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Abstract

We prove an exact, i.e., formulated without ∆-expansions, Ramsey principle
for infinite block sequences in vector spaces over countable fields, where the
two sides of the dichotomic principle are represented by respectively winning
strategies in Gowers’ block sequence game and winning strategies in the infinite
asymptotic game. This allows us to recover Gowers’ dichotomy theorem for
block sequences in normed vector spaces by a simple application of the basic
determinacy theorem for infinite asymptotic games.

1. Introduction

The results presented here represent a new approach to the fundamental result of
W.T. Gowers [7], whose uses in Banach space theory seem far from exhausted (for
applications see, e.g., [7, 6]). Gowers’ result is a Ramsey theoretic statement for
Banach spaces that cleverly combines Ramsey theory and game theory to compensate
for the fact that a true Ramsey theoretic result fails to hold in general. The proof of
Gowers’ theorem, however, involves approximation arguments, which at times are a
bit delicate, as can be seen from the existing proofs [7, 3, 2, 8, 1], and also seemed to
require tricks not previously used in infinite-dimensional Ramsey theory. Perhaps more
importantly, the notion of weakly Ramsey sets extracted from the proof incorporates
approximations, which makes it hard to induct over and extend beyond the class of
analytic sets. For example, it was unknown whether Σ1

2 sets are weakly Ramsey
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assuming Martin’s axiom, though it was shown to hold under a strengthening of MA
not equiconsistent with ZF by J. Bagaria and J. López-Abad [3].

The novelty of our approach lies in the replacement of both sides of the dichotomy
with game theoretical statements, which completely eschew approximations and allow
for a very simple inductive proof. The new tools are the infinite asymptotic game and
the definition of strategically Ramsey sets in vector spaces over countable fields. Using
these, one easily shows that under MA, Σ1

2 sets are strategically Ramsey, and a version
of the basic determinacy result for infinite asymptotic games [10] connects the notions
of weakly Ramsey and strategically Ramsey sets.

2. Notation

Let F be a countable field and let E be a countable-dimensional F-vector space with
basis (en). We equip E with the discrete topology, whereby any subset is open, and
equip its countable power E∞ with the product topology. Since E is a countable
discrete set, E∞ is a Polish space. Notice that a basis for the topology on E∞ is given
by sets of the form

N(x0, . . . , xk) =
{

(yn) ∈ E∞
∣∣ y0 = x0 & . . . & yk = xk

}
,

where x0, . . . , xk ∈ E. Let x, y, z, v be variables for non-zero elements of E. If
x =

∑
anen ∈ E, let supp x = {n

∣∣ an 6= 0} and set for x, y ∈ E,

x < y ⇔ ∀n ∈ supp x ∀m ∈ supp y n < m.

Similarly, if k is a natural number, we set

k < x⇔ ∀n ∈ supp x k < n.

Analogous notation is used for finite subsets of N. A finite or infinite sequence
(x0, x1, x2, x3, . . .) of vectors is said to be a block sequence if for all n, xn < xn+1.

Notice that, by elementary linear algebra, for all infinite-dimensional subspaces
X ⊆ E there is a subspace Y ⊆ X spanned by an infinite block sequence, called a block
subspace. Henceforth, we use variables X,Y, Z, V,W to denote infinite-dimensional
block subspaces of E. Also, denote infinite block sequences by variables x,y, z and
finite block sequences by variables ~x, ~y, ~z.

3. Gowers’ game and the infinite asymptotic game

Suppose X ⊆ E. We define Gowers’ game GX played below X between two players
I and II as follows: I and II alternate (with I beginning) in choosing respectively
infinite-dimensional subspaces Y0, Y1, Y2, . . . ⊆ X and vectors x0 < x1 < x2 < . . .
according to the constraint xi ∈ Yi:

I Y0 Y1 Y2 Y3 . . .
II x0 x1 x2 x3 . . .
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Also, the infinite asymptotic game FX played below X is defined as follows: I and
II alternate (with I beginning) in choosing respectively natural numbers n0 < n1 <
n2 < . . . and vectors x0 < x1 < x2 < . . . ∈ X according to the constraint ni < xi:

I n0 n1 n2 n3 . . .
II x0 x1 x2 x3 . . .

In both games we say that the sequence (xn)n∈N is the outcome of the game. More-
over, if ~x is a finite block sequence, we define Gowers’ game GX(~x) and the infinite
asymptotic game FX(~x) as above except that the outcome is now ~xˆ(x0, x1, x2, . . .).

If X and Y are subspaces, where Y is spanned by an infinite block sequence
y = (y0, y1, y2, . . .), we write Y ⊆∗ X if there is n such that ym ∈ X for all m ≥ n.
A simple diagonalisation argument shows that if X0 ⊇ X1 ⊇ X2 ⊇ . . . is a decreasing
sequence of block subspaces, then there is some Y ⊆ X0 such that Y ⊆∗ Xn for all n.

The aim of the games above is for each of the players to ensure that the outcome
x lies in some predetermined set depending on the player. By the asymptotic nature
of the game, it is easily seen that if A ⊆ E∞ and Y ⊆∗ X, then if II has a strategy in
GX to play in A, i.e., to ensure that the outcome is in A, then II will have a strategy
in GY to play in A too. Similarly, if I has a strategy in FX to play in A, then I also
has a strategy in FY to play in A.

Definition 1 We say that a set A ⊆ E∞ is strategically Ramsey if for all V ⊆ E and
all ~z, there is W ⊆ V such that either

(a) II has a strategy in GW (~z) to play in A, or

(b) I has a strategy in FW (~z) to play in ∼ A.

4. Analytic sets are strategically Ramsey

Lemma 2

Open sets U ⊆ E∞ are strategically Ramsey.

Proof. Noticing that for all open U, UV~z = {(xi) ∈ V∞
∣∣ ~zˆ(xi) ∈ U} is also an open

subset of V∞, we can suppose V = E and ~z = ∅. We say that

(1) (~x,X) is good if II has a strategy in GX(~x) to play in U,

(2) (~x,X) is bad if ∀Y ⊆ X, (~x, Y ) is not good,

(3) (~x,X) is worse if it is bad and ∃n ∀y ∈ X (n < y → (~xˆy,X) is bad).

We notice that the properties good, bad and worse are ⊆∗-hereditary, i.e., if (~x,X) is
good/bad/worse and Y ⊆∗ X, then (~x, Y ) is good/bad/worse.

Sublemma 3

If (~x,X) is bad, then there is some Z ⊆ X such that (~x, Z) is worse.

Proof. Notice that, as good and bad are ⊆∗-hereditary, by diagonalising over all ~y, we
can find some Y ⊆ X such that for all ~y, (~y, Y ) is either good or bad. Suppose towards
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a contradiction that there is no Z ⊆ Y such that (~x, Z) is worse. Then, as (~x, Z) is
bad for all Z ⊆ Y , we have

∀Z ⊆ Y ∃y ∈ Z (~xˆy, Z) is not bad.

But then
∀Z ⊆ Y ∃y ∈ Z (~xˆy, Y ) is good,

for if Z ⊆ Y and (~xˆy, Y ) is not good, then (~xˆy, Y ) is bad and so (~xˆy, Z) is bad
too. In other words, for all Z ⊆ Y there is some y ∈ Z such that II has a strategy
in GY (~xˆy) to play in U and therefore II also has a strategy in GY (~x) to play in U,
contradicting that (~x,X) was bad. �

Again, using the preceding sublemma and diagonalising, we can find some X ⊆ E
such that for all ~y, either (~y,X) is good or worse. Now, if (∅, X) is good, II has a
strategy in GX to play in U, so suppose instead that (∅, X) is worse. We claim that
I has a strategy in FX to produce block sequences (x0, x1, x2, . . .) so that for all m,
(x0, x1, . . . , xm, X) is worse. To see this, suppose that at some point of the game, ~x
has been played so that (~x,X) is worse. Then there is some n such that for all y ∈ X,
if n < y, then (~x ˆ y,X) is bad and hence even worse. Thus, we can let I play n.
But if I follows this strategy, then, in particular, for no m can II have a strategy in
GX(x0, . . . , xm) to play in U and thus as U is open, (x0, x1, x2, . . .) ∈∼ U. Therefore,
I has a strategy in FX to play in ∼ U. �

Lemma 4

Suppose An ⊆ E∞ and B =
⋃
nAn. Let ~x and X ⊆ E be given. Then there is

Z ⊆ X such that either

(a) II has a strategy in GZ to play (zi) such that

∃n ∀V ⊆ Z I has no strategy in FV (~xˆ(z0, . . . , zn)) to play in ∼ An,

or
(b) I has a strategy in FZ(~x) to play in ∼ B.

Proof. We say that (~y, n) accepts Y if I has a strategy in FY (~y) to play in ∼ An.
Also, (~y, n) rejects Y if ∀Z ⊆ Y , (~y, n) does not accept Z. Notice that acceptance and
rejection are ⊆∗-hereditary, so there is Y ⊆ X such that for all ~y and n, either (~y, n)
accepts or rejects Y . Set

D = {(zi)
∣∣ ∃n (~xˆ(z0, . . . , zn), n) rejects Y }

and notice that D is open. It follows, by Lemma 2, that there is Z ⊆ Y such that
either II has a strategy in GZ to play in D or I has a strategy in FZ to play in ∼ D.

In the first case, II has a strategy in GZ to play (zi) such that

∃n ∀V ⊆ Y I has no strategy in FV (~xˆ(z0, . . . , zn)) to play in ∼ An,

which immediately implies (a). So suppose instead that I has a strategy in FZ to play
in ∼ D, i.e., that I has a strategy in FZ to play (zi) such that

∀n (~xˆ(z0, . . . , zn), n) accepts Z.
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Thus, I has a strategy σ in FZ to play (zi) such that for all n, I has a strategy
σ(z0,...,zn) in FZ(~x ˆ (z0, . . . , zn)) to play in ∼ An. By successively putting more and
more strategies into play, I thus has a strategy in FZ(~x) to play in

⋂
n ∼ An =∼ B,

which gives us (b). Concretely, if at step n + 1, (z0, . . . , zn) has been played, then I
will respond with

max{σ(z0, . . . , zn), σ(z0)(z1, z2, . . . , zn), . . . , σ(z0,...,zn)(∅)}.

It follows that if (zi) is the outcome of the game, then for all n, as II has re-
sponded to a stronger strategy than σ(z0,...,zn) when playing (zn+1, zn+2, . . .), we see
that ~xˆ(z0, . . . , zn)ˆ(zn+1, zn+2, . . .) ∈∼ An. Therefore, ~xˆ(zi) ∈

⋂
n ∼ An. �

Notice that both conclusions (a) and (b) in Lemma 4 are ⊆∗-hereditary in Z.

Theorem 5

Analytic sets are strategically Ramsey.

Proof. Suppose A ⊆ E∞ is analytic. Noticing that for all V ⊆ E and ~z, AV~z = {(xi) ∈
V∞

∣∣ ~zˆ(xi) ∈ A} is also an analytic subset of V∞, we can suppose V = E and ~z = ∅.
Let F : NN → A be a continuous surjection and set for every s ∈ N<N, As = F [Ns],
where Ns = {α ∈ NN

∣∣ s ⊆ α}. We note that As =
⋃
n∈NAsˆn. Let D(s, ~x,X) be the

set

{(zi)
∣∣ ∃n ∀W ⊆ X I has no strategy in FW (~xˆ(z0, . . . , zn)) to play in ∼ Asˆn}.

By Lemma 4, there is X ⊆ E such that for all ~x and all s ∈ N<N either

(a) II has a strategy in GX to play in D(s, ~x,X), or

(b) I has a strategy in FX(~x) to play in ∼ As.
Suppose that I has no strategy in FX to play in ∼ A =∼ A∅. We describe a strategy
for II in GX to play in A.

First, as II has a strategy in GX to play in D(∅, ∅, X), he follows this strategy until
(z0, . . . , zn0) has been played such that I does not have a strategy in FX(z0, . . . , zn0)
to play in ∼ An0 .

Thus, by the assumption on X, II must have a strategy in GX to play in
D((n0), (z0, . . . , zn0), X). II follows this until further (zn0+1, . . . , zn0+n1+1) has been
played such that I does not have a strategy in FX(z0, . . . , zn0 , zn0+1, . . . , zn0+n1+1) to
play in ∼ A(n0,n1).

By the same reasoning as before, II must have a strategy in GX to play in
the set D((n0, n1), (z0, . . . , zn0+n1+1), X). He follows this strategy until yet another
(zn0+n1+2, . . . , zn0+n1+n2+2) has been played such that I does not have a strategy in
FX(z0, . . . , zn0+n1+n2+2) to play in ∼ A(n0,n1,n2).

Continuing in this way and letting mk = (
∑

j≤k nj) + k, the outcome of the game
will be a sequence

z = (z0, z1, z2, . . . , zm0 , . . . , zm1 , . . . , zm2 , . . .)

such that for the sequence α = (n0, n1, n2, . . .) and all k, I does not have a strategy
in FX(z0, . . . , zmk) to play in ∼ A(n0,n1,...,nk). It follows that for all k, there must be
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an infinite block sequence zk end-extending (z0, . . . , zmk) such that zk ∈ A(n0,n1,...,nk).
So for some βk ∈ N(n0,n1,...,nk), we have F (βk) = zk. But, by continuity of F , we have
F (βk) −→

k→∞
F (α), while zk −→

k→∞
z, so F (α) = z and z ∈ A. Therefore, this describes a

strategy for II in GX to play in A. �

5. Infinite asymptotic games in normed vector spaces

Suppose now that F is a countable subfield of R or C and ‖ · ‖ is a norm on E taking
values in F. For X ⊆ E, denote by BX the unit ball of X and by B(X) the set of
block sequences (xi) of X with ‖xi‖ ≤ 1. A set A ⊆ E∞ is said to be large if for all
X ⊆ E, A∩B(X) 6= ∅. Also, if ∆ = (δi) is a sequence of strictly positive real numbers,
denoted by ∆ > 0, and A ⊆ E∞, we define

A∆ = {(zi) ∈ E∞
∣∣ ∃(xi) ∈ A ∀i ‖xi − zi‖ < δi},

Int∆(A) =∼ (∼ A)∆ = {(xi)
∣∣ ∀(zi) (∀i ‖xi − zi‖ < δi → (zi) ∈ A)}.

To get a stronger statement in (b) of the definition of strategically Ramsey sets,
we need to allow approximations. For this, we use a variant of a result from [10],
though the proof given here is in the same spirit as that presented in [6].

Theorem 6

Suppose there is a strategy σ for I in FX to play in the set B ⊆ E∞. Then for
any sequence ∆ > 0 there are intervals I0 < I1 < I2 < . . . of N such that for any block
sequence (xi) ∈ B(X), if

∀n ∃m I0 < xn < Im < xn+1,

then (xi) ∈ B∆.

Proof. Choose sets Dn ⊆ BX such that for each finite d ⊆ N, the number of x ∈ Dn
such that supp x = d is finite, and for every x ∈ BX there is some y ∈ Dn with
supp x = supp y and ‖x − y‖ < δn. This is possible since the unit ball in [ei]i∈d is
totally bounded for all finite d ⊆ N.

For each position p = (n0, y0, . . . , ni, yi) in FX played according to σ in which
yj ∈ Dj for all j, we write p < k if nj , yj < k for all j. Notice that for all k there are
only finitely many such p with p < k, so we can define

α(k) = max(k,max{σ(p)
∣∣ p < k})

and set Ik = [k, α(k)]. The Ik are not necessarily successive, but their minimal elements
tend to ∞. So, modulo passing to a subsequence, it is enough to show that if (xi) ∈
B(X) and

∀n ∃m I0 < xn < Im < xn+1,

then (xi) ∈ B∆.
Suppose such (xi) is given. Find yi ∈ Di such that ‖xi − yi‖ < δi and supp xi =

supp yi for all i and let 0 = b0 < b1 < b2 < . . . be integers such that

Ib0 < y0 < Ib1 < y1 < Ib2 < y2 < . . . .



An exact Ramsey principle for block sequences 31

We claim that there are natural numbers ni ≤ max Ibi such that each

pi = (n0, y0, . . . , ni, yi)

is a position in FX in which I has played according to σ. To see this, notice first that
n0 = α(∅) ∈ Ib0 , so p0 = (n0, y0) is played according to σ. Now, for the induction step,
suppose that pi is played according to σ, and notice that pi < min Ibi+1

= bi+1. We
set ni+1 = σ(pi) ≤ α(bi+1) = max Ib+1, whereby pi+1 is played according to σ. This
finishes the induction and proves the claim.

Thus, (n0, y0, n1, y1, . . .) is a run of the game in which I has followed the strategy
σ and so (yi) ∈ B, whereby (xi) ∈ B∆. �

Theorem 7

Suppose A ⊆ E∞ is strategically Ramsey and for some ∆ > 0, Int∆(A) is large.
Then there is X ⊆ E such that II has a strategy in GX to play in A.

Proof. Suppose for a contradiction that for some X ⊆ E, I has a strategy in FX
to play in ∼ A = E∞ \ A. Then, using Theorem 6, we can find some Y ⊆ X such
that B(Y ) ⊆ (∼ A)∆, contradicting that Int∆(A) is large. So since A is strategically
Ramsey there is instead X ⊆ E such that II has a strategy in GX to play in A. �

Theorem 7 is a slight variation of Theorem 4.1 of Gowers’ paper [7] in that his
result concerns analytic sets of block sequences in Banach spaces and not normed
vector spaces over countable fields. Moreover, in his result the ∆-expansions occur on
the opposite side of the dichotomy. Though for applications it is mostly immaterial
whether one works with all of R or only a countable subfield, for completeness, we
indicate here how to deduct his statement from Theorems 5 and 7. So suppose B
is a real Banach space with a Schauder basis (en). Then we can define the Gowers
game G∗B as before, except that we are now allowing both players to play vectors and
block subspaces with coefficients in R. We similarly modify the definitions of B(B),
BB, A∆ etc. to allow for real scalars. Now suppose A is an analytic subset of B(B)
in the topology induced from the countable power B∞ of the Banach space B, such
that any R-block sequence has a further R-block sequence belonging to A. Let also
∆ > 0. We will show that there is an R-block subspace X ⊆ B such that II has a
strategy in G∗X to play in A∆. To see this, let F be a countable subfield of R such that
any finite F-linear combination of (en) has norm belonging to F and denote by E the
F-linear span of (en). Then the intersection B = A∆/3 ∩ B(E) is analytic in B(E),
since ∆-expansions preserve analyticity and the topology of B(E) is finer than that
induced from B∞. Moreover, as E is dense in B, any F-block sequence has a further
F-block sequence belonging to B, i.e., B is large and so Int∆/3(B∆/3) is large too. It
follows, by Theorems 5 and 7, that for some F-block subspace X ⊆ E, II has a strategy
in GX to play in B∆/3. Standard perturbation arguments then show that II also has
a strategy in G∗X to play in (B∆/3)∆/3, which is a subset of A∆.

Suppose X ⊆ E. We define the unraveled Gowers game HX played below
X between two players I and II as follows: I and II alternate (with I beginning)
in choosing infinite dimensional subspaces Y0, Y1, Y2, . . . ⊆ X, respectively vectors
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x0 < x1 < x2 < . . . and digits εi ∈ {0, 1}, according to the constraint xi ∈ Yi.

I Y0 Y1 Y2 Y3 . . .
II x0, ε0 x1, ε1 x2, ε2 x3, ε3 . . .

We say that the pair of sequences ((xn)n∈N, (εn)n∈N) is the outcome of the game.
The following result is exceedingly useful in applications. For example, it is an

integral part of the proofs of the three main dichotomies of [6] and the case of Gδ sets
also lies at the heart of the alternative proofs of Gowers’ Theorem in [2, 8]. Its utility
lies in the fact that if one tries to play into some analytic set, which could be, e.g., the
isomorphism class of a particular space B, then often not only can this be done, but
one can at the same time continuously produce witnesses for belonging to this analytic
set, e.g., the operator realising the isomorphism with B.

Theorem 8

Let B ⊆ E∞ × 2∞ be analytic such that A = projE∞(B) is large. Then for
every ∆ > 0 there is X ⊆ E such that II has a strategy in HX to play in

B∆ = {((yn), (εn))
∣∣ ∃(xn) ∀n ‖yn − xn‖ < δn & ((xn), (εn)) ∈ B}.

Proof. We can suppose that 1
4 > δ0 > δ1 > . . .. Also, for simplicity of notation, let us

suppose temporarily that 2 is the set {1
2 , 1}, so B ⊆ E∞×{1

2 , 1}
∞. Define D ⊆ E∞ as

follows:
D = {(xi) ∈ E∞

∣∣ ((x2i)
∞
i=0, (‖x2i+1‖)∞i=0) ∈ B}.

We claim that D is large. For suppose X ⊆ E is spanned by a block sequence (zn),
let Z = [z2n] and find some ((yn), (εn)) ∈ B such that (yn) ∈ A ∩ B(Z). Now for
all n, find some vn ∈ [z2n+1] such that yn < vn < yn+1 and ‖vn‖ = εn. (This is
where we use that the norm takes values in F and hence that we can normalise). Then
(y0, v0, y1, v1, . . .) ∈ D ∩B(X), verifying the largeness of D. Since D ⊆ Int∆(D∆) and
D∆ is analytic, by Theorem 7 there is some X ⊆ E such that II has a strategy in GX
to play in D∆. Since for (xi) ∈ D, ‖x2i+1‖ is either 1 or 1

2 and moreover δ2i+1 <
1
4 , this

easily implies that II has a strategy in GX to play in D∆ such that moreover ‖x2i+1‖
is either 1 or 1

2 for all i. Using this, II evidently has a strategy in HX to play in B∆.�

6. Strategically Ramsey sets under set theoretical hypotheses

Theorem 9

The class of strategically Ramsey sets is closed under countable unions.

Proof. Let An be strategically Ramsey for every n and set B =
⋃
nAn. Let ~x and

X ⊆ E be given. Since each An is strategically Ramsey, by diagonalising, there is some
Y ⊆ X such that for all ~y and n, either II has a strategy in FY (~y) to play in An or I
has a strategy in GY (~y) to play in ∼ An. Also, by Lemma 4 there is Z ⊆ Y such that
either

(a) II has a strategy in GZ to play (zi) such that

∃n ∀V ⊆ Z I has no strategy in FV (~xˆ(z0, . . . , zn)) to play in ∼ An,

or



An exact Ramsey principle for block sequences 33

(b) I has a strategy in FZ(~x) to play in ∼ B.

Note that (a) implies that II has a strategy in GZ to play (zi) such that

∃n II has a strategy in GZ(~xˆ(z0, . . . , zn)) to play in An.

And, in this case, II first follows the strategy to play some (z0, . . . , zn) such that II
has a strategy in GZ(~xˆ(z0, . . . , zn)) to play in An and thereafter continues with this
other strategy. This, combined, is a strategy for II in GZ(~x) to play in B =

⋃
mAm.�

Theorem 10 (MAω1)

A union of ℵ1 many strategically Ramsey sets is again strategically Ramsey.

Proof. By Theorem 9, it is enough to consider well-ordered increasing unions of
length ω1. So suppose Aξ ⊆ Aζ ⊆ E∞ are strategically Ramsey for all ξ < ζ < ω1

and B =
⋃
ζ<ω1

Aζ . Fix ~x and X ⊆ E. Since every Aξ is strategically Ramsey, we can
define a decreasing sequence . . . ⊆∗ Xξ ⊆∗ . . . ⊆∗ X2 ⊆∗ X1 ⊆∗ X0 ⊆ X of length ω1

such that for all ξ < ω1 either

(a) II has a strategy in GXξ(~x) to play in Aξ, or
(b) I has a strategy in FXξ(~x) to play in ∼ Aξ.
If for some ξ, II has a strategy in GXξ(~x) to play in Aξ, then II also has a strategy

in GXξ(~x) to play in B =
⋃
ζ<ω1

Aζ and we are done. So suppose instead that for every
ξ, I has a strategy in FXξ(~x) to play in ∼ Aξ. By [5, Lemma 5], under MAω1 there is
a Y ⊆ X such that Y ⊆∗ Xξ for all ξ. Thus, for every ξ, I has a strategy σξ in FY (~x)
to play in ∼ Aξ.

Notice that σξ is formally a function from the countable set D of finite block
sequences ~y of Y to the set of natural numbers and hence a member of ND. By MAω1 ,
the family {σ}ξ<ω1 cannot be ≤∗ unbounded in ND and hence for some σ ∈ ND we
have σξ ≤∗ σ for all ξ, i.e., for all ξ there is a finite set pξ ⊆ D such that

∀~y ∈ D \ pξ σξ(~y) ≤ σ(~y).

By reason of cardinality, there is some p ⊆ D such that for an unbounded set S ⊆ ω1

we have pξ = p for all ξ ∈ S. Now let n0 be large enough such that n0 ≮ y0 for all
~y = (y0, . . . , ym) ∈ p. We modify σ so that σ(∅) = n0 and otherwise leave it unaltered.
Then σ is a strategy for I in FY (~x) to play in ∼ B =

⋂
ξ<ω1

∼ Aξ =
⋂
ξ∈S ∼ Aξ. To

see this, suppose that (zi) is the outcome of a game in which I has followed σ. Then
as n0 < z0, we must have (z0, . . . , zm) /∈ p for all m, and hence for all ξ ∈ S and
m, σ(z0, . . . , zm) = σξ(z0, . . . , zm). If follows that for every ξ ∈ S, I has followed the
strategy σξ and hence (zi) /∈ Aξ. �

Since Σ1
2 sets are unions of ℵ1 many Borel sets, we have the following strengthening

of a result of Bagaria and López-Abad [3]. They essentially proved the conclusion of
Theorem 7 for Σ1

2 sets, but only under a hypothesis relatively consistent with the
existence of a large cardinal. On the other hand, our hypothesis, namely MAω1 , is
equiconsistent with ZF, which permits the use of absoluteness arguments.

Corollary 11 (MAω1)

Σ1
2 sets are strategically Ramsey.
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We do not know if the axiom of projective determinacy suffices to prove that
all projective sets are strategically Ramsey, though we very much suspect so. Again,
Bagaria and López-Abad [4] proved that under PD, projective sets are weakly Ramsey.

7. Relational games

In this section we consider relational versions of Gowers’ game and the infinite asymp-
totic game in which both players contribute to the outcome. Unfortunately, we can in
this case only prove the Ramsey principle for open and closed sets. Simpler relational
games were first considered by A. M. Pe lczar [9], where a specific instance of Theo-
rem 12 below was used to prove that any space saturated with subsymmetric sequences
must contain a minimal subspace. Related uses of Theorem 12 can be found in [6].

Suppose X ⊆ E. We define the game AX played below X between two players I
and II as follows: I and II alternate in choosing block subspaces Z0, Z1, Z2, . . . ⊆ X
and vectors x0 < x1 < x2 < . . . ∈ X, respectively integers n0 < n1 < n2 < . . . and
vectors y0 < y1 < y2 < . . . ∈ X according to the constraints ni < xi and yi ∈ Zi:

I n0 < x0, Z0 n1 < x1, Z1 n2 < x2, Z2 . . .
II n0 y0 ∈ Z0, n1 y1 ∈ Z1, n2 . . .

We say that the sequence (x0, y0, x1, y1, . . .) is the outcome of the game.
If ~x is a finite block sequence of even length, the game AX(~x) is defined as above

except that the outcome is now ~xˆ(x0, y0, x1, y1, . . .).
On the other hand, if ~x is a finite block sequence of odd length, AX(~x) is defined

in a similar way as before except that I begins

I Z0 n0 < x0, Z1 n1 < x1, Z2 . . .
II y0 ∈ Z0, n0 y1 ∈ Z1, n1 y2 ∈ Z2, n2 . . .

and the outcome is now ~xˆ(y0, x0, y1, x1, . . .) rather than ~xˆ(x0, y0, x1, y1, . . .).

We define the game BX in a similar way to AX except that we now have I playing
integers and II playing block subspaces:

I x0 ∈ Z0, n0 x1 ∈ Z1, n1 x2 ∈ Z2, n2 . . .
II Z0 n0 < y0, Z1 n1 < y1, Z2 . . .

with xi ∈ Zi ⊆ X and ni < yi ∈ X. Again, the outcome is (x0, y0, x1, y1, . . .).
If ~x is a finite block sequence of even length, the game BX(~x) is defined as above

except that the outcome is now ~xˆ(x0, y0, x1, y1, . . .).
On the other hand, if ~x is a finite block sequence of odd length, BX(~x) is defined

by letting I begin

I n0 x0 ∈ Z0, n1 x1 ∈ Z1, n2 . . .
II n0 < y0, Z0 n1 < y1, Z1 n2 < y2, Z2 . . .

and the outcome is now ~xˆ(y0, x0, y1, x1, . . .).
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Thus, in both games AX and BX , one should remember that I is the first to play
a vector. And in AX , I plays block subspaces and II plays tail subspaces, while in BX ,
II takes the role of playing block subspaces and I plays tail subspaces.

Suppose A ⊆ E∞, Y ⊆∗ X and ~x are given. Then one easily sees that if II has
a strategy in AX(~x) to play in A, then II also has a strategy in AY (~x) to play in A.
Similarly, if I has a strategy in BX(~x) to play in A, then I also has a strategy in BY (~x)
to play in A. Also, if II has a strategy in AX(~x) to play in A, then II also has a strategy
in BX(~x) to play in A.

Theorem 12

Suppose A ⊆ E∞ is open or closed. Then there is X ⊆ E such that either

(1) II has a strategy in AX to play in A, or
(2) I has a strategy in BX to play in ∼ A.

Proof. Suppose first that A is open. We say that

(a) (~x,X) is good if II has a strategy in AX(~x) to play in A.

(b) (~x,X) is bad if ∀Y ⊆ X, (~x, Y ) is not good.

(c) (~x,X) is worse if it is bad and either

(1) |~x| is odd and ∃n ∀y ∈ X (n < y → (~xˆy,X) is bad), or

(2) |~x| is even and ∀Y ⊆ X ∃x ∈ Y (~xˆx,X) is bad).

One checks as always that good, bad and worse are all ⊆∗-hereditary.

Lemma 13

If (~x,X) is bad, then there is some Z ⊆ X such that (~x, Z) is worse.

Proof. By diagonalisation, we can find some Y ⊆ X such that for all ~y, (~y, Y ) is either
good or bad.

Assume first that |~x| is even. Since (~x, Y ) is bad, we have ∀V ⊆ X II has no
strategy in AV (~x) to play in A. So ∀V ⊆ X ∃x ∈ V such that II has no strategy in
AV (~xˆx) to play in A, and hence such that (~xˆx, V ) is not good. Thus,

∀V ⊆ X ∃x ∈ V (~xˆx, Y ) is bad,

and so already (~x, Y ) is worse.
Now suppose instead that |~x| is odd and, towards a contradiction, that there is

no Z ⊆ Y such that (~x, Z) is worse. Then, as (~x, Y ) is bad, ∀Z ⊆ Y ∃y ∈ Z (~xˆy, Z)
is not bad and thus also ∀Z ⊆ Y ∃y ∈ Z (~xˆy, Y ) is good. So

∀Z ⊆ Y ∃y ∈ Z II has a strategy in AY (~xˆy) to play in A,

and hence II also has a strategy in AY (~x) to play in A, contradicting that (~x, Y ) is
bad. �

Diagonalising, we now find X ⊆ E such that for all ~x, either (~x,X) is good
or worse. Assume that II has no strategy in AX to play in A, whereby (∅, X) is
worse. Then, by unraveling the definition of worse and using that bad and worse
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coincide below X, one sees that I has a strategy in BX to produce block sequences
(z0, z1, z2, . . .) so that for all m, (z0, z1, . . . , zm, X) is worse. In particular, for no m
does II have a strategy in AX(z0, . . . , zm) to play in A, and so, as A is open, we must
have (z0, z1, z2, . . .) ∈∼ A. So I has a strategy in BX to play in ∼ A, which finishes
the proof for open sets.

Now if instead A is closed, set

B = {xˆx
∣∣ x ∈ E & x /∈ A} = E× ∼ A,

which is open. So find some X ⊆ E such that either

(1) II has a strategy in AX to play in B, or

(2) I has a strategy in BX to play in ∼ B.

Now if II has a strategy in AX to play in B, then I has a strategy in BX to play in
∼ A. And if I has a strategy in BX to play in ∼ B, then II has a strategy in AX to
play in A, which is what needed proof. �
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