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Received Març 17, 2009. Revised May 27, 2009

Abstract

LetL ≡ −∆+V be the Schrödinger operator in Rn, where V is a nonnegative
function satisfying the reverse Hölder inequality. Let ρ be an admissible function
modeled on the known auxiliary function determined by V . In this paper, the
authors establish several characterizations of the space BMOρ(Rn) in terms of
commutators of several different localized operators associated toρ, respectively;
these localized operators include localized Riesz transforms and their adjoint
operators, the localized fractional integral and its adjoint operator, the localized
fractional maximal operator and the localized Hardy-Littlewood-type maximal
operator. These results are new even for the space BMOL(Rn) introduced by
J. Dziubański, G. Garrigós et al.

1. Introduction

The space BMO(Rn) of functions with bounded mean oscillation was introduced by
John and Nirenberg in [12] and plays a crucial role in harmonic analysis and partial
differential equations; see, for example, [15, 9]. It is known that the space BMO(Rn)

is essentially related to the Laplacian ∆ ≡
∑n

j=1
∂2

∂x2j
and BMO(Rn) has a remarkable

characterization via commutators of the Riesz transforms ∇(−∆)−1/2, where ∇ is the
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gradient operator. More generally, if T is a Calderón-Zygmund singular integral ope-
rator with smooth kernel, Coifman, Rochberg and Weiss [2] proved that b ∈ BMO(Rn)
is sufficient to guarantee the commutator [b, T ](f) ≡ bT (f) − T (bf) to be bounded
on Lp(Rn) with all p ∈ (1,∞), and they also established a partial converse that if
[b,∇(−∆)−1/2] are bounded on Lp(Rn) for certain p ∈ (1,∞), then b ∈ BMO(Rn).
The full converse of this result was obtained by Janson [11]. On the other hand, let
β ∈ (0, n), p, q ∈ (1,∞) and 1/q = 1/p−β/n. Chanillo [1] proved that for a fractional
integral Iβ of order β, b ∈ BMO(Rn) if and only if [b, Iβ] is bounded from Lp(Rn) to
Lq(Rn).

Let L ≡ −∆ + V be the Schrödinger operator on Rn, where the potential V
is a nonnegative locally integrable function. Fefferman [7] and Shen [14] established
some basic results, including some estimates of the fundamental solutions and the
boundedness on Lebesgue spaces of Riesz transforms, for L on Rn with n ≥ 3 and
the nonnegative potential V satisfying the reverse Hölder inequality. Especially, the
works of Shen [14] lay the foundation for developing harmonic analysis related to L
on Rn. On the other hand, denote by Bq(Rn) the class of functions satisfying the
reverse Hölder inequality of order q. For V ∈ Bn/2(Rn) with n ≥ 3, Dziubański
and Zienkiewicz [6] introduced the Hardy space H1

L(Rn) associated with L and, in
particular, characterized H1

L(Rn) in terms of the Riesz transforms∇L−1/2; Dziubański,
Garrigós et al in [5] further introduced the BMO-type space BMOL(Rn) associated
with L and proved that the dual space of H1

L(Rn) is BMOL(Rn). It is now known
that BMOL(Rn) in [5] is a special case of BMO-type spaces associated with operators
studied by Duong and Yan in [3, 4]; see, in particular, [4, Proposition 6.11]. Let ρ be
an admissible function introduced in [18], which is modeled on the known auxiliary
function determined by V . In [16], the localized Riesz transforms {R̃j}nj=1 associated

with ρ and their adjoint operators {R̃∗j}nj=1 were introduced; their boundedness on the
localized BMO-type space BMOρ(Rn), as well as the equivalent characterization of

the localized Hardy spaces H1
ρ (Rn) in terms of {R̃j}nj=1 and {R̃∗j}nj=1, was established.

Recall that if V ∈ Bn/2(Rn) with n ≥ 3 and ρ is the auxiliary function determined by
the potential V (see, for example, [14] or (1.1) below), then the spaces BMOρ(Rn) and
H1
ρ (Rn) are just, respectively, the spaces BMOL(Rn) and H1

L(Rn).
On the other hand, Guo, Li and Peng [10] proved that for n ≥ 3, V ∈ Bq(Rn)

with q ∈ (n/2, n) and b ∈ BMO(Rn), the commutators of Riesz transforms ∇L−1/2
are bounded on Lp(Rn) for p ∈ (1, p0] with 1/p0 = 1/q− 1/n; and commutators of the
adjoint Riesz transforms are bounded on Lp(Rn) for p ∈ [p′0,∞). Unlike the classical
case, they gave a function f which is not in BMO(Rn), while its commutators with
the adjoint Riesz transforms associated with L are bounded on L2(Rn). It is well
known that BMOL(Rn) ⊂ BMO(Rn). Thus, this example mentioned above further
implies that BMOL(Rn) can not be characterized by commutators of Riesz transforms
associated with L.

Let ρ be an admissible function. Different from the paper [10], in this paper, we
characterize the space BMOρ(Rn) via several classes of commutators of different local-
ized operators associated to ρ, respectively; these localized operators include localized
Riesz transforms {R̃j}nj=1 and their adjoint operators {R̃∗j}nj=1, the localized fractional
integral and its adjoint operator, the localized fractional maximal operator and the
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localized Hardy-Littlewood-type maximal operator. In particular, if ρ is as in (1.1)
below, then these results give new characterizations of BMOL(Rn) in terms of these
localized commutators as above.

To be precise, we begin with recalling some necessary notions and notation.

Definition 1.1 ([18]) A positive function ρ on Rn is called admissible if there exist

positive constants C̃ and k0 such that for all x, y ∈ Rn,

ρ(y) ≤ C̃[ρ(x)]1/(1+k0)[ρ(x) + |x− y|]k0/(1+k0).

Obviously, constant functions are admissible. Moreover, let s ∈ (−∞, 1) and
ρ(y) ≡ (1 + |y|)s for all y ∈ Rn. Then ρ(y) also satisfies Definition 1.1 with
k0 = s/(1 − s) when s ∈ [0, 1) and k0 = −s when s ∈ (−∞, 0). Another non-trivial
class of admissible functions is given by the well-known reverse Hölder class Bq(Rn).
Recall that a nonnegative potential V is said to be in Bq(Rn) with q ∈ (1, ∞] if there
exists a positive constant C such that for all open balls B of Rn,(

1

|B|

∫
B

[V (y)]q dy

)1/q

≤ C

|B|

∫
B
V (y) dy

with the usual modification made when q = ∞. It is known that if V ∈ Bq(Rn) for
certain q ∈ (1, ∞], then V is an A∞(Rn) weight in the sense of Muckenhoupt, and also
V ∈ Bq+ε(Rn) for certain ε > 0; see, for example, [15]. Thus Bq(Rn) = ∪q1>qBq1(Rn).
For any V ∈ Bq(Rn) with certain q ∈ (1, ∞] and all x ∈ Rn, set

ρ(x) ≡ [m(x, V )]−1 ≡ sup

{
r > 0 :

r2

|B(x, r)|

∫
B(x, r)

V (y) dy ≤ 1

}
; (1.1)

see, for example, [14]. It was proved in [14] that ρ in (1.1) is an admissible function if
n ≥ 3 and V ∈ Bn/2(Rn). Moreover, as pointed out in [18], ρ is admissible if n ≥ 1,
q > max {1, n/2} and V ∈ Bq(Rn).

We next recall the notion of the space BMOρ(Rn) in [16] associated to a given
admissible function ρ. Throughout this paper, D denotes the set of all open balls
B(x, r) such that r ≥ ρ(x).

Definition 1.2 Let ρ be an admissible function. A function f ∈ L1
loc (Rn) is said to

be in the space BMOρ(Rn) if there exists a nonnegative constant C such that for all
open balls B /∈ D,

1

|B|

∫
B
|f(y)− fB| dy ≤ C,

and for all open balls B ∈ D,

1

|B|

∫
B
|f(y)| dy ≤ C, (1.2)

where and in what follows, fB denotes the mean of f over B for any ball B, that is,
fB ≡ 1

|B|
∫
B f(x) dx. Moreover, the minimal constant C as above is defined to be the

norm of f in the space BMOρ(Rn) and denoted by ‖f‖BMOρ(Rn).
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Remark 1.1 If ρ is in (1.1), the space BMOρ(Rn) is just the space BMOL(Rn) in [5].
When ρ is an admissible function as in Definition 1.1, it was proved in [16] that
BMOρ(Rn) also satisfies the John-Nirenberg inequality.

The organization of the paper is as follows.
In Section 2, letting ρ be an admissible function on Rn and j ∈ {1, · · · , n}, we

show that b ∈ BMOρ(Rn) if and only if b satisfies (1.2) and [b, R̃j ] (or [b, R̃∗j ]) is bounded
on Lq(Rn) for all (or certain) q ∈ (1,∞). We remark that in fact, we prove that if
b ∈ BMO(Rn), then [b, R̃j ] (or [b, R̃∗j ]) is bounded on Lq(Rn) for all q ∈ (1,∞). From

this, it follows that the fact that [b, R̃j ] (or [b, R̃∗j ]) is bounded on Lq(Rn) for all (or
certain) q ∈ (1,∞) is not enough to guarantee that b ∈ BMOρ(Rn), due to the fact
that BMOρ(Rn) ( BMO(Rn). To be precise, the boundedness of these commutators
can not control the behavior of b ∈ BMOρ(Rn) on big balls, namely, balls in D, since
these commutators are localized. In other words, by (6.5) in [14] and definitions of
{R̃j}nj=1 and {R̃∗j}nj=1 in Section 2 below as well as classical Riesz transforms, we see

that kernels of {R̃j}nj=1 and {R̃∗j}nj=1 decay faster over balls in D than the kernels of

the classical Riesz transforms, but slower than the kernels of ∇L−1/2. Also in this
section, we introduce the localized fractional integral Iρα and its adjoint operator Iρ, ∗α
with α ∈ (0, n) and prove that b ∈ BMOρ(Rn) if and only if b satisfies (1.2) and for all
(or certain) p, q ∈ (1,∞) with 1/q = 1/p − α/n, [b, Iρ, ∗α ] is bounded from Lp(Rn) to
Lq(Rn) or [b, Iρα] is bounded from Lq

′
(Rn) to Lp

′
(Rn).

In Section 3, we introduce localized versions of the fractional maximal operator
M loc

β with β ∈ (0, 1) and the Hardy-Littlewood-type maximal operator M loc , p with
p ∈ [1,∞), and establish equivalent characterizations for b ∈ BMOρ(Rn) in terms
of commutators of M loc

β and M loc , p, respectively. Especially, we prove that b ∈
BMOρ(Rn) if and only if b satisfies (1.2) and M loc

b, β , the commutator of M loc
β , is

bounded from Lr(Rn) to Ls(Rn) for all (or certain) r ∈ (1, 1/β) and s ∈ (1,∞) with

1/s = 1/r − β, and if and only if b satisfies (1.2) and M loc , p
b , the commutator of

M loc , p, is bounded on Lq(Rn) for all (or certain) q ∈ (p,∞).
We now make some conventions. Throughout this paper, we always use C to

denote a positive constant that is independent of the main parameters involved but
whose value may differ from line to line. Constants with subscripts, such as C1, do
not change in different occurrences. If f ≤ Cg, we then write f . g or g & f ; and
if f . g . f , we then write f ∼ g. Denote any ball B of Rn by B ≡ B(xB, rB),
where xB ∈ Rn is its center and rB > 0 its radius. For any ball B ≡ B(xB, rB) ⊂ Rn
and λ > 0, λB ≡ B(xB, λrB). Also, χE denotes the characteristic function of any set
E ⊂ Rn.

2. Localized commutators

Let ρ be a given admissible function. In this section, we establish characterizations of
BMOρ(Rn) via commutators of localized Riesz transforms and their adjoint operators
in [17], as well as localized fractional integrals and their adjoint operators associated
with a given admissible function ρ. We begin with definitions of localized Riesz trans-
forms and their adjoint operators.

Let ρ be an admissible function as in Definition 1.1. For all j ∈ {1, · · · , n},
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f ∈ ∪∞p=1L
p(Rn) and x ∈ Rn, let

R̃j(f)(x) ≡ p. v. cn

∫
Rn

xj − yj
|x− y|n+1

η

(
|x− y|
ρ(x)

)
f(y) dy, (2.1)

where and in what follows, cn ≡ Γ((n + 1)/2)/[π(n+1)/2], η ∈ C1(R) supported in
(−1, 1) and η(t) = 1 if |t| ≤ 1/2. The adjoint operators of R̃j , j ∈ {1, · · · , n}, have
the forms

R̃∗j (f)(x) ≡ −p. v. cn

∫
Rn

xj − yj
|x− y|n+1

η

(
|x− y|
ρ(y)

)
f(y) dy,

where f and x are the same as in (2.1).
The following lemma was established in [17].

Lemma 2.1

Let ρ be an admissible function, and for all j ∈ {1, · · · , n}, let R̃j and R̃∗j be

defined as above. Then R̃j and R̃∗j are bounded on Lp(Rn) for p ∈ (1,∞) and bounded

from L1(Rn) to L1,∞(Rn).

Let q ∈ [1,∞), x ∈ Rn and f ∈ L1
loc (Rn). The classical maximal functionsM](f)

and Mp(f) are, respectively, defined by

M](f)(x) ≡ sup
B3x

1

|B|

∫
B
|f(y)− fB| dy,

and

Mp(f)(x) ≡
[

sup
B3x

1

|B|

∫
B
|f(y)|p dy

]1/p
.

Notice that when p = 1, Mp is the classical Hardy-Littlewood maximal function and
we denote Mp simply by M.

Lemma 2.2

Let ρ be an admissible function, b ∈ BMO(Rn), j ∈ {1, · · · , n} and p, r ∈ (1,∞).
Then there exists a positive constant C such that for all f ∈ C∞c (Rn) and x ∈ Rn,

M]
([
b, R̃∗j

]
f
)

(x) ≤ C‖b‖BMO(Rn)

[
Mp

[
R̃∗j (f)

]
(x) +Mpr(f)(x)

]
.

Proof. By the homogeneity of BMO(Rn), we may assume that ‖b‖BMO(Rn) = 1. Let
x ∈ Rn, B ≡ B(x0, r0) be any ball containing x, f1 ≡ fχ2B and f2 ≡ fχRn\(2B). We
first prove that for all j ∈ {1, · · · , n} and all B as above,

1

|B|

∫
B

∣∣∣[b, R̃∗j] (f)(y) + R̃∗j [(b− bB)f2] (x0)
∣∣∣ dy .Mp

[
R̃∗j (f)

]
(x) +Mpr(f)(x).

(2.2)
From the linearity of R̃∗j , we deduce that for all y ∈ Rn,[
b, R̃∗j

]
(f)(y) = (b(y)− bB)R̃∗j (f)(y)− R̃∗j [(b− bB)f1] (y)− R̃∗j [(b− bB)f2] (y)

≡ I1(y) + I2(y) + I3(y).
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By the Hölder inequality and the John-Nirenberg inequality (see Remark 1.1), we
have that

1

|B|

∫
B
|I1(y)| dy ≤

[
1

|B|

∫
B
|b(y)− bB|p

′
dy

]1/p′ [ 1

|B|

∫
B

∣∣∣R̃∗j (f)(y)
∣∣∣p dy]1/p

.Mp

[
R̃∗j (f)

]
(x). (2.3)

On the other hand, by Lemma 2.1, we obtain that for all j ∈ {1, · · · , n}, R̃∗j
are bounded on Lr(Rn) for all r ∈ (1,∞). It then follows from this and the Hölder
inequality that

1

|B|

∫
B
|I2(y)| dy .

[
1

|B|

∫
2B
|[b(y)− bB]f(y)|r dy

]1/r
.

[
1

|B|

∫
2B
|b(y)− bB|p

′r dy

]1/(p′r) [ 1

|B|

∫
2B
|f(y)|pr dy

]1/(pr)
.Mpr(f)(x). (2.4)

By Definition 1.1, for any given positive constant a, there exists a positive constant
C̃a ∈ [1,∞) such that for all y ∈ Rn and x ∈ B(y, aρ(y)),

1

C̃a
ρ(y) ≤ ρ(x) ≤ C̃aρ(y). (2.5)

We denote the kernel of R̃∗j still by R̃∗j . Let y ∈ B. From (2.5), we deduce

that supp (R̃∗j (y, ·)) ⊂ B(y, C̃1ρ(y)). Because x0, y ∈ B, this together with an-
other application of (2.5) yields that there exists positive constant C1 such that
supp (R̃∗j (y, ·)) ⊂ B(x0, C1ρ(x0)) if B /∈ D and supp (R̃∗j (y, ·)) ⊂ B(x0, C1r0) if B ∈ D.
From this, the Hölder inequality and the John-Nirenberg inequality, it follows that

|I3(y)− I3(x0)|

≤
∫
[C1(ρ(x0)/r0+1)B]\(2B)

|R̃∗j (y, z)− R̃∗j (x0, z)||b(z)− bB||f(z)| dz

.
∫
[C1(ρ(x0)/r0+1)B]\(2B)

|y − x0||b(z)− bB||f(z)|
|x0 − z|n+1

dz

.
∞∑
k=1

[
r0

(2kr0)n+1

∫
(2k+1B)\(2kB)

|b(z)− b2k+1B| |f(z)| dz +
|bB − b2k+1B|

2k
M(f)(x)

]

.
∞∑
k=1

[
r0

(2kr0)n+1
‖[b− b2k+1B]χ2k+1B‖L(pr)′ (Rn) ‖fχ2k+1B‖L(pr)(Rn) +

k

2k
M(f)(x)

]
.Mpr(f)(x).

This together with estimates of I1 and I2 yields (2.2), which implies that

1

|B|

∫
B

∣∣∣[b, R̃∗j] (f)(y)−
([
b, R̃∗j

]
(f)
)
B

∣∣∣ dy .Mp

[
R̃∗j (f)

]
(x) +Mpr(f)(x),

and hence, completes the proof of Lemma 2.2. �
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Theorem 2.1

Let b ∈ L1
loc (Rn), ρ be an admissible function and j ∈ {1, · · · , n}. Then the

following assertions are equivalent:

(i) b ∈ BMOρ(Rn).

(ii) b satisfies (1.2) and [b, R̃∗j ] is bounded on Lq(Rn) for all q ∈ (1,∞).

(iii) b satisfies (1.2) and [b, R̃∗j ] is bounded on Lq(Rn) for certain q ∈ (1,∞).

(iv) b satisfies (1.2) and [b, R̃j ] is bounded on Lq(Rn) for all q ∈ (1,∞).

(v) b satisfies (1.2) and [b, R̃j ] is bounded on Lq(Rn) for certain q ∈ (1,∞).

Proof. We now show that (i) implies (ii). We first claim that if b ∈ BMO(Rn), then
[b, R̃∗j ] is bounded on Lq(Rn) for all q ∈ (1,∞). Let b ∈ BMO(Rn). For each N ∈ N,
define bN ≡ min {N, |b|}sgn(b). Then bN ∈ L∞(Rn) and ‖bN‖BMO(Rn) . ‖b‖BMO(Rn).

Furthermore, by Lemma 2.1, we see that for all f ∈ C∞c (Rn), [bN , R̃
∗
j ](f) ∈ Lq(Rn) and

‖[bN , R̃∗j ](f)‖Lq(Rn) . N‖f‖Lq(Rn). On the other hand, recall that for all f ∈ Lq(Rn),

M](f) ∈ Lq(Rn) and

‖f‖Lq(Rn) . ‖M](f)‖Lq(Rn); (2.6)

see, for example, [15, p. 148]. Let p, r ∈ (1,∞) with pr < q. By these facts and
Lemma 2.2 together with the boundedness of Mp and Mpr on Lq(Rn) for q > pr and
Lemma 2.1, we have that for all f ∈ C∞c (Rn),∥∥∥[bN , R̃∗j] (f)

∥∥∥
Lq(Rn)

.
∥∥∥M]

([
bN , R̃

∗
j

]
(f)
)∥∥∥

Lq(Rn)

. ‖bN‖BMO(Rn)

∥∥∥Mp

[
R̃∗j (f)

]
+Mpr(f)

∥∥∥
Lq(Rn)

. ‖b‖BMO(Rn)‖f‖Lq(Rn).

A standard argument together with the Fatou lemma (see, for example, [9, p. 564])
then leads to that for all f ∈ Lq(Rn), [b, R̃∗j ](f) ∈ Lq(Rn) and

‖[b, R̃∗j ](f)‖Lq(Rn) . ‖b‖BMO(Rn)‖f‖Lq(Rn).

This implies the claim. From this, Definition 1.2 and the fact that BMOρ(Rn) ⊂
BMO(Rn), we deduce that (ii) holds.

Since the implications from (ii) to (iii) and from (iv) to (v) are obvious, and
the implications from (ii) to (iv) and from (iii) to (v) follow from a standard duality
argument, Theorem 2.1 is reduced to showing that (v) implies (i). To this end, let
{Rj}nj=1 be the kenels of the classical Riesz transforms. Observe that for all j ∈
{1, · · · , n}, 1/Rj ∈ C∞(Rn \ {0}). Therefore, there exist z0 ∈ Rn \ {0} and δ ∈ (0,∞)
such that 1/Rj(z) is expressed as an absolutely convergent Fourier series in B(z0, δ)
(see, for example, [9, Theorem 3.2.16]). That is, there exist {νk}k∈N ⊂ Rn and numbers
{ak}k∈N with

∑∞
k=1 |ak| < ∞ such that for all z ∈ B(z0, δ), 1/Rj(z) =

∑∞
k=1 ake

iνk·z.
Let z1 ≡ δ−1z0. If |z − z1| < 1, then we have that |δz − z0| < δ and

1

Rj(z)
=

δ−n

Rj(δz)
= δ−n

∞∑
k=1

ake
iνk·(δz). (2.7)
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Let B ≡ B(x̃, r) /∈ D being any ball and C2 ≡ [4(1 + |z1|)C̃1], where C̃1 is as
in (2.5) with a = 1. Then we have that r < ρ(x̃). To show (i), we first consider the
case that r < ρ(x̃)/C2. Let ỹ ≡ x̃− 2rz1 and B̃ ≡ B(ỹ, r). Then we obtain that for all
x ∈ B and y ∈ B̃, ∣∣∣∣x− y2r

− z1
∣∣∣∣ ≤ |x− x̃|2r

+
|y − ỹ|

2r
< 1 (2.8)

and |x̃− x| < r < ρ(x̃), which together with (2.5) in turn implies that ρ(x̃) ≤ C̃1ρ(x).
Therefore, we see that

|x− y| ≤ |x− x̃|+ |x̃− ỹ|+ |ỹ − y| < ρ(x̃)

2C̃1

≤ ρ(x)

2
. (2.9)

Observe that for all x, y ∈ Rn with |x− y| < ρ(x)/2 and

j ∈ {1, · · · , n} , R̃j(x, y) = Rj(x− y).

From this, (2.7), (2.8), the Hölder inequality and the boundedness of [b, R̃j ] on Lq(Rn),
we then deduce that∫
B
|b(x)− b

B̃
| dx

=

∫
Rn

[b(x)− b
B̃

]sgn(b− b
B̃

)χB(x) dx

=
1

|B̃|

∫
Rn

∫
Rn

[b(x)− b(y)]sgn(b(x)− b
B̃

)χB(x)χ
B̃

(y)
(2r)nR̃j(x, y)

Rj(
x−y
2r )

dy dx

.
∫
Rn

∫
Rn

[b(x)− b(y)]sgn(b(x)− b
B̃

)χB(x)χ
B̃

(y)R̃j(x, y)
∞∑
k=1

ake
i(δνk)/2r·(x−y) dy dx

.
∞∑
k=1

|ak|
∫
Rn

∣∣∣[b, R̃j] (χB̃e−i(δνk)/2r) (x)
∣∣∣χB(x) dx

.
∞∑
k=1

|ak|
∥∥∥[b, R̃j] (χB̃e−i(δνk)/2r)∥∥∥Lq(Rn) ‖χB‖Lq′ (Rn) . |B|,

which implies that ∫
B
|b(x)− bB| dx . |B|. (2.10)

Now consider the case that r ∈ [ρ(x̃)/C2, ρ(x̃)). In this case, we have that
C2B ∈ D. From this fact together with C2 > 1 and (1.2), we deduce that

1

|B|

∫
B
|b(y)− bB| dy .

1

|B|

∫
B
|b(y)| dy . 1

|C2B|

∫
C2B
|b(y)| dy . 1.

This and the estimate for the case that r < ρ(x̃)/C2 imply that (2.10) holds for all
balls B /∈ D, which together with (1.2) further yields (i), and hence, completes the
proof of Theorem 2.1. �

We now consider the fractional integral Iρα. Let α ∈ (0, n), η be as in (2.1) and ρ
an admissible function. For all f ∈ C∞c (Rn) and x ∈ Rn, define Iρα, its adjoint operator
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Iρ, ∗α and the classical fractional integral Iα, respectively, by

Iρα(f)(x) ≡
∫
Rn

f(y)

|x− y|n−α
η

(
|x− y|
ρ(x)

)
dy,

Iρ, ∗α (f)(x) ≡
∫
Rn

f(y)

|x− y|n−α
η

(
|x− y|
ρ(y)

)
dy

and

Iα(f)(x) ≡
∫
Rn

f(y)

|x− y|n−α
dy.

Moreover, for all A ∈ (0,∞) and b ∈ BMOρ(Rn), let

Iρ,Aα, b (f)(x) ≡
∫
Rn

|b(x)− b(y)||f(y)|
|x− y|n−α

η

(
|x− y|
Aρ(y)

)
dy.

If A = 1, we denote Iρ,Aα, b simply by Iρα, b. It is easy to see that

|[b, Iρ, ∗α ](f)| ≤ Iρα, b(f). (2.11)

Let p ∈ [1,∞) and β ∈ (0, 1/p). The fractional maximal function Mβ
p (f) is

defined by setting, for all f ∈ L1
loc (Rn) and x ∈ Rn,

Mβ
p (f)(x) ≡

[
sup
B3x

1

|B|1−pβ

∫
B
|f(y)|p dy

]1/p
.

If p = 1, we denote Mβ
p simply by Mβ.

Lemma 2.3

Let ρ be an admissible function, b ∈ BMO(Rn), A ∈ (0,∞), α ∈ (0, n) and
p, r ∈ (1,∞) with pr < n/α. Then there exists a positive constant C such that for all
f ∈ C∞c (Rn) and x ∈ Rn,

M]
(
Iρ,Aα, b (f)

)
(x) ≤ C‖b‖BMO(Rn)

[
Mp(Iα(|f |))(x) +Mα/n

pr (f)(x)
]
.

Proof. By the homogeneity of BMO(Rn), we may assume that ‖b‖BMO(Rn) = 1. Let
B ≡ B(x0, r0) being any ball containing x, f1 ≡ fχ2B and f2 ≡ fχRn\2B. For all
x ∈ Rn, let

J0(x) ≡
∫
Rn

|b(z)− bB||f2(z)|
|x− z|n−α

η

(
|x− z|
Aρ(z)

)
dz.

Then, for all y ∈ B, we have∣∣∣Iρ,Aα, b (f)(y)− J0(x0)
∣∣∣ ≤ |b(y)− bB|Iα(|f |)(y) + Iα [|(b− bB)f1|] (y) + |J0(y)− J0(x0)|

≡ J1(y) + J2(y) + |J0(y)− J0(x0)| .

By the Hölder inequality and the boundedness of Iα from Lp(Rn) to Lq(Rn) with
1/p− 1/q = α/n, we obtain

1

|B|

∫
B

[J1(y) + J2(y)] dy .Mp [Iα(|f |)] (x) +Mα/n
pr (f)(x). (2.12)
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Using an argument as in the proof of Lemma 2.2 via the Hölder inequality and
the John-Nirenberg inequality, we have that for all y ∈ B,

|J0(y)− J0(x0)| .
∫
[C3(ρ(x0)/r0+1)B]\(2B)

|y − x0||b(z)− bB||f(z)|
|x0 − z|n−α+1

dz

.
∞∑
k=1

[
r0

(2kr0)n−α+1

∫
(2k+1B)\(2kB)

|b(z)− b2k+1B||f(z)| dz

+
|bB − b2k+1B|

2k
Mα/n(f)(x)

]
.Mα/n

pr (f)(x),

where C3 ∈ [1,∞). This further yields that

1

|B|

∫
B
|J0(y)− J0(x0)| dy .Mα/n

pr (f)(x).

Combining this and (2.12), we have that

1

|B|

∫
B

∣∣∣Iρ,Aα, b (f)(y)− J0(x0)
∣∣∣ dy .Mp [Iα(|f |)] (x) +Mα/n

pr (f)(x),

which implies that

1

|B|

∫
B

∣∣∣Iρ,Aα, b (f)(y)−
[
Iρ,Aα, b (f)

]
B

∣∣∣ dy .Mp [Iα(|f |)] (x) +Mα/n
pr (f)(x).

This finishes the proof of Lemma 2.3. �

Theorem 2.2

Let b ∈ L1
loc (Rn), ρ be an admissible function and α ∈ (0, n). Then the following

assertions are equivalent:

(i) b ∈ BMOρ(Rn).

(ii) b satisfies (1.2) and [b, Iρ, ∗α ] is bounded from Lp(Rn) to Lq(Rn) for all p, q ∈ (1,∞)
with 1/q = 1/p− α/n.

(iii) b satisfies (1.2) and [b, Iρ, ∗α ] is bounded from Lp(Rn) to Lq(Rn) for certain p,
q ∈ (1,∞) with 1/q = 1/p− α/n.

(iv) b satisfies (1.2) and [b, Iρα] is bounded from Lq
′
(Rn) to Lp

′
(Rn) for all p, q ∈ (1,∞)

with 1/q = 1/p− α/n.

(v) b satisfies (1.2) and [b, Iρα] is bounded from Lq
′
(Rn) to Lp

′
(Rn) for certain p,

q ∈ (1,∞) with 1/q = 1/p− α/n.

Proof. As in the proof of Theorem 2.1, we only need to prove that (i) implies (ii) and
that (v) implies (i). To show that (i) implies (ii), let b ∈ BMO(Rn). We now show
that for all f ∈ C∞c (Rn), [b, Iρ, ∗α ] ∈ Lq(Rn) and

‖[b, Iρ, ∗α ](f)‖Lq(Rn) . ‖b‖BMO(Rn)‖f‖Lp(Rn). (2.13)

For each N ∈ N, let bN be as in Theorem 2.1. Then bN ∈ L∞(Rn) and ‖bN‖BMO(Rn) .
‖b‖BMO(Rn). Furthermore, by the boundedness of Iα from Lp(Rn) to Lq(Rn) for all p,
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q ∈ (1,∞) with 1/q = 1/p− α/n, we see that for all f ∈ C∞c (Rn), Iρα, bN (f) ∈ Lq(Rn)
and

∥∥∥Iρα, bN (f)
∥∥∥
Lq(Rn)

. ‖bN‖L∞(Rn)‖Iα(|f |)‖Lq(Rn) . N‖f‖Lp(Rn).

Using (2.11), (2.6), Lemma 2.3 with A = 1, the boundedness ofMs on Lq(Rn) and the

facts that Iα andMα/n
sr are bounded from Lp(Rn) to Lq(Rn) for all 1 < sr < p < n/α

and 1/q = 1/p− α/n (see [1, Lemma 2]), we have that for all f ∈ C∞c (Rn),

‖[bN , Iρ, ∗α ](f)‖Lq(Rn) ≤
∥∥∥Iρα, bN (f)

∥∥∥
Lq(Rn)

.
∥∥∥M]

[
Iρα, bN (f)

]∥∥∥
Lq(Rn)

. ‖bN‖BMO(Rn)

∥∥∥Ms(Iα(|f |)) +Mα/n
sr (f)

∥∥∥
Lq(Rn)

. ‖b‖BMO(Rn)‖f‖Lp(Rn). (2.14)

Then using an argument similar to that used in the proof of Theorem 2.1, we see
that (2.13) holds for all b ∈ BMO(Rn) and f ∈ Lp(Rn) with 1/q = 1/p − α/n. This
together with BMOρ(Rn) ⊂ BMO(Rn) implies (ii).

Now assume that (v) holds. Let Iα(x) ≡ 1/|x|n−α for all x ∈ Rn \{0} and Iρα(x, y)
for all x, y ∈ Rn × Rn \ {x = y} be the kernels of Iα and Iρα, respectively. As in the
proof of (2.7), we then see that 1/Iα ∈ C∞(Rn \ {0}), and there exist z1 ∈ Rn \ {0},
δ ∈ (0,∞), {νk}k∈N ⊂ Rn and numbers {ak}k∈N with

∑∞
k=1 |ak| <∞ such that for all

z ∈ Rn with |z − z1| < 1,

1

Iα(z)
=

δα−n

Iα(δz)
= δα−n

∞∑
k=1

ake
iνk·(δz). (2.15)

Let B ≡ B(x̃, r) /∈ D being any ball and C2 be as in Theorem 2.1. We first
consider the case that r < ρ(x̃)/C2. Let ỹ ≡ x̃− 2rz1 and B̃ ≡ B(ỹ, r). Observe that
for all x, y ∈ Rn with |x − y| < ρ(x)/2, Iρα(x, y) = Iα(x − y). From this, (2.9), (2.8)
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and (2.15), we deduce that∫
B
|b(x)− b

B̃
| dx

=

∫
B

[b(x)− b
B̃

]sgn(b− b
B̃

) dx

=
1

|B̃|

∫
Rn

∫
Rn

[b(x)− b(y)]sgn(b(x)− b
B̃

)χB(x)χ
B̃

(y)
(2r)n−αIρα(x, y)

Iα(x−y2r )
dy dx

. r−α
∫
Rn

∫
Rn

[b(x)− b(y)]sgn(b(x)− b
B̃

)χB(x)χ
B̃

(y)Iρα(x, y)

×
∞∑
k=1

ake
i(δνk)/2r·(x−y) dy dx

. r−α
∞∑
k=1

|ak|
∫
Rn

∣∣∣[b, Iρα]
(
χ
B̃
e−i(δνk)/2r

)
(x)
∣∣∣χB(x) dx

. r−α
∞∑
k=1

|ak|
∥∥∥[b, Iρα]

(
χ
B̃
e−i(δνk)/2r

)∥∥∥
Lq(Rn)

‖χB‖Lq′ (Rn)

. r−α
∞∑
k=1

|ak|‖χB̃‖Lp(Rn)‖χB‖Lq′ (Rn) . |B|.

This yields that ∫
B
|b(x)− bB| dx . |B|. (2.16)

Now we consider the case that r ∈ [ρ(x̃)/C2, ρ(x̃)). In this case, we have that
C2B ∈ D, which together with (1.2) further implies that

1

|B|

∫
B
|b(y)− bB| dy .

1

|C2B|

∫
C2B
|b(y)| dy . 1.

Combining this and the estimate for the case that r < ρ(x̃)/C2 yields that (2.16) holds
for all balls B /∈ D, which together with (1.2) further yields (i), and hence, completes
the proof of Theorem 2.2. �

3. Localized maximal commutators

Let ρ be a given admissible function. In this section, we consider characterizations of
BMOρ(Rn) in terms of commutators of the localized fractional maximal operator and
the localized Hardy-Littlewood-type maximal operator.

Let ρ be an admissible function and D the set of balls as in Section 1. For any
β ∈ (0, 1), x ∈ Rn and f ∈ L1

loc (Rn), the localized fractional maximal operator M loc
β

is defined by

M loc
β (f)(x) ≡ sup

B3x,B/∈D

1

|B|1−β

∫
B
|f(y)| dy.
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Moreover, for any function b ∈ L1
loc (Rn), we define the localized maximal commutator

M loc
b, β of M loc

β by

M loc
b, β (f)(x) ≡ sup

B3x,B/∈D

1

|B|1−β

∫
B
|b(x)− b(y)||f(y)| dy.

Let η ∈ C1(Rn) being as in Section 2 and C4 ∈ (4C̃1,∞), where C̃1 is as in (2.5)
with a = 1 there. By the definition of η and (2.5), we see that for all x ∈ Rn,

M loc
b, β (f)(x) = sup

B3x,B/∈D

1

|B|1−β

∫
B

∣∣∣∣[b(x)− b(y)]f(y)η

(
|x− y|
C4ρ(y)

)∣∣∣∣ dy (3.1)

.
∫
Rn

|b(x)− b(y)||f(y)|
|x− y|n(1−β)

η

(
|x− y|
C4ρ(y)

)
dy = Iρ, C4

nβ, b (f)(x).

Theorem 3.1

Let β ∈ (0, 1), r ∈ (1, 1/β) and b ∈ L1
loc (Rn). Then the following assertions are

equivalent:

(i) b ∈ BMOρ(Rn).

(ii) b satisfies (1.2) and M loc
b, β is bounded from Lr(Rn) to Ls(Rn) for all s ∈ (r,∞)

with 1/s = 1/r − β.

(iii) b satisfies (1.2) andM loc
b, β is bounded from Lr(Rn) to Ls(Rn) for certain s ∈ (r,∞)

with 1/s = 1/r − β.

Proof. We first show that (i) implies (ii). Let b ∈ BMO(Rn). Using the argument
similar to the proof for the implication from (i) to (ii) in Theorem 2.2, we see that for
all f ∈ C∞c (Rn), Iρ, C4

nβ, b (f) ∈ Ls(Rn) and∥∥∥Iρ, C4

nβ, b (f)
∥∥∥
Ls(Rn)

. ‖b‖BMO(Rn)‖f‖Lr(Rn);

see (2.14). This together with (3.1) further yields that for all f ∈ C∞c (Rn),M loc
b, β (f) ∈

Ls(Rn) and ∥∥∥M loc
b, β (f)

∥∥∥
Ls(Rn)

. ‖b‖BMO(Rn)‖f‖Lr(Rn). (3.2)

Moreover, a standard argument, via the density of C∞c (Rn) in Lr(Rn) and the fact
that M loc

b, β (f) is sublinear, implies that (3.2) holds for all f ∈ Lr(Rn). On the other
hand, the fact that b ∈ BMOρ(Rn) implies (1.2). These two facts further yield (ii).

Because (ii) obviously implies (iii), it remains to prove that (iii) implies (i). Let
B /∈ D. By the definition ofM loc

b, β , the Hölder inequality and the boundedness ofM loc
b, β

from Lr(Rn) to Ls(Rn), we see that

1

|B|

∫
B
|b(x)− bB| dx ≤

1

|B|2

∫
B

∫
B
|b(x)− b(y)| dy dx

≤ 1

|B|1+β

∫
B
M loc

b, β (χB)(x) dx . 1.
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This together with (1.2) implies that b ∈ BMOρ(Rn), which completes the proof of
Theorem 3.1. �

Let p ∈ [1,∞), x ∈ Rn and f ∈ L1
loc (Rn). The localized Hardy-Littlewood-type

maximal operator M loc , p is defined by

M loc , p(f)(x) ≡

[
sup

B3x,B/∈D

1

|B|

∫
B
|f(y)|p dy

]1/p
.

For any function b ∈ L1
loc (Rn), we define the localized maximal commutator M loc , p

b

of M loc , p by

M loc , p
b (f)(x) ≡

[
sup

B3x,B/∈D

1

|B|

∫
B
|b(x)− b(y)||f(y)|p dy

]1/p
.

Theorem 3.2

Let p ∈ [1,∞) and b ∈ L1
loc (Rn). The following assertions are equivalent:

(i) b ∈ BMOρ(Rn).

(ii) b satisfies (1.2) and M loc , p
b is bounded on Lq(Rn) for all q ∈ (p,∞).

(iii) b satisfies (1.2) and M loc , p
b is bounded on Lq(Rn) for certain q ∈ (p,∞).

Proof. We show the implication from (i) to (ii). For all x ∈ Rn, let

Mb(f)(x) ≡ sup
B3x

1

|B|

∫
B
|b(x)− b(y)||f(y)| dy.

By the boundedness of Mb on Lr(Rn) with r ∈ (1,∞) (see [13, Theorem 3]), we see
that for all f ∈ Lq(Rn) with q > p,∥∥∥M loc , p

b (f)
∥∥∥
Lq(Rn)

≤
∥∥∥[Mb(|f |p)]1/p

∥∥∥
Lq(Rn)

. ‖f‖Lq(Rn).

On the other hand, (1.2) follows from the fact that b ∈ BMOρ(Rn). These facts
yield (ii).

Since the implication from (ii) to (iii) is trivial, it remains to prove that (iii)

implies (i). Let B /∈ D. By the definition of M loc , p
b , the Hölder inequality and the

boundedness of M loc , p
b on Lq(Rn), we see that

1

|B|

∫
B
|b(x)− bB| dx ≤

1

|B|2

∫
B

∫
B
|b(x)− b(y)| dy dx

≤ 1

|B|

∫
B
M loc , p

b (χB)(x) dx . 1.

This together with (1.2) implies (i), and hence, finishes the proof of Theorem 3.2. �
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