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Abstract

Let (R,m) be a local ring of Krull dimension d and I ⊆ R be an ideal with
analytic spread d. We show that the j-multiplicity of I is determined by the
Rees valuations of I centered on m. We also discuss a multiplicity that is the
limsup of a sequence of lengths that grow at an O(nd) rate.

1. Introduction

Throughout, we let (R,m, k) be a Noetherian local ring with maximal ideal m and
residue field k. The purpose of this paper is to further elucidate the connections between
the Rees valuations of an ideal I ⊆ R and various multiplicities that can be associated
to the ideal. Here we focus primarily on ideals that are not m-primary, since most of
our results are attempts at establishing or using connections between valuations and
multiplicities for non m-primary ideals that are already known in the m-primary case.
For example, let I be an m-primary ideal. In [14], Rees defines the degree function
dI(x) as follows : For x ∈ R, dI(x) is the multiplicity of the image of ideal the I in the
ring R/xR. Here it is assumed that dim(R/xR) = d − 1. The main theorem in [14]
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shows that there are a finite collection of discrete valuations {vj} and positive integers
dj(I, vj) so that for all appropriate x,

dI(x) =
∑
j

dj(I, vj) · vj(x). (1.1)

In [15, Chapter 9], Rees revists this result (in a more general setting) and carefully
identifies the valuations appearing in (1.1) as the set of Rees valuations of I (ideal
valuations in [15]) that are m-valuations. If one specializes x in (1.1) to be a superficial
element of I, one gets the following formula for the multiplicity of I,

e(I) =
∑
j

dj(I, vj) · vj(I). (1.2)

Now, let I ⊆ R be an ideal which is not necessarily m-primary. Then, by definition,
the j-multiplicity of I is given by

j(I) = lim
n→∞

(d− 1) !

nd−1
· λ(Γm(In/In+1)),

where λ(C) denotes the length of the R-module C and Γm(D) is the zero-th local
cohomology functor applied to D. Of course, when I is an m-primary ideal, j(I) is the
usual multiplicity e(I). One of our main results extends the multiplicity formula (1.2)
to the case of ideals I with maximal analytic spread. In particular we show that there
exist positive integers di(I, vi) depending on I such that

j(I) =
∑
i

di(I, vi) · vi(I), (1.3)

where the vi are the Rees valuations of I centered on m with the property that each vi
is an m-valuation. When R is a quasi-unmixed local ring, this collection is precisely
the set of Rees valuations of I centered on m. The formula above is established in
section three.

In section four, we consider a variant on the j-multiplicity of an ideal of maximal
analytic spread, one which at first might seem more natural. In the m-primary case,
one often writes

e(I) = lim
n→∞

d !

nd
· λ(R/In).

Thus, it might seem natural to consider the limit

lim
n→∞

d !

nd
· λ(Γm(R/In)).

However, it is not known whether this limit exists in general (though it is known
that if this limit exists, it need not be rational, see [4]). In section four, we note
that the corresponding limsup exists, which we denote by ε(I). We first show that
this limsup is an invariant up to integral closure and that the corresponding limit
exists for an ideal I if and only if it the same limit exists for I, the integral closure
of I. Our main result in section four is that ε(I) is not zero when I has maximal
analytic spread. We then show that this limsup can be used to detect integral closure
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in exactly the way that multiplicity detects integral closure in the Rees multiplicity
theorem and j-multiplicity detects integral closure in the Flenner-Manaresi version of
the Rees multiplicity theorem.

Finally, in a brief appendix, we show that there is a one-to-one correspondence
between the Rees valuations of I centered on m and the Rees valuations of IR̂ centered
on mR̂, where R̂ denotes the completion of R.

2. Preliminaries

In this section we establish some basic terminology and some relevant facts concern-
ing Rees valuations and the various multiplicities at hand. Throughout R is a local
Noetherian ring with maximal ideal m and residue field k. We will reserve d for the
Krull dimension of R and assume throughout that d > 0. We set

GI(R) :=
⊕
n≥0

In/In+1,

the associated graded ring of R with respect to I. We will write RI to denote the
extended Rees algebra of R with respect to I, i.e.,

RI :=
∞⊕
−∞

In · tn,

t an indeterminate. Thus, by definition, the j-multiplicity of I is given by

j(I) := j(GI(R)) = j(RI/t−1RI),

where j(GI(R)) is the normalized coefficient of the degree d − 1 term in the Hilbert
polynomial of the GI(R)-module Γm(GI(R))) (see [1], [6, Section 6.1].) Since this
polynomial has degree d − 1 if and only if Γm(GI(R))) has dimension d if and only if
the analytic spread of I equals d, our attention will be focused primarily on ideals with
this latter property. Recall that the analytic spread of I, denoted `(I), is the Krull
dimension of the ring GI(R)/mGI(R). As is well known, when k is infinite, `(I) is
equal to the minimal number of generators of a minimal reduction of I.

Suppose for the moment that R is an integral domain with quotient field K. The
Rees valuation rings of I may be obtained as follows. Take a set of generators x1, . . . , xs
for I (or equivalently, any reduction of I) and for each 1 ≤ i ≤ s, let Si denote the
subring of K generated over R by the fractions x1/xi, . . . , xs/xi. Let Si denote the
integral closure of Si. Each localization of Si at a height one prime containing xi is
a discrete valuation ring and the collection of all such discrete valuation rings (as i
varies) is the set of Rees valuation rings of I. (The text [17] is an excellent reference
for Rees valuations and integral closure of ideals.) The Rees valuations of I are the
normalized valuations v : K → Z associated with each Rees valuation ring V .

When R is not an integral domain, the Rees valuation rings are just the Rees
valuation rings of the image of I in R/q as q ranges over the minimal prime ideals
of R. If I ⊆ q for some minimal prime q, we take the quotient field of R/q. Similarly,
the Rees valuations of I are the set of functions v : R → Z ∪ {∞}, where v is the
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composition of the canonical map from R to R/q, for some minimal prime q, with a
Rees valuation of I extended to the ring R/q. In this case, v takes the value ∞ on q
and the usual rules of arithmetic in Z ∪ {∞} apply.

Now suppose that R is a local domain with finite residue field k. Write R(x)
for the local ring R[x]mR[x], x an indeterminate. Let I ⊆ R be an ideal and suppose
that V1, . . . , Vr are the Rees valuation rings of I. Then, it is straightforward to check
that V1(x), . . . , Vr(x) are the Rees valuation rings of IR(x), where for each 1 ≤ i ≤ r,
Vi(x) := Vi[x]mVi

Vi[x]. It follows that each Rees valuation of IR(x) is the extension of
the corresponding Rees valuation of I. Moreover, it also follows that

tr. deg.k k(mVi) = tr.deg.k(x) k(mVi(x)),

whenever Vi is centered on m. Thus, when we change rings by extending the residue
field in this manner, we will not disturb any of our statements involving the Rees
valuations or Rees valuation rings of the ideal I. A similar statement applies when R
is not a domain.

We will also need the concept of m-valuation. Recall that a discrete valuation
on the quotient field of a local domain (R,m) is said to be an ‘m-valuation’ if its
associated valuation ring (V,mV ) satisfies the following conditions : (i) mV ∩ R = m
and (ii) tr. deg.k k(mV ) = d − 1 (see section two in [16] or [17, Chapter 9] where such
valuations are called divisorial valuations). When R is not an integral domain, then the
m-valuations are the valuations from R to Z ∪∞ obtained by following the canonical
map R→ R/q by an m ·R/q-valuation on R/q, where q ranges over the minimal primes
of R with dimension d.

Finally, we will make frequent use of the following well known facts. Let x1, . . . , xs
be elements that are analytically independent in m. For example, the xi could be
generators for a minimal reduction of an ideal with analytic spread s. Assume that
x1 is not a zerodivisor in R and set S := R[x2/x1, . . . , xs/x1]. Then mS is a prime
ideal and S/mS is isomorphic to a polynomial ring in s − 1 variables over k. Since
dim(S) ≤ d, it follows that if s = d, then mS is a height one prime ideal.

3. A formula for j-multiplicity

In this section we prove that the j-multiplicity of an ideal I is determined by the
Rees valuations of I that are m-valuations. In order to do so, we need to establish
some properties of Rees valuation rings of ideals with maximal analytic spread. The
following observation plays a key role in our analysis. While it is likely to be known by
experts on Rees valuations, we have not found it stated anywhere in the form below.

Proposition 3.1

Let (R,m) be a local ring and I ⊆ R an ideal. Then `(I) = d if and only if some
Rees valuation of I is an m-valuation.

Proof. By our comments in Section 2, we may extend the residue field of R in the usual
way to assume that k is infinite. Now, since, `(I) = d if and only if for some minimal
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prime q ⊆ R, `(I ·R/q) = d, this together with the definitions of Rees valuation and m-
valuation allows us to assume that R is an integral domain. Suppose `(I) = d. Let
x1, . . . , xd generate a minimal reduction of I. Then for

S1 := R[x2/x1, . . . , xd/x1],

mS1 is a height one prime containing I. Thus, if P ⊆ S1 is a height one prime lying
over mS1, then V := (S1)P is a Rees valuation ring of I. We have

k ⊆ k(mS1) ⊆ k(mV ).

But the images of the fractions xi/x1 in k(mS1) are algebraically independent over k
(since the xi are analytically independent) and the extension k(mS1) ⊆ k(mV ) is al-
gebraic. It follows immediately from this that the valuation associated to V is an m-
valuation.

Conversely, suppose that v is a Rees valuation of I that is also an m-valuation, i.e.,
for V the corresponding valuation ring, mV ∩R = m and tr. deg.k k(mV ) = d− 1. Let
x1, . . . , xs be a minimal reduction of I, so that s = `(I). Then, for some 1 ≤ i ≤ s, V
is the localization of Si at a height one prime containing xi, where

Si := R[x1/xi, . . . , xs/xi].

Since V is centered on m, k ⊆ k(mV ∩ Si) ⊆ k(mV ). Moreover, k(mV ) is algebraic over
k(mV ∩ Si). Thus, the transcendence degree of this latter field over k is d − 1. But
Si/mV ∩ Si is a k-algebra, so dim(Si/mV ∩ Si) = d − 1. Since dim(Si) ≤ d, it follows
that mV ∩ Si is a height one prime ideal, necessarily equal to mSi, by the analytic
independence of the xj . Thus,

s− 1 = tr. deg.k k(mSi) = tr.deg.k k(mV ∩ Si) = d− 1,

so s = d, i.e., `(I) = d. �

The foregoing proposition enables us to make the following definition.

Definition 3.2 Let I ⊆ R be an ideal with maximal analytic spread. We will write
νm(I) to denote the Rees valuations of I that are m-valuations. In a similar fashion,
we use Vm(I) to denote the Rees valuation rings associated to the valuations in νm(I).
Note that if R is not an integral domain and q1, . . . , qc are the minimal prime ideals
for which `(I ·R/qi) = d, then

Vm(I) = Vm(I ·R/q1) ∪ · · · ∪ Vm(I ·R/qc).

A similar decomposition holds for νm(I).

Corollary 3.3

Let (R,m) be a local domain with quotient field K and I ⊆ R an ideal with
maximal analytic spread. Assume that x1, . . . , xd generate a minimal reduction of I
and set

T := R[x2/x1, . . . , xd/x1]mR[x2/x1,...,xd/x1].
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Then, V ∈ Vm(I) if and only if V is an essential valuation ring of T , i.e., a discrete
valuation ring obtained by localizing the integral closure of T at one of its maximal
ideals. Consequently, if R is quasi-unmixed, then Vm(I) is just the set of Rees valuation
rings of I centered on m.

Proof. Retain the notation from the proof of Proposition 3.1. The proof of Proposi-
tion 3.1 shows that the elements of Vm(I) are exactly those discrete valuation rings V
with the property that there exists an i such that V = (Si)P for some height one prime
ideal P ⊆ Si with P ∩Si = mSi. Since T := (Si)mSi is independent of i, it follows that
the valuation rings in Vm(I) are precisely the essential valuation rings of T .

The second statement is just a version of [17, Corollary 10.2.7], for ideals with
maximal analytic spread. If R is quasi-unmixed, let V be a Rees valuation ring of I
centered on m. By definition, for some i, V = (Si)P for a height one prime P ⊆ Si with
P ∩ R = m. Thus P ∩ Si = mSi, since by the quasi-unmixed hypothesis, R satisfies
the dimension formula (see [10]), so height(Si ∩ P ) = 1. Thus V corresponds to an
essential valuation ring of T . �

Our next proposition is closely related to the following results [17, Proposi-
tion 6.5.2, Proposition 6.5.4, Proposition 9.3.5 and Theorem 10.4.3]. This proposition
plays a crucial role in our description of the valuations that determine j(I). However,
as we have not been able to parse the statements of these results to give the precise
statement we have in the proposition below, we require a separate proposition. More
importantly, this proposition shows that the known one-to-one correspondence between
the Rees valuations of I and IR̂ for m-primary ideals ([15, Theorem 6.23]) carries over
to a similar correspondence between Vm(I) and Vm(IR̂) when I has maximal analytic
spread.

Proposition 3.4

Let (R,m) be a local ring and I ⊆ R an ideal with maximal analytic spread.

Let R̂ denote the completion of R.

(a) Take V ∈ Vm(I) and write q for the corresponding minimal prime. Then there
exists a minimal prime z ⊆ R̂ with z ∩R = q such that, for B := R̂/z, `(IB) = d
and V = W ∩ k(q) for some W ∈ Vm(IR̂) contained in k(z).

(b) Take W ∈ Vm(IR̂) and write z for the corresponding minimal prime. Note that
for B := R̂/z, `(IB) = d. Then V := W ∩ k(z ∩R) ∈ Vm(I).

Moreover, the correspondence from Vm(I) to Vm(IR̂) determined by (a) is a one-
to-one, onto function of sets.

Proof. For (a), let q ⊆ R be the minimal prime such that V is a discrete valuation ring
contained in k(q). Since a minimal prime in R̂ contracting to q corresponds to a minimal

prime in R̂/q contracting to zero in R/q, we may pass to R/q. Note `(I · R/q) = d.
Changing notation, we begin again assuming that R is a local domain with quotient
field K. Let V ∈ Vm(I). By [17, Proposition 10.4.3], there exists a minimal prime
z ⊆ R̂ such that V = W ∩ K for some Rees valuation ring W of IR̂ contained in
k(z). By [17, Proposition 6.5.2], k(mV ) = k(mW ), so tr. deg.k k(mW ) = d − 1, since
V ∈ Vm(I). Since W is clearly centered on mR̂, W ∈ Vm(IR̂). Finally, if we set
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B := R̂/z, then W ∈ Vm(IB), by definition, so `(IB) = d either by Proposition 3.1
or [17, Theorem 10.4.2].

For part (b), let V,W,B and z be as in the statement of part (b) and set q := z∩R.

Note that since B can be identified with R̂/q modulo a minimal prime, it follows from
the assumption `(IB) = d that `(I · R/q) = d. Thus, as in the proof of part (a), by
replacing R by R/q, we may further assume that R is a domain with quotient field K
and that V = W ∩K. Note further that, by the hypothesis on W , V is centered on m.

Next, we wish to take d elements from I generating a minimal reduction. If k is
finite, rather than making a base change to R(x), we will instead use the fact that the
Rees valuation rings of I and In are the same for all n > 0. Thus, Vm(I) = Vm(In)
and Vm(IR̂) = Vm(InR̂) for all n. Since for all large n, a minimal reduction of In can
be generated by d elements, we may use In in place of I. But then changing notation,
we can assume that there are d elements generating a minimal reduction of I.

Now let x1, . . . , xd be a minimal generating set for a minimal reduction of I and
write J for the ideal generated by the xi. Since JB is a reduction of IB and `(IB) = d,
the images x′i of the xi in B form a minimal generating set for a minimal reduction of
IB. It follows from Corollary 3.3 that W is an essential valuation ring of

TB := B[x′2/x
′
1, . . . , x

′
d/x
′
1]mB[x′2/x

′
1,...,x

′
d/x

′
1]
.

Thus the images of x′2/x
′
1, . . . , x

′
d/x
′
1 in k(mW ) form a transcendence basis over k.

On the other hand, since V = W ∩K, x2/x1, . . . xd/x1 ∈ V . Thus, in the notation
of Proposition 3.1, S1 ⊆ V . By [17, Proposition 6.5.2], k(mV ) = k(mW ), so that the
images of x2/x1, . . . , xd/x1 in k(mV ) are algebraically independent over k. Therefore,
tr. deg.k k(mV ∩ S1) = d− 1. As in the proof of Proposition 3.1, this forces mV ∩ S1 =
mS1. Thus, mV ∩S1 is a height one prime lying over mS1. It follows immediately from
this that V = (S1)mV ∩S1

, and thus V ∈ Vm(I) as required.
For the final statement, note that by part (b), the correspondence from Vm(I) to

Vm(IR̂) given in (a) is surjective. The correspondence in question is clearly one-to-one.
To see that the reverse correspondence given by (b) is one-to-one, we first note that
by [17, Proposition 6.5.2], we cannot have a single minimal prime z ⊆ R̂ and distinct
W,W ′ ∈ Vm(IR̂) contained in k(z) such that W and W ′ contract to the same valuation
ring V in k(z ∩ R). Now suppose W and W ′ are defined over minimal primes z 6= z′

respectively such that z ∩ R = z′ ∩ R and V = W ∩ k(z ∩ R) = W ′ ∩ k(z′ ∩ R). If

we show that Ŵ = V̂ = Ŵ ′, then this will provide the necessary contradiction from
which the final statement in the proposition follows.

To see that V̂ = Ŵ , we just modify the proof of [17, Proposition 6.5.2] showing
k(mV ) = k(mW ) to show that V/mn

V = W/mn
W , for all n ≥ 1. To see this, we first note

that the first paragraph in the proof of [17, Proposition 6.5.2], shows that the value
groups of the valuations associated to V and W are equal, though, a priori, the value
group associated to V is a subgroup of the value group associated to W . It follows
from this that mn

W ∩ V = mn
V and thus V/mn

V ⊆W/mn
W , for all n ≥ 1.

Let x, y ∈ R̂/z with x/y ∈ W . Set t := w(x) and s := w(m · R̂/z). Fix n ≥ 1
and choose r large enough so that sr > nt. Choose a non-zero x′ ∈ R such that
x− x′ ∈ mrR̂. Then,

w(x− x′) ≥ sr > nt = nw(x) = nw(x′) = nv(x′).
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Similarly, there exists a non-zero y′ ∈ R such that

w(y − y′) > nw(y) = nw(y′) = nv(y′).

Note that w(x/y) = v(x′/y′), so x′/y′ ∈ V . Moreover,

x

y
− x′

y′
=
x− x′

x
· x
y

+
y′ − y
y
· x
′

y′
∈ mn

W .

Since x/y ∈ W was arbitrary, we have V/mn
V = W/mn

W . Taking inverse limits gives

V̂ = Ŵ . The proof that V̂ = Ŵ ′ is the same. �

Remark 3.5 Let (R,m) be a local ring and I ⊆ R an ideal with maximal analytic
spread. Then Proposition 3.4 shows that the elements of Vm(I) and the elements
of Vm(IR̂) are ‘parameterized’ by the minimal primes z1, . . . , zh in R̂ for which the
extension of I to R̂/zi has analytic spread d. In other words, we can label Vm(I) =
{Vi,j} and Vm(IR̂) = {Wi,j} so that each Wi,j belongs to the quotient field of R̂/zi and
Vi,j = Wi,j ∩ k(zi ∩R). Pictorially, we have :

W1,1

EE
EE

EE
EE

· · · W1,t1

xxxxxxxx
· · · Wh,1

EE
EE

EE
EE

· · · Wh,th

xxxxxxxx

z1 · · · zh

V1,1

yyyyyyyy
· · · V1,t1

FFFFFFFF

· · · Vh,1

yyyyyyyy
· · · Vh,th

FFFFFFFF

We are almost ready for the main result in this section. We first require an
observation and a proposition.

Observation 3.6 Let I ⊆ R be an ideal and set L := (0 : I∞). By the Artin-Rees
lemma, In ∩ L = 0 for all large n. It follows from this that In/In+1 is isomorphic to
(In +L)/(In+1 +L) for n large. Therefore, `(I) = `((I +L)/L). In particular, if I has
maximal analytic spread, then so does the image of I in the ring R/L. Moreover, it is
also clear that j(I) = j((I + L)/L).

The following proposition provides a j-multiplicity analogue of the main result
in [8].

Proposition 3.7

Let (R,m) be a local ring and I ⊆ R an ideal with maximal analytic spread d. Set
L := (0 : I∞) and set R′ := R/L. Suppose there exist x1, . . . , xd generating a minimal
reduction of I with the property that image x′1 of x1 in R′ is not a zerodivisor. Set

T̃ := R′[x′2/x
′
1, . . . , x

′
d/x
′
1]mR′[x′2/x

′
1,...,x

′
d/x

′
1]
.

Then j(I) = e(IT̃ ).
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Proof. Let J denote the ideal generated by the xi. One the one hand, j(J) = j(I)
(see [5]) and L := (0 : J∞). On the other hand, by Observation 3.6, the image of
J in R/L is still a minimal reduction of the image of I and j(J) = j((J + L)/L).
Therefore, we may replace I by J and R by R′. Changing notation, we just assume
that L = 0, write T instead of T̃ and assume that I is generated by d elements
x1, . . . , xd analytically independent in m such that x1 is a non-zerodivisor.

Let RI denote the Rees ring of R with respect to I, so that j(I) = j(RI/t−1RI).
Since the xi are analytically independent,M := (m, t−1)RI is a height one prime ideal
and RI/M is a polynomial ring in d variables over k. Thus,M is the only prime in RI
of dimension d containing t−1 and m. Set T := (RI)M. By the associativity formula
for j-multiplicity (see [6, Proposition 6.1.3]), it follows that

j(RI/t−1RI) = λ(T /t−1 · T ) · e(RI/M) = e(t−1 · T ).

Thus j(I) = e(t−1 · T ). To see that e(t−1 · T ) is just e(IT ), we first note that
RI [(x1t)−1] = S1[x1t, (x1t)

−1] and the latter ring is a Laurent polynomial ring in
the variable x1t over S1, where as before, S1 = R[x2/x1, . . . , xd/x1]. Note also that
x1t 6∈ M. Now,

MRI [(x1t)−1] = mRI [(x1t)−1] = mS1[x1t, (x1t)
−1],

and it follows from this that T = T [x1t]mT [x1t], the latter ring being a polynomial ring
in one variable over T localized at the extension of mT . Thus,

e(IT ) = e(IT [x1t]mT [x1t]) = e(I · T ) = e(t−1 · T ).

It now follows that j(I) = e(IT ), as desired. �

The following corollary of Proposition 3.7 gives a crucial special case of what we
wish to prove.

Corollary 3.8

Let (R,m) be an analytically unramified local domain and let I ⊆ R be an ideal
with maximal analytic spread. Then for each v ∈ νm(I), there exists a positive inte-
ger d(I, v) so that

j(I) =
∑

v∈νm(I)

d(I, v) · v(I),

where v(I) denotes the least value under v of the elements from I.

Proof. Extending the residue field if necessary, let x1, . . . , xd generate a minimal re-
duction of I and set

T := R[x2/x1, . . . , xd/x1]mR[x2/x1,...,xd/x1].

Proposition 3.7 yields j(I) = e(IT ). Let V1, . . . , Vr denote the essential valuation rings
of T . Since R is analytically unramified, the integral closure of T is a finite module
over T , therefore, by the expansion formula for multiplicities in a finite extension,

e(IT ) =

r∑
i=1

[k(mVi) : k(mT )] · e(IVi) =

r∑
i=1

[k(mVi) : k(mT )] · vi(I),
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where vi is the valuation associated with Vi and [k(mVi) : k(mT )] is the degree of the
residue field extension. On the other hand, Vm(I) = {V1, . . . , Vr}, by Corollary 3.3.
For V = Vi, we set d(I, v) := [k(mVi) : k(mT )], where v is the element in νm(I)
corresponding to V . Putting this all together we get

j(I) =
∑

v∈νm(I)

d(I, v) · v(I),

as desired. �

Here is the main result of this section.

Theorem 3.9

Let (R,m) be a local ring and I ⊆ R an ideal with maximal analytic spread. Then
for each v ∈ νm(I), there exists a positive integer d(I, v) such that

j(I) =
∑

v∈νm(I)

d(I, v) · v(I),

where v(I) denotes the least value under v of the elements from I.

Proof. By the comments from section two, we may assume that k is infinite. We first
reduce to the case that R is a complete local domain using Proposition 3.4 and then
apply Corollary 3.8. To begin, let z1, . . . , zh ⊆ R̂ be the minimal primes in R̂ such
that, upon setting Bi := R̂/zi, we have `(IBi) = d. Then, by faithful flatness and the
associativity formula for j-multiplicity (see [6, Corollary 6.1.8]),

j(I) = j(IR̂) =

h∑
i=1

λ(R̂zi) · j(IBi).

Set ai := λ(R̂zi) and suppose νm(IBi) = {wi,1, . . . , wi,ti}, for 1 ≤ i ≤ h. By Corol-
lary 3.8, the theorem holds for each Bi, thus there exist d(IBi, wi,j) > 0 such that

j(IBi) =

ti∑
j=1

d(IBi, wi,j) · wi,j(I),

for all 1 ≤ i ≤ h. Therefore,

j(I) = j(IR̂) =
h∑
i=1

ti∑
j=1

ai · d(IBi, wi,j) · wi,j(I). (3.1)

Now, by definition, νm(IR̂) = {wi,j | 1 ≤ i ≤ h, 1 ≤ j ≤ ti}. Thus, for each i and
j, if we set Bw := Bi and aw := ai, for w = wi,j , then we may rewrite (3.1) as

j(I) =
∑

w∈νm(IR̂)

aw · d(IBw, w) · w(I). (3.2)

On the other hand, by Proposition 3.4, there is a one-to-one correspondence be-
tween νm(I) and νm(IR̂) such that if v ∈ νm(I) and w ∈ νm(IR̂) correspond, then
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we have v(I) = w(I). Thus, if we set set d(I, v) := aw · d(IBw, w) and replace w(I) by
v(I) in (3.2), then we may sum instead over v ∈ νm(I) to obtain the required expression
for j(I). �

We would like to refine our expression for the values of the d(I, v) appearing in
the proof of Theorem 3.9 and also show that they depend only on R, I and v. The
following proposition is relevant to the ensuing discussion and has independent interest.

Proposition 3.10

Let (R,m) be a local domain with infinite residue field and I ⊆ R an ideal with
maximal analytic spread. Fix V ∈ Vm(I). Let x1, . . . , xd be a minimal generating set
for a minimal reduction of I and set

T := R[x2/x1, . . . , xd/x1]mR[x2/x1,...,xd/x1].

Then [k(mV ) : k(mT )] is independent of T .

Proof. We first reduce to the case that R is a complete local domain. By Propo-
sition 3.4, there exists a minimal prime z ⊆ R̂ such that if we set B := R̂/z, then
`(IB) = d and V = W ∩K for some W ∈ Vm(IR̂), where K is the quotient field of R
and W is contained in k(z). Since `(IB) = d, it follows that the images x′i of the xi in
B generate a minimal reduction of IB. Thus, we may form the one dimensional local
domain TB derived from these elements. By [17, Proposition 6.5.2], k(mW ) = k(mV ).
It follows that the images in this field of the xi/x1 from T/mT and the xi/x1 from
TB/mTB are equal, i.e., T/mT = TB/mTB. Thus,

[k(mW ) : k(mTB)] = [k(mV ) : k(mT )]. (3.3)

Therefore, since W ∈ Vm(IB) (by definition), it suffices to prove the lemma for B. In
other words, we may begin again assuming that R is a complete local domain.

Now, let J denote the ideal generated x1, . . . , xd. By definition of Vm(I) and
Corollary 3.3, there exists a height one prime P ⊆ S1 with V = (S1)P and P ∩ S1 =
mS1, where S1 is as before (so that (S1)mS1 = T ). Let RJ be the Rees ring of J . Set
SJ := RJ . Then SJ [(x1t)

−1] = S1[x1t, (x1t)
−1]. Let P ⊆ SJ [(x1t)

−1] be the prime
corresponding to PS1[x1t, (x1t)

−1]. It follows that V [x1t]mV V [x1t] = (SJ)P . Thus, the
quotient field of SJ/P is just the rational function field in one variable over k(mV ).
Note that SJ/P depends only on V . Set M := (t−1,m)RJ . Then, as in the proof
of Proposition 3.7, (RJ)M = T [x1t]mT [x1t], so that the quotient field of RJ/M is the
rational function field in one variable over k(mT ). Thus,

[k(mV ) : k(mT )] = [k(P) : k(M)].

Since R is excellent, SJ/P is a finitely generated graded module over RJ/M. Since
the latter ring is a polynomial ring over k, [k(P) : k(M)] is the multiplicity of SJ/P
when viewed as an RJ/M module. On the other hand, SJ/P is a finitely generated
graded - not necessarily standard graded - k-algebra, and as such, it has a Hilbert
function given by a quasi-polynomial, which in this case is polynomial. Moreover, its
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normalized leading coefficient depends only on SJ/P and is equal to [k(P) : k(M)].
Therefore, [k(P) : k(M)] = [k(mV ) : k(mT )] is independent of T . �

A description of d(I,v). For I ⊆ R an ideal with maximal analytic spread, we would
like to refine the description of d(I, v) contained in the proof of Theorem 3.9, at least
when k is infinite. We will maintain the notation from the proof of Theorem 3.9. From
the last sentence of the proof of Theorem 3.9, we have

d(I, v) = aw · d(IBw, w),

where aw and d(IBw, w) are as follows. By Proposition 3.4, there is a unique w in
νm(IR̂) corresponding to v. If zw ⊆ R̂ is the minimal prime such that w is defined
on k(zw), then aw := λ(Rzw) and Bw := R̂/zw. Note that from the proof of Corol-
lary 3.8, d(IBw, w) := [k(mw) : k(mTBw)], where TBw is the one dimensional local
domain derived over Bw from a minimal generating set of a minimal reduction of IBw.
At this point our description agrees with the one given for m-primary ideals in [15,
Theorem 9.41].

Now, fix x1, . . . , xd a minimal generating set for a minimal reduction of I. Note
that if R maps to a local domain D such that `(ID) = d, then the images of the xi in D
generate a minimal reduction of ID and we can then form the one dimensional local
domain over D derived from these images. We denote this latter ring by TD. Thus,
in the preceding paragraph, all of the terms d(IBw, w) := [k(mw) : k(mTBw)] can be
derived using x1, . . . , xd and these values depend only on the corresponding w, i.e.,
they are independent of the xi, by Proposition 3.10. Now let v ∈ Vm(I). Then v is
defined on the quotient field of a unique minimal prime q ⊆ R. Set Cv := R/q. Since
`(ICv) = d, we may form the ring TCv . Let w(v) ∈ νm(IR̂) be the unique element
corresponding to v. By equality of residue fields and equation (3.3) we have

[k(mv) : k(mTCv)] = [k(mw(v)) : k(mTBw(v)
)].

It now follows that if we set

d(I, v) := aw(v) · [k(mv) : k(mTCv)], (3.4)

for all v ∈ νm(I), then

j(I) =
∑

v∈νm(I)

d(I, v) · v(I). (3.5)

Note that, even though the factor [k(mv) : k(mTCv)] in (3.4) in does not depend on R̂,
we cannot escape the inclusion of the term aw(v) = λ(R̂zw), which does depend upon R̂.
Of course, if R is analytically unramified, then aw = 1 and the expression for d(I, v)
in (3.4) agrees with the one derived from the proof of Corollary 3.8 (see Corollary 3.13
below). Finally, we note that by construction and Proposition 3.10, the integers d(I, v)
in (3.4) and (3.5) depend only on R, I, and v. �

Our first corollary gives a quick proof showing that the j-multiplicity changes in
the expected way when we replace I by any ideal projectively equivalent to I.
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Corollary 3.11

Let (R,m) be a local ring and I ⊆ R an ideal with maximal analytic spread. Then

for all q > 0, j(Iq) = qd · j(I).

Proof. We may assume that k is infinite and, using the associativity formula for j-
multiplicity, reduce to the case that R is a local domain. We first note that since
νm(I) = νm(Iq), by Theorem 3.9 we have

j(I) =
∑

v∈νm(I)

d(I, v) · v(I)

and
j(Iq) =

∑
v∈νm(I)

d(Iq, v) · v(Iq).

Clearly, v(Iq) = q · v(I), for all v ∈ Vm(I). If we show d(Iq, v) = qd−1 · d(I, v), for all
v, the proof will be complete. On the one hand, (3.4) gives a formula for each d(v, I).
On the other hand, maintaining the notation leading to (3.4), xq1, . . . , x

q
d generate a

minimal reduction of Iq. Let Tq denote the one dimensional ring derived from these
latter generators. Now applying (3.4) to Tq and Iq, we see that it suffices to show
that [k(mT ) : k(mTq)] = qd−1. (Note that in fact, Tq ⊆ T is a finite extension, so
k(mTq) ⊆ k(mT ).) Write ui for the image of the fraction xi/x1 in the residue field
k(mV ) of V . Then, since k(mTq) ⊆ k(mT ), the images of the xqi /x

q
1 in k(mV ) are just

uqi . Moreover, since k(mT ) is the rational function field in the ui over k, it follows that
[k(mT ) : k(mTq)] = qd−1, and this gives what we want. �

Our second corollary yields the following interesting formula for the j-multiplicity
of a principal ideal times an m-primary ideal.

Corollary 3.12

Let (R,m) be a local domain, Q ⊆ R an m-primary ideal and 0 6= a ∈ R. Set
I := a ·Q. Then j(I) = e(Q) + e(Q+ (a)/(a)).

Proof. We first note that since In/mIn is isomorphic to Qn/mQn for all n, I has
maximal analytic spread. Moreover, if x1, . . . , xd is a minimal generating set of a
reduction of Q, then a · x1, . . . , a · xd generate a minimal reduction of I. Now, since

T := R[x2/x1, . . . , xd/x1]mR[x2/x1,...,xd/x1]

= R[a · x2/a · x1, . . . , a · xd/a · x1]mR[a·x2/a·x1,...,a·xd/a·x1],

Corollary 3.3 implies that νm(I) = νm(Q) and Vm(I) = Vm(Q). It follows from equa-
tion (3.4) that for each v ∈ νm(I), d(v, I) = d(v,Q). Thus, by Theorem 3.9

j(I) =
∑

v∈νm(I)

d(I, v) · v(I) (3.6)

=
∑

v∈νm(I)

d(I, v) · (v(a) + v(Q)) (3.7)

=
∑

v∈νm(Q)

d(Q, v) · v(a) +
∑

v∈νm(Q)

d(Q, v) · v(Q). (3.8)
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But for x ∈ R, the degree function dQ(x) is, by definition, e((Q+ (x))/(x)). Thus by
formula (1.1), the first term on the right in (3.8) is the multiplicity of the image of Q in
R/(a), while, by [14, Theorem 3.9], the second term on the right is just j(Q) = e(Q),
which completes the proof. �

Our final corollary is an amusing application of the description of d(I, v) given
in (3.4). For the sake of clarity, we just state it for local domains.

Corollary 3.13

Let (R,m) be a quasi-unmixed local domain. Then R is analytically unramified
if and only if for some (respectively, for every) system of parameters x1, . . . , xd,

e(I) =
∑

v∈νm(I)

[k(mv) : k(mT )] · v(I),

where I is the ideal generated by x1, . . . , xd and T is the one dimensional local domain
derived from the xi.

Proof. Since R is quasi-unmixed, `(I · R̂/z) = d, for all minimal primes z ⊆ R̂. The
result now follows from Theorem 3.9, equation (3.4), and the definiton of aw(v), since
R is analytically unramified if and only if aw(v) = 1 for all v. �

Remark 3.14 As one might expect, j-multiplicity lends itself to geometric interpre-
tation. Some of the associated geometric ideas can be found in the original work of
Achilles and Manaresi (see [1, 2]).

4. A limit superior multiplicity

In this section we wish to discuss the limsup-derived multiplicity mentioned in the
introduction and derive a few of its basic properties. Our main result uses Rees val-
uations to show that this multiplicity is non-zero whenever the ideal in question has
maximal analytic spread. We also show that this multiplicity can be used to give a
Rees-type result for arbitrary ideals in a locally quasi-unmixed Noetherian ring. This
latter result is sort of a hybrid between the original result of Rees and the Flenner-
Manaresi version given in [5] using j-multiplicity. We begin by observing that the
limsup in question exists.

Observation 4.1 Let (R,m) be a local ring of dimension d and I ⊆ R an ideal. Then

lim sup
n

d !

nd
· λ(Γm(R/In)),

exists and is a finite real number.

Proof. For each n we have R ⊃ I ⊃ I2 ⊃ · · · ⊃ In. Since the zero-th local cohomology
functor is left exact, if we apply Γm to the quotients in this filtration, we only get
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subadditivity of the corresponding lengths. Thus,

λR(Γm(R/In)) ≤
n−1∑
i=0

λR(Γm(Ii/Ii+1)).

If we now think of the term on the right in the expression above as a function of n, then
it is ultimately just the sum transform of the Hilbert polynomial giving the lengths of
the graded components of Γm(GI(R)). In other words,

lim
n→∞

d !

nd
·
n−1∑
i=0

λR(Γm(Ii/Ii+1)) = j(I) <∞.

It follows immediately from this that the terms in our sequence are bounded, so the
required limsup exists and is finite. �

It is an open question whether or not in an arbitrary local ring the limit of the
sequence in Observation 4.1 exists. In [4, 3], and [7] this limit is shown to exist in
many special cases. In particular, in [4] it is shown to exist for graded ideals in a
finitely generated standard graded algebra of depth greater than one over a field of
characteristic zero. Moreover, in that same paper it is shown that the limit need not
be a rational number. Nevertheless, we make the following definition.

Definition 4.2 Let (R,m) be a local ring of dimension d and I ⊆ R an ideal. We set

ε(I) := lim sup
n

d !

nd
· λ(Γm(R/In)).

We call ε(I) the ε-multiplicity of I.

Remark 4.3 Suppose that R is a local domain and I := a·Q, for some m-primary ideal
Q and 0 6= a ∈ R. If we assume depth(R) ≥ 2, then it is easy to see that Γm(R/In)
is isomorphic to R/Qn, so that ε(I) = e(Q). Comparing this with the statement of
Corollary 3.12, we see that the difference between j(I) and ε(I) can be made arbitrarily
large.

The first property of ε-multiplicity we wish to verify is that it is an invariant up
to integral closure. The next proposition accomplishes this.

Proposition 4.4

Let (R,m) be a local ring and I, J ⊆ R two ideals with the same integral closure.
Then ε(I) = ε(J). Moreover, given the sequences{ d!

nd
· λ(Γm(R/In))

}
n

and
{ d!

nd
· λ(Γm(R/Jn))

}
n
,

the limit of the first sequence exists if and only if the limit of the second sequence
exists.
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Proof. Both statements in the lemma clearly reduce to the case that J ⊆ I are ideals
and J is a reduction of I. Assuming this, take h > 0 so that In+h = JnIh for all
n > 0. From the exact sequence 0→ In/Jn → R/Jn → R/In → 0 and subadditivity,
we obtain

λ(Γm(R/Jn)) ≤ λ(Γm(R/In)) + λ(Γm(In/Jn)), (4.1)

for all n. If we show that limn
d!
nd ·λ(Γm(In/Jn)) = 0, then it follows immediately that

ε(J) ≤ ε(I). To see this, note that λ(Γm(In/Jn)) ≤ λ(Γm(Jn−h/Jn)), for all n ≥ h.
But

⊕
n≥h Γm(Jn−h/Jn) is a finite graded RJ/t−h · RJ -module. Thus, its Hilbert

polynomial has degree less than d, so

lim
n→∞

d!

nd
· λ(Γm(In/Jn)) = 0, (4.2)

as required.
To see that ε(I) ≤ ε(J), we follow a similar path, starting with the exact sequences

0→ Jn−h/In → R/In → R/Jn−h → 0. Applying Γm(−) as before, we get

λ(Γm(R/In)) ≤ λ(Γm(R/Jn−h)) + λ(Γm(Jn−h/In)), (4.3)

for all n ≥ h. Since λ(Γm(Jn−h/In)) ≤ λ(Γm(In−h/In)) and the dimension of the
RI/t−h · RI -module

⊕
n≥h Γm(In−h/In) is at most d,

lim
n→∞

d!

(n− h)d
· λ(Γm(Jn−h/In)) = 0. (4.4)

Moreover, since

lim sup
n

d!

(n− h)d
· λ(Γm(R/In)) = lim sup

n

d!

nd
· λ(Γm(R/In)),

it follows immediately from (4.3) that ε(I) ≤ ε(J), and the proof of the first statement
is complete.

For the second statement, assume that the sequence { d!
nd · λ(Γm(R/Jn))}n has a

limit. Combining the expressions (4.1) and (4.3) we get

λ(Γm(R/Jn)) ≤ λ(Γm(R/In)) + λ(Γm(In/Jn))

≤ λ(Γm(R/Jn−h)) + λ(Γm(Jn−h/In)) + λ(Γm(In/Jn)).

If we now multiply by d!/nd and take the limit as n goes to infinity, it follows from
equations (4.2) and (4.4) that the limit

lim
n→∞

d!

nd
· λ(Γm(R/In))

exists and agrees with limn→∞
d!
nd ·λ(Γm(R/Jn)). The reverse implication in the second

statement follows along similar lines. �

We now turn to showing that for an ideal I ⊆ R, the ε-multiplicity of I is non-zero
if and only if I has maximal analytic spread. To do this, we need to generalize a key
lemma from [16]. To elaborate, in [16, Lemma 4.4], it is shown that if (R,m) is a
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quasi-unmixed local ring of dimension two and v is an m-valuation of R, then there
exists a real (rational) number δ > 0 such that λ(R/an) ≥ δ · n2, for all n ≥ 1, where
an denotes the set of x ∈ R with v(x) ≥ n. It turns out that essentially the same proof
works for arbitrary local rings. The lemma below applies to any m-valuation, since
any m-valuation is a Rees valuation of an m-primary ideal. However, we have phrased
the lemma in such a way that it serves our present purposes.

Lemma 4.5 ([16, c.f. Lemma 4.4])

Let (R,m) be a local ring with infinite residue field and I ⊆ R an ideal with
maximal analytic spread. Take v ∈ νm(I). For each n ≥ 1, let an denote the set of
elements x ∈ R such that v(x) ≥ n (so that an is an m-primary ideal). Then there
exists a real number δ > 0 such that λ(R/an) ≥ δ · nd, for all n ≥ 1.

Proof. Let q ⊆ R be the minimal prime such that v is a valuation on the quotient field
of R/q, and thus `(I) = `(I ·R/q). Since an is the inverse image in R of the elements
in R/q with value greater than or equal to n under v, we may clearly replace R by R/q
and assume that R is an integral domain. (Recall that q is the set of elements in R
that receive the value∞ under v.) Thus, if we let x1, . . . , xd be minimal generators for
a minimal reduction of I and V be the Rees valuation ring corresponding to v, then
V is an essential valuation ring of T := R[x2/x1, . . . , xd/x1]mR[x2/x2,...,xd/x1].

To find δ, note that m · an ⊆ an+1, so that an/an+1 is a vector space over k for all
n. Set v(x1) := a and recall that the images of the xi/x1 in k(mV ) are algebraically
independent over k. We now claim that for all r, the images in aar/aar+1 of the
monomials of degree r in x1, . . . , xd are linearly independent over k. To see this, suppose
that F̃ is a homogeneous polynomial of degree r with coefficients in k such that the
image of F̃ evaluated at the xi in aar/aar+1 is zero. Then, writing F for a pre-image
of F̃ with coefficients in R, we have F (x) ∈ mar+1

V . Thus, xr1 · F (1, x2/x1, . . . , xd/x1)
belongs to mar+1

V , so F (1, x2/x1, . . . , xd/x1) ∈ mV . Thus F̃ (1, x2/x1, . . . , xd/x1) = 0
in k(mV ). Therefore, the coefficients of F̃ are zero, which is what we want. It follows
that λ(aar/aar+1) ≥

(
r+d−1
d−1

)
. Now let n be a positive integer. Then there is a greatest

integer r such that ar + 1 ≤ n. Thus

λ(R/an) ≥ λ(R/a1) + λ(aa/aa+1) + · · ·+ λ(aar/aar+1)

≥ 1 +
(
d
1

)
+ · · ·+

(
d+r−1
d−1

)
=
(
d+r
d

)
.

Hence,

λ(R/an) ≥ 1

d!
(r + 1) · · · (r + d) ≥ 1

d! · ad
(ar + a) · · · (ar + ad) ≥ 1

d! · ad
nd.

So, we may take δ := (d! · ad)−1, and this completes the proof of the lemma. �

The following proposition was inspired by the [16, proof of Theorem 4.5].

Proposition 4.6

Let (R,m) be a local ring and I ⊆ R an ideal with maximal analytic spread. Let

x ∈ R be such that there exists V ∈ Vm(I) with x 6∈ IV , yet x ∈ IP , for all prime
ideals P 6= m. Then there exists a real number γ > 0 such that λ(R/(In : xn)) ≥ γ ·nd,
for all n > 0.
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Proof. We first reduce to the case that R is a local domain. Let q ⊆ R be the
minimal prime such that V is a valuation ring in the quotient field of R/q. Then, for
B := R/q, `(IB) = d and V ∈ Vm(IB), by definition of Vm(I). Furthermore, x 6∈ IV
and x ∈ IBP , for all prime ideals P in B not equal to mB. Thus, the hypotheses of
the proposition carry over to B. Moreover,

λ(R/(In : xn)) ≥ λ(B/(InB :B xn)),

for all n > 0, so that it suffices to prove the existence of a real number δ > 0 with

λ(B/(InB :B xn)) ≥ δ · nd,

for all n > 0. Thus we may replace R by B, change notation, and begin again assuming
that R is a local domain. Invoking the usual base change, we may further assume that k
is infinite.

Now let v be the valuation on the quotient field of R corresponding to V . Take
integers 0 < b < a, such that v(x) = b and v(I) = a and set τ := a− b. Then for any
n > 0 and r ∈ (In : xn), r · xn ∈ InV , so v(r) ≥ τ · n. If we now set an to be the set
of elements y ∈ R with v(y) ≥ n, then we have that (In : xn) ⊆ aτ ·n, for all n. Thus,
λ(R/(In : xn)) ≥ λ(R/aτ ·n), for all n. It follows from Lemma 4.5 that there exists a
real number δ > 0, so that λ(R/an) ≥ δ · nd, for all n. We then have that

λ(R/(In : xn)) ≥ δ · (τn)d,

and it follows from this that we may take γ := δ · τd. In fact, from the proof of

Lemma 4.5, γ = (a−b)d
d!·ad . �

We can now give a proof of the non-vanishing of ε-multiplicity.

Theorem 4.7

Let (R,m) be a local ring and I ⊆ R an ideal. Then ε(I) 6= 0 if and only if I has
maximal analytic spread.

Proof. Without loss of generality, we may assume that R has an infinite residue field.
It follows from the proof of Observation 4.1 that ε(I) ≤ j(I). Thus, if ε(I) 6= 0, then
j(I) 6= 0, so `(I) = d. Conversely, suppose that `(I) = d. Then, by Proposition 3.1,
Vm(I) is not empty. Take V ∈ Vm(I). If V is the only Rees valuation ring of I, then I
is an m-primary ideal and clearly ε(I) = e(I) is non-zero. Thus, we may assume that V
is not the only Rees valuation ring of I. Let V, V2, . . . , Vr denote the Rees valuation
rings of I. By the irredundancy of Rees valuations ([17, Chapter 10]), there exists
c ≥ 1 such that

Ic 6= (IcV2 ∩R) ∩ · · · ∩ (IcVr ∩R).

Now, on the one hand, the sequence { d!
(cn)d

· λ(Γm(R/Icn))} is a subsequence of the

sequence { d!
nd · λ(Γm(R/In))}, so the limsup associated to the subsequence is less than

or equal to the limsup of the entire sequence. If the former is not zero, then the latter
is not zero. On the other hand, `(Ic) = `(I) and Ic and I have the same Rees valuation
rings. Thus, after replacing I by Ic and changing notation, we may assume that

I 6= (IV2 ∩R) ∩ · · · ∩ (IVr ∩R).
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Now, take x ∈ (IV2 ∩R)∩ · · · ∩ (IVr ∩R)\(IV ∩R). Then, x ∈ IP , for all primes
P 6= m. Since `(I) = `(I) = d and ε(I) = ε(I) (by Proposition 4.4), we may replace I
by I and assume that x ∈ IP , for all prime ideals P 6= m. Thus, for each n, the module
(xn, In)/In has finite length and is contained in Γm(R/In). Therefore it suffices to
show that

lim sup
n

d!

nd
· λ((xn, In)/In) > 0.

Let q ⊆ R be the minimal prime ideal such that V is contained in k(q). Then the
hypotheses on x, I and R carry over to B := R/q. Since

lim sup
n

d!

nd
· λ((xn, In)/In) ≥ lim sup

n

d!

nd
· λ((xn, In)B/InB),

we may reduce to the case that R is a local domain. But now, since x is a non-
zerodivisor, (xn, In)/In is isomorphic to R/(In : xn), for all n ≥ 1. By Proposition 4.6

there exists a real number γ := (a−b)d
d!·ad > 0 such λ(R/(In : xn)) ≥ γ ·nd, for all n, where

a := v(I) and b := v(x). It follows that λ((xn, In)/In) ≥ γ · nd for all n. Therefore,

lim sup
n

d!

nd
· λ((xn, In)/In) ≥ d! · γ =

(a− b)d

ad
> 0,

and the proof of the theorem is complete. �

We close this section with an ε-multiplicity test for equality of integral closure
that can be thought of as a hybrid of the Rees multiplicity theorem with the Flenner-
Manaresi theorem for j-multiplicity (see [5]). As we shall see, our theorem is in some
sense a formal consequence of [13, Theorem 2.1]. We would also like to point out that
in the theorem below, we only need to check equality of ε-multiplicity locally at finitely
many prime ideals (c.f. [18]).

Theorem 4.8

Let R be a locally quasi-unmixed Noetherian ring and J ⊆ I ⊆ R ideals. Then
the following statements are equivalent.

(i) J is a reduction of I.
(ii) ε(JP ) = ε(IP ), for all prime ideals P ⊆ R.
(iii) ε(JP ) = ε(IP ), for all prime ideals P ∈ Ass(R/J).

Proof. If J is a reduction of I, then by Proposition 4.4, ε(JP ) = ε(IP ) holds for all P .
Thus, (i) implies (ii). Clearly, (ii) implies (iii).

To see that (iii) implies (i), we first note that we may assume that (R,m) is a
quasi-unmixed local ring. We now proceed by induction on d = dim(R). When d = 0,
there is nothing to prove. Suppose d > 0. By induction, J is a reduction of I locally
on the punctured spectrum of R. Now, if m 6∈ Ass(R/J), then in fact we have that
J is already a reduction of I. Thus, we may assume m ∈ Ass(R/J), and therefore
ε(J) = ε(I). Using Proposition 4.4, we may replace J by J ∩ I and further assume
that I is equal to J locally on the punctured spectrum of R. Now consider the following
short exact sequence,

0→ In/Jn → R/Jn → R/In → 0.
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Since In/Jn has finite length, the sequence above remains exact after applying the
zero-th local cohomology functor. Thus, taking lengths, we obtain

λR(Γm(R/Jn)) = λR(Γm(R/In)) + λR(In/Jn).

If we multiply by d!/nd and take the limsup, then, since ε(I) = ε(J), we see that the
polynomial giving the lengths λR(In/Jn) must have degree less than d. Thus, I is
integral over J , by [13, Theorem 2.1]. �

Remark 4.9 We make two comments concerning Theorem 4.8. The first is that since
R is locally quasi-unmixed, a prime ideal P ⊆ R satisfies `(JP ) = dim(RP ) if and only
if for some n ≥ 1, P ∈ Ass(R/Jn) (see [9, Proposition 4.1]). Thus, in part (iii) of the
theorem we are potentially using a smaller set of primes than those at which locally J
has maximal analytic spread.

Our second comment is that using Proposition 4.6, we can quickly recover that
portion of [13, Theorem 2.1] used in the proof of Theorem 4.8. For simplicity, we
just do the case that R is an integral domain. In other words, we will show that if
J ⊆ I are ideals in a quasi-unmixed local domain with λ(I/J) < ∞ and P (n) is the
rational polynomial giving the lengths λ(In/Jn) for n large, then J is a reduction of I
if deg(P (n)) < d. To do this, suppose J is not a reduction of I. Let x be an element
of I that is not integral over J . Thus, x 6∈ JV , for some Rees valuation ring V of J .
Since x ∈ JP for all primes P 6= m, V must be centered on m. But R is quasi-unmixed,
so V ∈ Vm(J), by Corollary 3.3. Thus, we may apply Proposition 4.6 to conclude that
there exists a rational number γ > 0, such that λ(R/(Jn : xn)) ≥ γ · nd, for all n ≥ 1.
Since R/(Jn : xn) is isomorphic to a submodule of In/Jn, we have P (n) ≥ γ · nd for n
large. Thus, deg(P (n)) = d.

5. Appendix

Let (R,m) be a local ring with completion R̂. The purpose of this appendix is to
show that for any ideal I ⊆ R, there is a one-to-one correspondence between the Rees
valuation rings of I centered on m and the Rees valuation rings of IR̂ centered on mR̂.
This extends Proposition 3.4, in that we are no longer considering only those Rees
valuation rings whose corresponding valuations are m-valuations. Of course, if R is
quasi-unmixed, then every Rees valuation centered on m is an m-valuation, so that in
the quasi-unmixed case Theorem 5.3 is equivalent to Proposition 3.4.

A key point in our analysis is the following fundamental relation discovered by
Ratliff in [10], namely : If A is a local domain, then there is a height one maximal
ideal in the integral closure of A if and only if there is a minimal prime of dimension
one in the completion of A (see [10, Proposition 3.5]). In fact, it is this relation that is
the key to the proof of Ratliff’s celebrated result that a local domain is quasi-unmixed
if and only if it satisfies the dimension formula ([10, Theorem 3.1]).

We will need to refine [10, Proposition 3.5] as follows. If the local domain A has
the property that its completion has a minimal prime of dimension one, let B denote
the one dimensional local domain obtained by modding out this minimal prime. Then
the integral closure of B is a discrete valuation ring W . If V denotes the contraction
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of W to the quotient field of A, the following lemma will show that V is an essential
valuation ring of A.

Lemma 5.1

Let (A,m, k) be a local ring with completion Â.

(a) Suppose there exists a minimal prime q ⊆ A such that for C := A/q, there exists
a height one maximal ideal P ⊆ C. Set L := (C)P . Then there exists a minimal
prime z ⊆ Â such that z ∩ A = q and writing B := Â/z, dim(B) = 1, and for
M := B, M ∩ k(q) = L.

(b) Suppose there exists a minimal prime z ⊆ Â such that writing B := Â/z, M := B
is a discrete valuation ring. Then for L := M ∩ k(z ∩ A) and C := A/z ∩ A,
L = (C)mW∩C . In particular, L is an essential valuation ring of C.

Proof. Since the minimal primes in Â contracting to q correspond to the minimal
primes of Ĉ contracting to zero in C, for both (a) and (b) we may assume that A = C
is a local domain with quotient field K. To prove (a), let L := (A)P , where P ⊆ A
is a height one maximal ideal. Let I be any non-zero principal ideal in A. Then L is
a Rees valuation ring of I. By [17, Proposition 10.4.3], there exists a minimal prime
z ⊆ Â such that for B := Â/z, L = M ∩K, where M is a Rees valuation ring of IÂ
contained in k(z). Moreover, by the same proposition,

tr. deg.k k(mL) = dim(B)− 1.

Therefore, dim(B) = 1. Since B is a complete local domain, we must have M = B,
which is what we want.

To prove (b), first note that dim(B) = dim(Â/z) = 1. Let K̃ denote the total
quotient ring of Â. By [10, Lemma 2.17] and the proof of Theorem 3.1, there exists

c/b ∈ A\A with the following property. For D := A[c/b] and P̂0 ⊆ D̂ = Â[c/b], the
maximal ideal containing zK̃ ∩ D̂, zK̃ ∩ D̂ is the only minimal prime ideal contained
in P̂0. Thus, height(P̂o) = 1. As in the proof of [10, Theorem 3.1], P̂0 = P0 · D̂, for
some height one maximal ideal P0 ⊆ D.

Let z = z1, . . . , zt be the minimal primes of Â, set Bi := Â/zi and write E for Â
modulo its nilradical, N . Then writing Ã for the integral closure of Â we have,

Ã/J ⊆ E = B1 ⊕ · · · ⊕Bt = M ⊕B2 ⊕ · · · ⊕Bt,

for J := NK̃ ∩ Ã. Let m′ ⊆ Ã be the maximal ideal such that m′/J is the contraction

to Ã/J of the maximal ideal in E corresponding to mM . Thus, m′ ∩ D̂ = P̂0, since
D̂/zK̃ ∩ D̂ is an integral extension of B and is therefore local. It follows that

P0 = m′ ∩D = (m′ ∩A) ∩D.

Thus, m′∩A lies over P0, so that m′∩A has height one. By construction, the maximal
ideal of B = M lies over m′ ∩ A. Therefore, L := Am′∩A ⊆ M . Since L is a discrete
valuation ring, L = M ∩K, which completes the proof. �

Remark 5.2 Before stating the main theorem of this section, we make a comment
about minimal reductions. Suppose R is a local ring and I ⊆ R is an ideal such that
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`(I) = s ≥ 1. Suppose that for some minimal prime z ⊆ R̂ and B := R̂/z, `(IB) =
e ≤ s. Then there exists n > 0 and a minimal reduction of In generated by x1, . . . , xs
such that the images of any e of the xi in B generate a minimal reduction of InB. If k
is infinite, then we can take n = 1. This follows since minimal reductions correspond
to homogeneous systems of parameters in fiber rings (see [17, Proposition 8.3.8 and
its proof]). In fact, if F denotes the fiber ring of R with respect to I and FB denotes
the fiber ring of B with respect to IB, then F maps onto FB. Thus, by prime
avoidance, one may choose a homogeneous system of parameters of length s for F
such that the images of any e of these elements in FB form a homogeneous system
of parameters. One then adjusts the degrees of the elements so that they all have
degree n for some n. When k is infinite, one can take n = 1, as in the standard form
of Noether Normalization.

We are now ready for a version of Proposition 3.4 for Rees valuations centered
on m that are not necessarily m-valuations. We state it in global form.

Theorem 5.3

Let R be a Noetherian ring an I ⊆ R an ideal. For a prime ideal P containing I,

let ṼP (I) denote the Rees valuation rings of I centered on P and ṼP (IR̂P ) denote the

Rees valuation rings of IR̂P centered on PR̂P .

(a) Take V ∈ ṼP (I) and write q for the corresponding minimal prime. Then there

exists a minimal prime z ⊆ R̂P with z ∩R = q such that V = W ∩ k(q) for some

W ∈ ṼP (IR̂P ) contained in k(z).

(b) Take W ∈ ṼP (IR̂P ) and write z for the corresponding minimal prime. Then
V := W ∩ k(z ∩R) ∈ ṼP (I).

Moreover, the correspondence from ṼP (I) to ṼP (IR̂P ) determined by (a) is a
one-to-one, onto function of sets.

Proof. We may clearly assume that R is local and P = m. Assuming that (a) and (b)
hold, the proof that the correspondence from Ṽm(I) to Ṽm(IR̂) determined by (a)
is a one-to-one onto function is exactly the same as the one given in the proof of
Proposition 3.4. Therefore, we only need to prove statements (a) and (b). However,
since (a) follows immediately from [17, Theorem 10.4.3], we only need to prove state-
ment (b).

To prove (b), take W ∈ Ṽm(IR̂) and assume that W is contained in k(z), for some
minimal prime z ⊆ R̂. As before, we may replace R by R/z ∩ R, change notation,
and assume that R is a local domain with quotient field K. Write B := R̂/z and set
s := `(I) and e := `(IB). Since for all n ≥ 1, Ṽm(I) = Ṽm(In) and Ṽm(IR̂) = Ṽm(InR̂),
we may, by Remark 5.2, replace I by In, for a suitable n, change notation, and assume
that there exist x1, . . . , xs in I generating a minimal reduction of I such that the
images of any e of these elements in B generate a minimal reduction of IB.

We first note that since B is quasi-unmixed and W is a Rees valuation ring of IB
centered on m, then e = `(IB) = dim(B) (see for example, [17, Theorem 10.4.2]).
Thus, IB is an ideal with maximal analytic spread. Temporarily take any subset
xi1 , . . . , xie of the elements x1, . . . , xs. By Corollary 3.3, W is an essential valuation
ring of TB, where TB is our standard one dimensional local domain derived from the
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images of xi1 , . . . , xie in B. In particular, if w is the Rees valuation associated to W ,
then since xijTB = ITB, w(xij ) = w(I), for all 1 ≤ j ≤ e. Therefore w(xi) = w(I), for
all 1 ≤ i ≤ s.

Now fix x1, . . . , xe and let TB denote the one dimensional ring derived from the
images of these elements in B. Set U := R[x2/x1, . . . , xe/x1]mR[x2/x1,...,xe/x1]. Note that
U is a local domain, but U does not have dimension one unless e = d. Let U

R̂
be the

local ring derived in the same manner over R̂ from x1, . . . , xe. Let K̃ denote the total
quotient ring of R̂. Then, since the images of the xi in B are analytically independent
in mB, TB = U

R̂
/zK̃∩U

R̂
. Thus, zK̃∩U

R̂
is a minimal prime of dimension one in U

R̂
.

Therefore, Û
R̂

has a minimal prime of dimension one. Note that since Û
R̂

= Û (see [11,
Lemma 3.2]), it follows that the local domain U has a minimal prime of dimension one
in its completion.

Now, by part (a) of Lemma 5.1 with q := zK̃ ∩ U
R̂

, A := U
R̂

and L := W , there

exists a minimal prime z1 ⊆ ÛR̂ = Û with dim(Û/z1) = 1 such that

z1 ∩ UR̂ = zK̃ ∩ U
R̂

and M ∩ k(zK̃ ∩ U
R̂

) = M ∩ k(z) = W,

where M denotes the integral closure of Û/z1. By part (b) of Lemma 5.1,

V := M ∩ k(z1 ∩ U) = M ∩K = W ∩K

is an essential valuation ring of U . In particular, V = (U)Q, for Q = mW ∩ U .
Finally, from the last sentence in the third paragraph of this proof, we have that

w(xi) = w(I) for all 1 ≤ i ≤ s, so that x2/x1, . . . , xs/x1 ∈W ∩K = V . Let S be the R
algebra generated by these fractions. Then V is a localization of the integral closure of
a finitely generated S-algebra. If we show that tr. deg.k(mV ∩S) k(mV ) = 0, then by [9,

Lemma 3.1], height(mV ∩ S) = 1. It follows that V = (S)mV ∩S and therefore V is a

Rees valuation ring of I. Since V is centered on m , V ∈ Ṽm(I), which is what we
want.

To see that tr.deg.k(mV ∩S) k(mV ) = 0, note that we have U ⊆ SmV ∩S ⊆ V , since
V is an essential valuation ring of U . Moreover, tr. deg.k(mU) k(mV ) = 0 and therefore
tr. deg.k(mV ∩S) k(mV ) = 0. This completes the proof of the theorem. �

Remark 5.4 In Remark 3.5 we noted that the one-to-one correspondence between the

elements of Vm(I) and Vm(IR̂) are ‘parameterized’ by the minimal primes z ⊆ R̂ for
which `(I ·R̂/z) = d. The proof of Theorem 5.3 shows that the correspondence between
Ṽm(I) and Ṽm(IR̂) is parameterized in the same way by the minimal primes z ⊆ R̂ with
`(I · R̂/z) = dim(R̂/z). To elaborate, let 1 ≤ d1 < · · · < dr be the dimensions of the
rings of the form R̂/z, where z ⊆ R̂ is a minimal prime with `(I ·R̂/z) = dim(R̂/z). List
these minimal primes as {zi,j} with 1 ≤ i ≤ r and 1 ≤ j ≤ hi, where di := dim(R̂/zi,j)

for all i and j. Set Bi,j := R̂/zi,j for all i and j. Then we may write the elements in

Ṽm(I) and Ṽm(IR̂) in the form Ṽm(I) = {V l
i,j} and Ṽm(IR̂) = {W l

i,j} with 1 ≤ l ≤ ti,j
so that each W l

i,j is contained in k(zi,j) and V l
i,j = W l

i,j ∩ k(zi,j ∩R), for all i, j and l.
Note that for fixed i, j, l we have

di = dim(Bi,j) = `(IBi,j) = tr.deg.k k(mW l
i,j

) = tr. deg.k(mV l
i,j

).
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Thus, the correspondence between Ṽm(I) and Ṽm(IR̂) for i fixed can be visualized as

W 1
i,1

BB
BB

BB
BB

· · · W
ti,1
i,1

zz
zz

zz
zz

· · · W 1
i,hi

EEEEEEEE
· · · W

ti,hi
i,hi

xxxxxxxx

zi,1 · · · zi,hi

V 1
i,1

||||||||
· · · V

ti,1
i,1

DDDDDDDD

· · · V 1
i,hi

yyyyyyyy
· · · V

ti,hi
i,hi

FFFFFFFF

where zi,1, . . . , zi,hi are the minimal primes for which dim(R̂/zi,j)) = di. Moreover,
there is one such diagram for each 1 ≤ i ≤ r.
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