors $D_{1}, D_{2}, D_{3} \subset X$ with pairwise transverse intersections and no common intersection;
- line bundles L_{1}, L_{2}, L_{3} such that $2 L_{g} \equiv D_{j}+D_{k}$ for each permutation (g, j, k) of $(1,2,3)$.

If $\operatorname{Pic}(X)$ has no 2 -torsion, the L_{i} 's are uniquely determined by the D_{i} 's.
Let $N:=2 K_{X}+\sum_{1}^{3} L_{i}$. One has:

$$
\begin{aligned}
p_{g}(V) & =p_{g}(X)+\sum_{1}^{3} h^{0}\left(X, \mathcal{O}_{X}\left(K_{X}+L_{i}\right)\right) \\
\chi\left(\mathcal{O}_{V}\right) & =4 \chi\left(\mathcal{O}_{X}\right)+\frac{1}{2} \sum_{1}^{3} L_{i}\left(K_{X}+L_{i}\right) \\
2 K_{V} & \equiv \psi^{*}(N)
\end{aligned}
$$

and

$$
H^{0}\left(V, \mathcal{O}_{V}\left(2 K_{V}\right)\right) \simeq H^{0}\left(X, \mathcal{O}_{X}(N)\right) \oplus \bigoplus_{i=1}^{3} H^{0}\left(X, \mathcal{O}_{X}\left(N-L_{i}\right)\right)
$$

The bicanonical map of V is composed with the involution i_{g}, associated to L_{g}, if and only if

$$
h^{0}\left(X, \mathcal{O}_{X}\left(2 K_{X}+L_{g}+L_{j}\right)\right)=h^{0}\left(X, \mathcal{O}_{X}\left(2 K_{X}+L_{g}+L_{k}\right)\right)=0
$$

For more information on bidouble covers see [7] or [14].

Denote by i_{1}, i_{2}, i_{3} the involutions of V corresponding to L_{1}, L_{2}, L_{3}, respectively. In each example we give the invariants of the quotient surfaces $W_{j}:=V / i_{j}, j=1,2,3$.

We use the following:

Notation 10

Let $p_{0}, \ldots, p_{j}, \ldots, p_{j+s} \in \mathbb{P}^{2}$ be distinct points and define T_{i} as the line through p_{0} and $p_{i}, i=1, \ldots, j$. We say that a plane curve is of type

$$
d\left(m,(n, n)_{T}^{j}, r^{s}\right)
$$

if it is of degree d and if it has: an m-uple point at p_{0}, an (n, n)-point at p_{1}, \ldots, p_{j}, an r-uple point at p_{j+1}, \ldots, p_{j+s} and no other non-negligible singularities. The index T is used if T_{i} is tangent to the (n, n)-point at p_{i}.

An obvious generalization is used if there are other singularities.
Let $p_{1}^{\prime}, \ldots, p_{j}^{\prime}$ be the infinitely near points to p_{1}, \ldots, p_{j}, respectively. We denote by

$$
\mu: X \rightarrow \mathbb{P}^{2}
$$

the blow-up with centers

$$
p_{0}, p_{1}, p_{1}^{\prime}, \ldots, p_{j}, p_{j}^{\prime}, p_{j+1}, \ldots, p_{j+s}
$$

and by

$$
E_{0}, E_{1}, E_{1}^{\prime}, \ldots, E_{j}, E_{j}^{\prime}, E_{j+1}, \ldots, E_{j+s}
$$

the corresponding exceptional divisors (with self-intersection -1).
The notation $\widetilde{\sim}$ stands for the total transform $\mu^{*}(\cdot)$ of a curve.
The letter T is reserved for a general line of \mathbb{P}^{2}.
The genus of a general Albanese fibre of S is denoted by g.

4.1 $\quad K^{2}=8, g=3$,
 S / i_{1} ruled, S / i_{2} rational, $\operatorname{Kod}\left(S / i_{1}\right)=1$

Let Q be a reduced curve of type $4\left(0,(2,2)_{T}^{2}\right)$, i.e. Q is the union of two conics tangent to the lines T_{1} and T_{2} at p_{1}, p_{2}. Let C be another non-degenerate conic tangent to T_{1}, T_{2} at p_{1}, p_{2} and let $T_{3}, \ldots, T_{6} \neq T_{1}, T_{2}$ be distinct lines through $p_{0} \in T_{1} \bigcap T_{2}$.

Set

$$
\begin{aligned}
D_{1} & :=\widetilde{T_{1}}+\cdots+\widetilde{T_{6}}-\sum_{1}^{2}\left(E_{i}+E_{i}^{\prime}\right)-6 E_{0} \\
D_{2} & :=\widetilde{Q}-\sum_{1}^{2}\left(E_{i}+3 E_{i}^{\prime}\right) \\
D_{3} & :=\widetilde{C}-\sum_{1}^{2}\left(E_{i}+E_{i}^{\prime}\right)
\end{aligned}
$$

and let $V \rightarrow X$ be the bidouble cover determined by D_{1}, D_{2}, D_{3}. One has $p_{g}(V)=$ $\chi\left(\mathcal{O}_{V}\right)=1$ and the bicanonical map of V is composed with the involution i_{2} and is not composed with the involutions i_{1} and i_{3}. The quotients $W_{j}:=V / i_{j}, j=1,2,3$, satisfy:

- W_{1} is ruled, $q\left(W_{1}\right)=1$;
- W_{2} is rational;
$\cdot \operatorname{Kod}\left(W_{3}\right)=p_{g}\left(W_{3}\right)=1, q\left(W_{3}\right)=0$.
Moreover $K_{S}^{2}=8$, where S is the minimal model of V. The pencil of conics tangent to T_{1}, T_{2} at p_{1}, p_{2} induces the Albanese fibration of S, which is of genus 3 .

This gives an example for case a) of Theorem 8.
The surface S is a Du Val double plane of type III described in [16].

4.2 $\quad K^{2}=6, g=4$,
 $\operatorname{Kod}\left(S / i_{1}\right)=2, S / i_{2}$ rational, $\operatorname{Kod}\left(S / i_{3}\right)=1$

From Proposition 12 in Appendix A.1, there is a pencil l, with no base component, of curves of type $7\left(3,(2,2)_{T}^{5}\right)$. Let Q be a general element of this pencil and C be a reduced curve of type $4\left(2,(1,1)_{T}^{5}\right)$.

Set

$$
\begin{aligned}
& D_{1}:=\widetilde{T_{1}}+\cdots+\widetilde{T_{4}}-\sum_{1}^{4}\left(E_{i}+E_{i}^{\prime}\right)+\left(E_{5}-E_{5}^{\prime}\right)-4 E_{0}, \\
& D_{2}:=\widetilde{T_{5}}+\widetilde{Q}-\sum_{1}^{4}\left(E_{i}+3 E_{i}^{\prime}\right)-3 E_{5}-3 E_{5}^{\prime}-4 E_{0}, \\
& D_{3}:=\widetilde{C}-\sum_{1}^{5}\left(E_{i}+E_{i}^{\prime}\right)-2 E_{0}
\end{aligned}
$$

and let $V \rightarrow X$ be the bidouble cover determined by D_{1}, D_{2}, D_{3}. One has $p_{g}(V)=$ $\chi\left(\mathcal{O}_{V}\right)=1$ and the bicanonical map of V is composed with the involution i_{2} and is not composed with the involutions i_{1} and i_{3}. The quotients $W_{j}:=V / i_{j}$ satisfy:

- $\operatorname{Kod}\left(W_{1}\right)=2, p_{g}\left(W_{1}\right)=1, q\left(W_{1}\right)=0 ;$
- W_{2} is rational;
$\cdot \operatorname{Kod}\left(W_{3}\right)=1, p_{g}\left(W_{3}\right)=0, q\left(W_{3}\right)=1$.
Moreover $K_{S}^{2}=6$, where S is the minimal model of V. The pencil l induces the Albanese fibration of S, which is of genus 4 .

This is an example for Theorems 8, d) and 9, a).
One can verify that S is a Du Val double plane obtained imposing a 4 -uple point to the branch locus of a Du Val's ancestor of type \mathcal{D}_{5} (cf. [19]).

$4.3 \quad K^{2}=4, g=3$,
 $\operatorname{Kod}\left(S / i_{1}\right)=2, S / i_{2}$ rational, $\operatorname{Kod}\left(S / i_{3}\right)=0$

From Proposition 12, there is a pencil l, with no base component, of curves of type $6\left(2,(2,2)_{T}^{4}\right)$, through points p_{0}, \ldots, p_{4} (i.e. of plane curves of degree 6 with a double point at p_{0} and a tacnode at p_{i} with tangent line through $\left.p_{0}, p_{i}, i=1, \ldots, 4\right)$. Let Q be a general element of this pencil, C be a reduced curve of type $4\left(2,(1,1)_{T}^{4}\right)$ and set

$$
\begin{aligned}
& D_{1}:=\widetilde{T_{1}}+\cdots+\widetilde{T_{4}}-\sum_{1}^{4}\left(E_{i}+E_{i}^{\prime}\right)-4 E_{0}, \\
& D_{2}:=\widetilde{Q}-\sum_{1}^{4}\left(E_{i}+3 E_{i}^{\prime}\right)-2 E_{0}, \\
& D_{3}:=\widetilde{C}-\sum_{1}^{4}\left(E_{i}+E_{i}^{\prime}\right)-2 E_{0} .
\end{aligned}
$$

Let $V \rightarrow X$ be the bidouble cover determined by D_{1}, D_{2}, D_{3} and S be the minimal model of V. One has $p_{g}(S)=\chi\left(\mathcal{O}_{S}\right)=1, K_{S}^{2}=4$ and the bicanonical map of V is composed with the involution i_{2} and is not composed with the involutions i_{1} and i_{3}, associated to the bidouble cover. The quotients $W_{j}:=V / i_{j}$ satisfy:

- $\operatorname{Kod}\left(W_{1}\right)=2, p_{g}\left(W_{1}\right)=1, q\left(W_{1}\right)=0 ;$
- W_{2} is rational;
$\cdot \operatorname{Kod}\left(W_{3}\right)=0, p_{g}\left(W_{3}\right)=0, q\left(W_{3}\right)=1$.
The pencil l induces the (genus 3) Albanese fibration of S.
This gives an example for Theorems 7, b) and 9, a).
One can verify that S is a Du Val double plane obtained imposing two 4-uple points to the branch locus of a Du Val's ancestor of type $\mathcal{D}_{4}(c f$. [19]).
$\begin{array}{ll}\text { 4.4 } & K^{2}=4, g=2, \\ & S / i_{1} \text { ruled, } \operatorname{Kod}\left(S / i_{2}\right)=1, \operatorname{Kod}\left(S / i_{3}\right)=2\end{array}$
We recall Notation 10.
This section contains the construction of a surface of general type S with $p_{g}=q=1, K^{2}=4, g=2$ and bicanonical map ϕ_{2} of degree 2.

By Proposition 12 in Appendix A.1, there is a pencil l, with no base component, of curves of type $6\left(2,(2,2)_{T}^{4}\right)$. Let Q_{1} be a general element of this pencil, Q_{2} be a smooth curve of type $3\left(1,(1,1)_{T}^{4}\right)$ and $Q:=Q_{1}+Q_{2}$. Let T_{5} be a line through p_{0} transverse to Q and set

$$
\begin{aligned}
& D_{1}:=\widetilde{T_{1}}+\widetilde{Q}-4 E_{1}-4 E_{1}^{\prime}-\sum_{2}^{4}\left(3 E_{i}+3 E_{i}^{\prime}\right)-4 E_{0} \\
& D_{2}:=\widetilde{T_{2}}+\cdots+\widetilde{T_{5}}-\sum_{2}^{4}\left(E_{i}+E_{i}^{\prime}\right)-4 E_{0} \\
& D_{3}:=\sum_{2}^{4}\left(E_{i}-E_{i}^{\prime}\right)
\end{aligned}
$$

Let $\psi: V \rightarrow X$ be the bidouble cover determined by D_{1}, D_{2}, D_{3}. The bicanonical map of V is composed with the involution i_{1} and is not composed with the involutions i_{2} and i_{3}. The quotients $W_{j}:=V / i_{j}$ satisfy:

- W_{1} is ruled, $q\left(W_{1}\right)=1$;
- $\operatorname{Kod}\left(W_{2}\right)=1, p_{g}\left(W_{2}\right)=q\left(W_{2}\right)=0 ;$
$\cdot \operatorname{Kod}\left(W_{3}\right)=2, p_{g}\left(W_{3}\right)=1, q\left(W_{3}\right)=0$.
The surface S is the minimal model of V. The Albanese fibration of S is induced by the pullback of the pencil of lines through p_{0}. It is of genus 2 .

This gives an example for Theorems 8, b) and 9, a).
Let N be as above. One has $\operatorname{deg}\left(\phi_{2}\right)=2$ because the system $\left|\psi^{*}(N)\right|$ is strictly contained in the bicanonical system of V, ϕ_{2} is composed with i_{1} and the map $X \rightarrow \mathbb{P}^{2}$ induced by $|N|$ is birational (this can be verified using the Magma function IsInvertible).

$$
\text { Involutions on surfaces with } p_{g}=q=1
$$

```
4.5 \(\quad K^{2}=8, g=3\),
    \(\operatorname{Kod}\left(S / i_{1}\right)=2, \operatorname{Kod}\left(S / i_{2}\right)=0, \operatorname{Kod}\left(S / i_{3}\right)=0\)
```

A smooth projective surface S of general type is said to be a standard isotrivial fibration if there exists a finite group G which acts faithfully on two smooth projective curves C and F so that S is isomorphic to the minimal desingularization of $T:=(C \times F) / G$. The paper [17] contains examples of such surfaces with $K^{2}=8$.

This section contains the construction of the first surface of general type with $p_{g}=q=1, K^{2}=8$ and $g=3$ which is not a standard isotrivial fibration.

Let G be a curve of type $6\left(2,(2,2)_{T}^{4}\right)$ and C be a curve of type $8\left(4,(2,2)_{T}^{4},(3,3)\right)$ such that $G+C$ is reduced and the (3,3)-point of C is tangent to G. The existence of these curves is shown in Appendix A.2.

Set

$$
\begin{aligned}
& D_{1}:=\widetilde{T_{1}}+\widetilde{T_{2}}-\sum_{1}^{2} 2 E_{i}^{\prime}+\left(E_{5}-E_{5}^{\prime}\right)-2 E_{0}, \\
& D_{2}:=\widetilde{G}-\sum_{1}^{4}\left(2 E_{i}+2 E_{i}^{\prime}\right)-\left(E_{5}+E_{5}^{\prime}\right)-2 E_{0}, \\
& D_{3}:=\widetilde{T_{3}}+\widetilde{T_{4}}+\widetilde{C}-\sum_{1}^{2}\left(2 E_{i}+2 E_{i}^{\prime}\right)-\sum_{3}^{4}\left(2 E_{i}+4 E_{i}^{\prime}\right)-\left(3 E_{5}+3 E_{5}^{\prime}\right)-6 E_{0}
\end{aligned}
$$

and let $V \rightarrow X$ be the bidouble cover determined by D_{1}, D_{2}, D_{3}. The bicanonical map of V is not composed with any of the involutions i_{1}, i_{2}, i_{3}, associated to the bidouble cover. The quotients $W_{j}:=V / i_{j}$ satisfy:

- $\operatorname{Kod}\left(W_{1}\right)=2, p_{g}\left(W_{1}\right)=1, q\left(W_{1}\right)=0 ;$
- $\operatorname{Kod}\left(W_{2}\right)=0, p_{g}\left(W_{2}\right)=0, q\left(W_{2}\right)=1 ;$
- $\operatorname{Kod}\left(W_{3}\right)=0, p_{g}\left(W_{3}\right)=0, q\left(W_{3}\right)=0$.

Let S be the minimal model of V. One has $p_{g}(S)=q(S)=1$ and $K_{S}^{2}=8$. The Albanese fibration of S is induced by a pencil of curves of type $14\left(6,(4,4)_{T}^{4},(4,4)\right)$, which contains an element equal to $G+C$ (see Appendix A.2). From [18, Theorem 3.2], the existence of such reducible fibre implies that S is not a standard isotrivial fibration, so this is not one of Polizzi's examples.

This is an example for Theorems 7 a), b) and 9 a).

$$
\begin{array}{ll}
4.6 & K^{2}=7, g=3 \\
& \operatorname{Kod}\left(S / i_{1}\right)=2, \operatorname{Kod}\left(S / i_{2}\right)=1, \operatorname{Kod}\left(S / i_{3}\right)=0
\end{array}
$$

This section contains the construction of a bidouble cover $V \rightarrow X$, with X rational, such that the minimal model S of V is a surface of general type with $K^{2}=7, p_{g}=q=1$ and $g=3$ having birational bicanonical map.

From Appendix A.2, there exist a curve C of type $7\left(3,(2,2)_{T}^{4}, 3\right)$ (i.e. C is a plane curve of degree 7 with triple points at p_{0}, p_{5} and a tacnode at p_{i} tangent to the line T_{i} through $\left.p_{0}, p_{i}, i=1, \ldots, 4\right)$ and a curve G of type $6\left(2,(2,2)_{T}^{4}, 1\right)$, both through points p_{0}, \ldots, p_{5}, such that $C+G$ is reduced.

Set

$$
\begin{aligned}
& D_{1}:=\widetilde{T_{1}}+\widetilde{T_{2}}+\widetilde{T_{3}}-\sum_{1}^{3} 2 E_{i}^{\prime}+E_{5}-3 E_{0} \\
& D_{2}:=\widetilde{T_{4}}+\widetilde{G}-\sum_{1}^{3}\left(2 E_{i}+2 E_{i}^{\prime}\right)-\left(2 E_{4}+4 E_{4}^{\prime}\right)-E_{5}-3 E_{0} \\
& D_{3}:=\widetilde{C}-\sum_{1}^{4}\left(2 E_{i}+2 E_{i}^{\prime}\right)-3 E_{5}-3 E_{0}
\end{aligned}
$$

and let $\psi: V \rightarrow X$ be the bidouble cover determined by D_{1}, D_{2}, D_{3}. The bicanonical map of V is not composed with any of the involutions i_{1}, i_{2}, i_{3}, associated to the bidouble cover. The quotients $W_{j}:=V / i_{j}, j=1,2,3$, satisfy:

- $\operatorname{Kod}\left(W_{1}\right)=2, p_{g}\left(W_{1}\right)=1, q\left(W_{1}\right)=0 ;$
- $\operatorname{Kod}\left(W_{2}\right)=1, p_{g}\left(W_{2}\right)=0, q\left(W_{2}\right)=0 ;$
- $\operatorname{Kod}\left(W_{3}\right)=0, p_{g}\left(W_{3}\right)=0, q\left(W_{3}\right)=1$.

One has $p_{g}(S)=\chi(S)=1$ and $K_{S}^{2}=7$, where S is the minimal model of V. The Albanese fibration of S is induced by the pencil of curves of type $6\left(2,(2,2)_{T}^{4}\right)$. It is of genus 3.

This is an example for Theorems $7, b), 8, b)$ and $9, a)$.
It remains to verify that the bicanonical map of S is birational. Let N be as above. The system $\left|\psi^{*}(N)\right|$ is strictly contained in the bicanonical system of V. The bicanonical map of V is not composed with any of the involutions i_{1}, i_{2}, i_{3}, hence it is birational if the map τ given by $|N|=N_{1}+\left|N_{2}\right|$ is birational. This is in fact the case, see Appendix A.2, where Magma is used to show that the image of τ is of degree $7=N_{2}^{2}$.

$$
\begin{array}{ll}
4.7 & K^{2}=6, g=3 \\
& \operatorname{Kod}\left(S / i_{1}\right)=2, \operatorname{Kod}\left(S / i_{2}\right)=1, \operatorname{Kod}\left(S / i_{3}\right)=0
\end{array}
$$

One can obtain a construction analogous to the one in Section 4.6, but with $K_{S}^{2}=6$ instead: replace the triple point of C by a $(2,2)$-point, tangent to G. Such a curve exists, see Appendix A.2. With this change the branch locus in W_{3} has a 4 -uple point instead of a (3, 3)-point.

```
\(4.8 \quad K^{2}=8, g=3\),
    \(\operatorname{Kod}\left(S / i_{1}\right)=1, S / i_{2}\) ruled, \(\operatorname{Kod}\left(S / i_{3}\right)=1\)
```

Here we give the construction of a surface of general type S, with $K^{2}=8, p_{g}=q=1$ and $g=3$, as a bidouble cover of a ruled surface Z with $q(Z)=1$.

Let F_{1}, \ldots, F_{4} be disjoint fibres of the Hirzebruch surface \mathbb{F}_{0} and $Z \rightarrow \mathbb{F}_{0}$ be the double cover with branch locus $F_{1}+\cdots+F_{4}$. Clearly Z is a ruled surface with irregularity 1. Denote by γ the rational fibration of Z.

Let G, G_{1}, \ldots, G_{6} be distinct smooth elliptic sections of γ and $\Gamma_{1}, \ldots, \Gamma_{4}$ be distinct fibres of γ such that $\Gamma_{1}+\Gamma_{2} \equiv 2 \Gamma_{3} \equiv 2 \Gamma_{4}$.

Set

$$
\begin{aligned}
& D_{1}:=\Gamma_{1}+\Gamma_{2}, \\
& D_{2}:=G_{1}+\cdots+G_{4}, \\
& D_{3}:=G_{5}+G_{6}
\end{aligned}
$$

and

$$
\begin{aligned}
& L_{1}:=3 G+\Gamma_{3}-\Gamma_{4}, \\
& L_{2}:=G+\Gamma_{4}, \\
& L_{3}:=2 G+\Gamma_{3} .
\end{aligned}
$$

The bidouble cover $V \rightarrow Z$ is determined by the curves D_{i} and by the divisors L_{i}. The surface S is the minimal model of V.

The bicanonical map of V is not composed with any of the involutions i_{1}, i_{2}, i_{3}, associated to the bidouble cover. The quotients $W_{j}:=S / i_{j}, j=1,2,3$, satisfy:
$\cdot \operatorname{Kod}\left(W_{1}\right)=1, p_{g}\left(W_{1}\right)=0, q\left(W_{1}\right)=1 ;$

- W_{2} is ruled, $q\left(W_{2}\right)=1$;
- $\operatorname{Kod}\left(W_{3}\right)=p_{g}\left(W_{3}\right)=q\left(W_{3}\right)=1$.

This is an example for cases c) and d) of Theorem 8.

$$
\begin{array}{ll}
4.9 & K^{2}=4, g=3 \\
& S / i_{1} \text { ruled, } \operatorname{Kod}\left(S / i_{2}\right)=0, \operatorname{Kod}\left(S / i_{3}\right)=2
\end{array}
$$

This section contains the construction of a bidouble cover $V \rightarrow Z$, with Z ruled and $q(Z)=1$, such that the minimal model S of V is a surface of general type with $K^{2}=4$, $p_{g}=q=1, g=3$ and that the bicanonical map ϕ_{2} of S is not composed with any of the involutions i_{1}, i_{2}, i_{3} associated to the bidouble cover.

We use Notation 10.
Let Q_{1} be a general curve of type $5\left(1,(2,2)_{T}^{3}\right)$ (there is a pencil of such curves, see Appendix A.1) and Q_{2} be a general curve of type $3\left(1,(1,1)_{T}^{3}\right)$, both through points p_{0}, \ldots, p_{3}.

Let

$$
\begin{gathered}
Q_{1}^{\prime}:=\widetilde{Q_{1}}-\sum_{1}^{3}\left(2 E_{i}+2 E_{i}^{\prime}\right)-E_{0} \equiv 5 \widetilde{T}-\sum_{1}^{3}\left(2 E_{i}+2 E_{i}^{\prime}\right)-E_{0}, \\
Q_{2}^{\prime}:=\widetilde{Q_{2}}-\sum_{1}^{3}\left(E_{i}+E_{i}^{\prime}\right)-E_{0} \equiv 3 \widetilde{T}-\sum_{1}^{3}\left(E_{i}+E_{i}^{\prime}\right)-E_{0}
\end{gathered}
$$

and consider the double cover $\psi: Z \rightarrow X$ with branch locus

$$
\widetilde{T_{1}}+\cdots+\widetilde{T_{4}}-\sum_{1}^{3} 2 E_{i}^{\prime}-4 E_{0}
$$

where T_{4} is a general line through p_{0}.

Let

$$
\begin{aligned}
\Gamma & :=\frac{1}{2} \psi^{*}\left(\widetilde{T_{4}}-E_{0}\right), \quad \Gamma_{i}:=\frac{1}{2} \psi^{*}\left(\widetilde{T}_{i}-E_{0}\right), \\
C_{0} & :=\psi^{*}\left(E_{0}\right), \\
e_{i} & :=\frac{1}{2} \psi^{*}\left(E_{i}-E_{i}^{\prime}\right), \\
e_{i}^{\prime} & :=\psi^{*}\left(E_{i}^{\prime}\right), \quad i=1,2,3,
\end{aligned}
$$

and set

$$
\begin{aligned}
& D_{1}:= \psi^{*}\left(Q_{1}^{\prime}\right) \equiv 4 C_{0}+10 \Gamma-\sum_{1}^{3}\left(4 e_{i}+4 e_{i}^{\prime}\right), \\
& D_{2}:=\psi^{*}\left(Q_{2}^{\prime}\right) \equiv 2 C_{0}+6 \Gamma-\sum_{1}^{3}\left(2 e_{i}+2 e_{i}^{\prime}\right), \\
& D_{3}:=0, \\
& L_{1}:=C_{0}+3 \Gamma-\sum_{1}^{3}\left(e_{i}+e_{i}^{\prime}\right), \\
& L_{2}:=2 C_{0}+5 \Gamma-\sum_{1}^{3}\left(2 e_{i}+2 e_{i}^{\prime}\right), \\
& L_{3}:=3 C_{0}+8 \Gamma-\sum_{1}^{3}\left(3 e_{i}+3 e_{i}^{\prime}\right) .
\end{aligned}
$$

The bidouble cover $V \rightarrow Z$ is determined by the curves D_{i} and by the divisors L_{i}. The surface S is the minimal model of V.

The quotients $W_{j}:=V / i_{j}, j=1,2,3$, satisfy:

- W_{1} is ruled, $q\left(W_{1}\right)=1$;
- $\operatorname{Kod}\left(W_{2}\right)=0, p_{g}\left(W_{2}\right)=0, q\left(W_{2}\right)=1 ;$
- $\operatorname{Kod}\left(W_{3}\right)=2, p_{g}\left(W_{3}\right)=1, q\left(W_{3}\right)=1$; the branch locus of the cover $V \rightarrow W_{3}$ is an union of four (-2)-curves.

This is an example for Theorems 7, b) and 9, b).

A. Appendix: Construction of plane curves

A. 1 Useful pencils

Here we show the existence of some pencils of plane curves that are useful on some of the constructions of Section 4. Recall Notation 10.

Lemma 11

Let $C \subset \mathbb{P}^{2}$ be a smooth conic and $p_{0} \notin C, p_{1}, \ldots, p_{4} \in C$ be distinct points. Consider the points $p_{5}, p_{6} \in C$ such that the lines through p_{0}, p_{5} and p_{0}, p_{6} are tangent to C.

There exists a smooth curve Q of type $3\left(1,(1,1)_{T}^{4}, 1^{2}\right)$, through p_{0}, \ldots, p_{6}.
Proof. Let $C_{x}, x \in \mathbb{P}^{1}$, be a parametrization of the pencil of conics through p_{1}, \ldots, p_{4}. Let p_{x}^{1}, p_{x}^{2} be the points of C_{x} (not distinct if C_{x} is singular) such that the lines through p_{0}, p_{x}^{1} and p_{0}, p_{x}^{2} are tangent to C_{x}.

The correspondence

$$
\left\{p_{x}^{1}, p_{x}^{2}\right\} \leftrightarrow x
$$

gives a plane algebraic curve Q which is a double cover of \mathbb{P}^{1}. This cover is ramified over four points, corresponding to the three degenerate conics which contain the points p_{1}, \ldots, p_{4} plus the conic which contains p_{0}. Therefore, by the Hurwitz formula, Q is a cubic.

The conic through p_{0}, \ldots, p_{4} is not tangent to the line T_{i} (through p_{0}, p_{i}) at p_{0}, thus also Q is not tangent to T_{i} at $p_{0}, i=1, \ldots, 4$. Since each conic C_{x} can be tangent to T_{i} only at $p_{i}, i=1, \ldots, 4$, then Q intersects T_{i} only at p_{0} and $p_{i}, i=1, \ldots, 4$. This means that Q is tangent to T_{i} at $p_{i}, i=1, \ldots, 4$, and then Q is smooth.

Proposition 12

In the notation of Notation 10, there exist pencils, without base components, of plane curves of type:
[3] a) $5\left(1,(2,2)_{T}^{3}\right)$;
b) $6\left(2,(2,2)_{T}^{4}\right)$;
c) $7\left(3,(2,2)_{T}^{5}\right)$;
d) $8\left(4,(2,2)_{T}^{6}\right)$.

Proof.
a) This is proved in [3]. Notice that we are imposing 19 conditions to a linear system of dimension 20 .
b) Let $\mathbb{A}(\mathbb{C})$ be an affine plane and $a, b, c, d \in \mathbb{C} \backslash\{0\}$ be numbers such that $a \neq c$ and $b c \neq \pm a d$. Consider the points of \mathbb{A} :

$$
p_{0}:=(0,0), p_{1}:=(a, b), p_{2}:=(c, d), p_{3}:=(c,-d), p_{4}:=(a,-b)
$$

and let T_{i} be the line through p_{0} and $p_{i}, i=1, \ldots, 4$. Let C_{1} be the conic through p_{1}, \ldots, p_{4} tangent to T_{1}, T_{4} and C_{2} be the conic through p_{1}, \ldots, p_{4} tangent to T_{2}, T_{3}.
The curves

$$
2 C_{1}+T_{2}+T_{3} \quad \text { and } \quad 2 C_{2}+T_{1}+T_{4}
$$

generate a pencil whose general member is a curve of type $6\left(2,(2,2)_{T}^{4}\right)$.
c) Let $C \subset \mathbb{P}^{2}$ be a non-degenerate conic and $p_{0} \notin C, p_{1}, \ldots, p_{5} \in C$ be distinct points such that the lines T_{1}, T_{5}, defined by p_{0}, p_{1} and p_{0}, p_{5}, are tangent to C. From Lemma 11, there exists a curve Q of type $3\left(1,(1,1)_{T}^{4}, 1\right)$, through p_{0}, \ldots, p_{5}, respectively.
The curves

$$
2 C+T_{2}+T_{3}+T_{4} \quad \text { and } \quad 2 Q+T_{5}
$$

generate a pencil whose general member is a curve of type $7\left(3,(2,2)_{T}^{5}\right)$.
d) This is analogous to the previous case, but now the pencil is generated by

$$
2 C+T_{2}+\cdots+T_{5} \quad \text { and } \quad 2 Q+T_{1}+T_{6}
$$

A. 2 Constructions using Magma

In this appendix we construct some plane curves using the Computational Algebra System Magma ([4]). We use the Magma procedure LinSys, defined in [19]. This procedure calculates the linear system L of plane curves of degree d, in an affine plane \mathbb{A}, having singular points p_{i} of order $\left(m 1_{i}, m 2_{i}\right)$ with tangent direction given by the slope $t d_{i}$.

Consider, in a affine plane \mathbb{A}, the points

$$
p_{0}:=(0,0), p_{1}:=(2,2), p_{2}:=(-2,2), p_{3}:=(3,1), p_{4}:=(-3,1) .
$$

From Appendix A.1, there exists a pencil of curves of type $6\left(2,(2,2)_{T}^{4}\right)$, with singularities at p_{0}, \ldots, p_{4}, respectively. Let G be the element of this pencil which contains the point $p_{5}:=(0,5)$. Using the above Magma procedure, it is easy to verify the following (the respective code lines are available at http://home.utad.pt/ ${ }^{\text {crito/o/thesis.html }) \text { : }}$

- the curve G is reduced and the tangent line to G at p_{5} is horizontal;
- there exists a reduced curve C of type $8\left(4,(2,2)_{T}^{4},(3,3)\right)$, singular at p_{0}, \ldots, p_{5}, such that the $(3,3)$-point is tangent to G. Moreover, $G+C$ is a reduced element of a pencil of curves of type $14\left(6,(4,4)_{T}^{4},(4,4)\right)$;
- there exists a reduced curve of type $7\left(3,(2,2)_{T}^{4},(2,2)\right)$, singular at p_{0}, \ldots, p_{5}, such that the $(2,2)$-point is tangent to G.

Now we will see that p_{5} can be chosen such that

- there exist reduced curves C_{1} of type $7\left(3,(2,2)_{T}^{4}, 3\right)$ and C_{2} of type $6\left(2,(2,2)_{T}^{4}, 1\right)$, both through p_{0}, \ldots, p_{5}, such that $C_{1}+C_{2}$ is reduced and the singularity of $C_{1}+C_{2}$ at p_{5} is ordinary.

```
> A<x,y>:=AffineSpace(Rationals(),2);
> p:=[A![2,2],A![-2,2],A![3,1],A![-3,1],Origin(A)];
> d:=7;m1:=[2,2,2,2,3];m2:=[2,2,2,2];
> td:=[p[i][2]/p[i][1]:i in [1..#m2]];
> LinSys(A,d,p,m1,m2,td, ~L);
> #Sections(L);BaseComponent(L);
6
Scheme over Rational Field defined by
1
```

Now we impose a triple point to the elements of L. This is done by asking for the vanishing of minors of a matrix of derivatives.

```
> R<x,y,n>:=PolynomialRing(Rationals(),3);
> h:=hom<PolynomialRing(L)->R|[x,y]>;
> H:=h(Sections(L));
> M:=[[H[i],D(H[i],1),D(H[i] ,2),D2(H[i],1,1),D2(H[i],1,2),\
> D2(H[i],2,2)]:i in [1..#H]];
> Mt:=Matrix(M);min:=Minors(Mt,#H);
```

```
> A:=AffineSpace(R);
> S:=Scheme(A,min cat [x-3,1+n*(y-x)*(y+x)*(3*y-x)*(3*y+x)]);
> //The condition 1+n*(..)=0 implies that
> //the solution is not in p.
> Dimension(S);
0
> PointsOverSplittingField(S);
```

We choose one of the solutions and we compute the curves C_{1} and C_{2} :

```
> R<r1>:=PolynomialRing(Rationals());
> K<r1>:=NumberField(r1^2 - 1761803/139426560*r1 + \
1387488001/33730073395200);
A<x,y>:=AffineSpace(K,2);
y1:=-33462374400/102856069*r1 + 419793163/102856069;
p:=[A![2,2],A![-2, 2],A![3,1],A![-3,1],A![3,y1],Origin(A)];
d:=7;m1:=[2,2,2,2,3,3];m2:=[2,2,2,2];
td:=[p[i][2]/p[i][1]:i in [1..#m2]];
LinSys(A,d,p,m1,m2,td, ~L);#Sections(L);
1
> C1:=Curve(A,Sections(L)[1]);
> d:=6;m1:=[2,2,2,2,1,2];m2:=[2,2,2,2];
LinSys(A,d,p,m1,m2,td, ~L);#Sections(L);
1
> C2:=Curve(A,Sections(L)[1]);
```

The verification that the singularities are no worst than stated is left to the reader (use the Magma functions ProjectiveClosure, SingularPoints, HasSingularPointsOverExtension and ResolutionGraph).

The calculations for Section 4.6 (verification that ϕ_{2} is birational) are as follows:

```
> d:=7;m1:=[2,2,2,2,1,3];m2:=[2,2,2,2];
> LinSys(A,d,p,m1,m2,td, ~L);
> #Sections(L);BaseComponent(L);
5 Scheme over K defined by
1
> P4:=ProjectiveSpace(K,4);
> tau:=map<A->P4|Sections(L)>;
> Degree(tau(Scheme(A,Sections(L) [3])));
7
```

thus an hyperplane section of the image of τ is of degree 7 .

References

1. W. Barth, C. Peters, and A. Van de Ven, Compact Complex Surfaces, Springer-Verlag, Berlin, 1984.
2. A. Beauville, Surfaces algébriques complexes, Astérisque 54 (1978), 172.
3. G. Borrelli, The classification of surfaces of general type with nonbirational bicanonical map, J. Algebraic Geom. 16 (2007), 625-669.
4. W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system I, The user language, J. Symbolic Comput. 24 (1997), 235-265.
5. A. Calabri, C. Ciliberto, and M. Mendes Lopes, Numerical Godeaux surfaces with an involution, Trans. Amer. Math. Soc. 359 (2007), 1605-1632.
6. F. Catanese, On a class of surfaces of general type, Algebraic Surfaces, CIME, Liguori 16 (1981), 269-284.
7. F. Catanese, Singular bidouble covers and the construction of interesting algebraic surfaces, Algebraic geometry: Hirzebruch 70 (Warsaw, 1998), 97-120, Contemp. Math. 241, Amer. Math. Soc., Providence, RI, 1999.
8. F. Catanese and C. Ciliberto, Surfaces with $p_{g}=q=1$, Problems in the theory of surfaces and their classification (Cortona, 1988), 49-79, Sympos. Math. 32, Academic Press, London, 1991.
9. F. Catanese and C. Ciliberto, Symmetric products of elliptic curves and surfaces of general type with $p_{g}=q=1$, J. Algebraic Geom. 2 (1993), 389-411.
10. F. Catanese and R. Pignatelli, Fibrations of low genus, I, Ann. Sci. École Norm. Sup. (4) 39 (2006), 1011-1049.
11. C. Ciliberto and M. Mendes Lopes, On surfaces with $p_{g}=q=2$ and non-birational bicanonical maps, Adv. Geom. 2 (2002), 281-300.
12. H. Esnault and E. Viehweg, Lectures on Vanishing Theorems, DMV Seminar, 20 Birkhäuser Verlag, Basel, 1992.
13. Y. Miyaoka, The maximal number of quotient singularities on surfaces with given numerical invariants, Math. Ann. 268 (1984), 159-171.
14. R. Pardini, Abelian covers of algebraic varieties, J. Reine Angew. Math. 417 (1991), 191-213.
15. R. Pignatelli, Some (big) irreducible components of the moduli space of minimal surfaces of general type with $p_{g}=q=1$ and $K^{2}=4$, Rend. Lincei Mat. Appl., to appear.
16. F. Polizzi, Surfaces of general type with $p_{g}=q=1, K^{2}=8$ and bicanonical map of degree 2, Trans. Amer. Math. Soc. 358 (2006), 759-798.
17. F. Polizzi, On surfaces of general type with $p_{g}=q=1$ isogenous to a product of curves, Comm. Algebra 36 (2008), 2023-2053.
18. F. Polizzi, Standard isotrivial fibrations with $p_{g}=q=1$, J. Algebra 321 (2009), 1600-1631.
19. C. Rito, On equations of double planes with $p_{g}=q=1$, Math. Comput., to appear.
20. C. Rito, On surfaces with $p_{g}=q=1$ and non-ruled bicanonial involution, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), 81-102.
21. F. Sakai, Semistable curves on algebraic surfaces and logarithmic pluricanonical maps, Math. Ann. 254 (1980), 89-120.
