
Collect. Math. 60, 3 (2009), 297–306
c© 2009 Universitat de Barcelona

On an inequality of Sagher and Zhou concerning Stein’s lemma

Marco Annoni and Loukas Grafakos

Department of Mathematics, University of Missouri

Columbia, MO 65211, USA

E-mail: annoni@math.missouri.edu loukas@math.missouri.edu

Petr Honźık

Institute of Mathematics, AS CR, Žitná 25
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Abstract

We provide two alternative proofs of the following formulation of Stein’s lemma
obtained by Sagher and Zhou [6]: there exists a constant A > 0 such that for
any measurable set E ⊂ [0, 1], |E| 6= 0, there is an integer N that depends
only on E such that for any square-summable real-valued sequence {ck}∞k=0 we
have:

A ·
∑
k>N

|ck|2 ≤ sup
I

inf
a∈R

1
|I|

∫
I∩E

|f(t)− a|2 dt , (1)

where the supremum is taken over all dyadic intervals I and

f(t) =
∞∑

k=0

ckrk(t) ,

where rk denotes the kth Rademacher function. The first proof does not rely
on Khintchine’s inequality while the second is succinct and applies to general
lacunary Walsh series.
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1. Introduction

The jth Rademacher function rj on [0, 1), j = 0, 1, 2, . . . , is defined as follows: r0 = 1,
r1 = 1 on [0, 1/2) and r1 = −1 on [1/2, 1), r2 = 1 on [0, 1/4) ∪ [1/2, 3/4) and r2 = −1
on [1/4, 1/2) ∪ [3/4, 1), etc.

The following is a classical result that can be found in Zygmund [10, page 213]:
For every subset E of [0, 1] and every λ > 1, there is a positive integer N such that for
all complex-valued square-summable sequences {aj} we have∑

j≥N

|aj |2 ≤ λ sup
t∈E

∣∣∣ ∑
j≥N

ajrj(t)
∣∣∣2 . (2)

A related version of this inequality is contained in Lemma 2 of Stein [9, page 147]:
For every subset E of [0, 1] there is a positive integer NE and a constant CE such that
for all complex-valued square-summable sequences {aj} we have∑

j≥NE

|aj |2 ≤ CE sup
t∈E

∣∣∣ ∑
j≥0

ajrj(t)
∣∣∣2 . (3)

Estimate (3) has been referred to in the literature as Stein’s lemma and has been found
to be a useful tool in applications concerning almost everywhere convergence, see for
instance [1, 9, 7]. Unpublished versions of Stein’s lemma have been independently
obtained by several authors, including D. Burkholder A.M. Garsia, R.F. Gundy, P.A.
Meyer, S. Sawyer, and G. Weiss (c.f. [2, 3]). A version of this lemma in the context of
independent sequences of random variables with very good control of the constants has
been published by Burkholder [2]. Other authors have published related results. Sagher
and Zhou [4] published a version of inequality (2) in which the supremum is replaced
by the Lp average over E. In [5] the same authors proved analogous inequalities for
lacunary series. Carefoot and Flett [3] have obtained a version of inequality (3) in
which the `2 norm on the left is replaced by a supremum of truncated `1 norms.
Recently, Slavin and Volberg [8] have obtained a profound local version of the Chang-
Wilson-Wolff inequality which may be thought as analogous to the aforementioned
local versions of Khintchine’s inequality.

The crux of Stein’s lemma is beautifully captured by the following local inequality
of Sagher and Zhou [6]: there exists a constant A > 0 such that for any measurable
set E ⊂ [0, 1], |E| 6= 0, and any q-lacunary sequence K, 1 < q < ∞, there is an
integer N depending only on E and q such that for any real numbers {ck}k∈K with∑

k∈K |ck|2 < ∞, we have:

A ·
∑

k∈KN

|ck|2 ≤ sup
I

inf
a∈R

1
|I|

∫
I∩E

|f(t)− a|2 dt , (4)

where I is a dyadic interval,

f(t) =
∑
k∈K

ckwk(t),
∞∑

k=0

|ck|2 < ∞, KN = {k ∈ K : k ≥ 2N},

and wk’s are the Walsh functions in Paley’s order. Note that Rademacher series
are 2-lacunary Walsh series.
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In this article we focus attention on (1) and more generally on (4). In Section 2
we prove a stronger variant of (1) (without making use of Khintchine’s inequality).
In Section 3 we provide an alternative formulation of (4). This is proved in a quick
and efficient way that yields the optimal constant A = 1 − δ for any δ > 0; a careful
examination of the proof in [6] also yields A = 1− δ for any δ > 0.

2. First formulation

The following formulation slightly strengthens the inequality in (1):

Theorem 2.1

For every measurable subset E of [0, 1] with |E| > 0 and each λ > 1 there exists
a dyadic interval I ⊂ [0, 1] (depending on E and λ) such that for any real-valued
square-summable sequence {aj}∞j=0 there is a partition J1, J2 of I that only depends

on {aj}∞j=N such that |J1| = |J2| = 1
2 |I| and∑

j≥N+1

|aj |2 ≤ max
{

λ

|J1|

∫
J1∩E

∣∣∣ ∑
j≥0

ajrj(t)
∣∣∣2dt,

λ

|J2|

∫
J2∩E

∣∣∣ ∑
j≥0

ajrj(t)
∣∣∣2dt

}
, (5)

where N = − log2 |I|.

Naturally, estimate (5) implies (3) for real-valued sequences. It also yields (3)
with a constant CE independent of the set E; in fact, it follows from (5) that the
constant CE in (3) can be taken to be 1+ δ for real-valued sequences and CE = 2+2δ
for complex-valued sequences, for any δ > 0. Estimate (5) also implies (1). Indeed we
have

max
{

λ

|J1|

∫
J1∩E

∣∣∣ ∑
j≥0

ajrj(t)
∣∣∣2dt,

λ

|J2|

∫
J2∩E

∣∣∣ ∑
j≥0

ajrj(t)
∣∣∣2dt

}

=
2λ

|I|
max

{ ∫
J1∩E

∣∣∣ ∑
j≥0

ajrj(t)
∣∣∣2dt,

∫
J2∩E

∣∣∣ ∑
j≥0

ajrj(t)
∣∣∣2dt

}

≤ 2λ

|I|

∫
I∩E

∣∣∣ ∑
j≥0

ajrj(t)
∣∣∣2dt .

Since the interval I doesn’t depend on a0, replacing a0 by a0 − a yields∑
j≥N+1

|aj |2 ≤ inf
a

2λ

|I|

∫
I∩E

∣∣∣ ∑
j≥0

ajrj(t)− a
∣∣∣2dt ,

thus obtaining (4) with A = (2λ)−1.
To prove Theorem 2.1 we need the following two auxiliary results:

Lemma 2.2

For every square-summable complex sequence {aj}∞j=0 and every measurable sub-
set E ⊆ [0, 1] with positive measure, we have:∫

E

∣∣∣ ∑
j≥0

ajrj

∣∣∣2 ≤ (
|E|+

√
|E|

) ∫ 1

0

∣∣∣ ∑
j≥0

ajrj

∣∣∣2 .
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Proof. Expanding out the square on the left we obtain∫
E

∣∣∣ ∑
j≥0

ajrj

∣∣∣2 ≤ |E|
∞∑

j=0

|aj |2 +
∑
j 6=k

ajak

∫
E

rjrk dt

≤ |E|
∞∑

j=0

|aj |2 +
( ∑

j 6=k

|ajak|2
)1/2( ∑

j 6=k

∣∣∣ ∫
E

rjrk dt
∣∣∣2)1/2

≤ |E|
∞∑

j=0

|aj |2 +
( ∞∑

j=0

|aj |2
)( ∑

j 6=k

∣∣∣ ∫
E

rjrk dt
∣∣∣2)1/2

≤
(
|E|+

√
|E|

) ∞∑
j=0

|aj |2 ,

making use of the inequality ∑
k,`≥0
k 6=`

|〈f, rkr`〉|2 ≤ ‖f‖2
L2

for all f in L2[0, 1]. This completes the proof of the lemma since∫ 1

0

∣∣∣ ∑
j≥0

ajrj

∣∣∣2 =
∑
j≥0

|aj |2.

�

For a dyadic subinterval IN = [m2−N , (m + 1)2−N ) of [0, 1) and a real se-
quence {aj}j∈N define sets depending on {aj}

I++
N =

{
t ∈ IN :

∑
j≥N+1

ajrj(t) > 0
}
,

I−−N =
{
t ∈ IN :

∑
j≥N+1

ajrj(t) < 0
}
,

I0
N =

{
t ∈ IN :

∑
j≥N+1

ajrj(t) = 0
}
.

It is straightforward to check that the disjoint sets I++
N and I−−N have equal measure but

it may not be the case that their union is equal to IN . To arrange for this to happen,
we find disjoint subsets I0,+

N and I0,−
N of I0

N of equal measure whose union is I0
N and

we define I+
N = I++

N ∪ I0,+
N and I−N = I−−N ∪ I0,−

N Then we have I+
N ∪ I−N = IN and by

construction we have |I+
N | = |I−N | = |IN |/2. Moreover we have that

∑
j≥N+1 ajrj ≥ 0

on I+
N and

∑
j≥N+1 ajrj ≤ 0 on I−N . Next we have the following:

Lemma 2.3

For any real-valued square-summable sequence {aj}, for any positive integer N ,
for every dyadic interval IN ⊆ [0, 1) with |IN | = 2−N , and any measurable subset
E ⊆ [0, 1] satisfying

|Ec ∩ IN |
|IN |

+

√
|Ec ∩ IN |
|IN |

<
1
2
,
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we have ∫
IN

∣∣∣ ∑
j≥N+1

ajrj

∣∣∣2 ≤ 1(
1
2 −

|Ec∩IN |
|IN | −

√
|Ec∩IN |
|IN |

) ∫
I′N∩E

∣∣∣ ∑
j≥N+1

ajrj

∣∣∣2

where I ′N = I+
N or I ′N = I−N .

Proof. First take I ′N = I+
N . We write

∫
IN

∣∣∣ ∑
j≥N+1

ajrj

∣∣∣2 =
∫

I+
N∩E

∣∣∣ ∑
j≥N+1

ajrj

∣∣∣2 (6)

+
∫

I−N∩E

∣∣∣ ∑
j≥N+1

ajrj

∣∣∣2 +
∫

IN∩Ec

∣∣∣ ∑
j≥N+1

ajrj

∣∣∣2
and obviously we have∫

I−N∩E

∣∣∣ ∑
j≥N+1

ajrj

∣∣∣2 ≤ ∫
I−N

∣∣∣ ∑
j≥N+1

ajrj

∣∣∣2 . (7)

By the definition of I−N it follows that∫
I−N

∣∣∣ ∑
j≥N+1

ajrj

∣∣∣2 =
1
2

∫
IN

∣∣∣ ∑
j≥N+1

ajrj

∣∣∣2 . (8)

On the other hand, by a simple change of variables we get∫
IN∩Ec

∣∣∣ ∑
j≥N+1

ajrj

∣∣∣2 = |IN |
∫

F

∣∣∣ ∑
j≥1

rjaj+N

∣∣∣2 (9)

for some measurable subset F ⊆ [0, 1] with measure

|F | = |IN ∩ Ec|
|IN |

. (10)

By Lemma 2.2 we obtain

∫
F

∣∣∣∣ ∑
j≥1

rjaj+N

∣∣∣∣2 ≤ (
|F |+

√
|F |

) ∫ 1

0

∣∣∣ ∑
j≥1

rjaj+N

∣∣∣2
=

(
|F |+

√
|F |

) 1
|IN |

∫
IN

∣∣∣ ∑
j≥N+1

rjaj

∣∣∣2 . (11)

Combining (6), (7), and (8) we deduce

1
2

∫
IN

∣∣∣ ∑
j≥N+1

ajrj

∣∣∣2 ≤ ∫
I+
N∩E

∣∣∣ ∑
j≥N+1

ajrj

∣∣∣2 +
∫

IN∩Ec

∣∣∣ ∑
j≥N+1

ajrj

∣∣∣2 .
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This estimate together with (9), (11), and (10) yields

(
1
2
− |IN ∩ Ec|

|IN |
−

√
|IN ∩ Ec|
|IN |

)∫
IN

∣∣∣ ∑
j≥N+1

ajrj

∣∣∣2≤∫
I+
N∩E

∣∣∣ ∑
j≥N+1

ajrj

∣∣∣2

proving the required estimate with I ′N = I+
N . Obviously, we may interchange the roles

of I+
N and I+

N and the claimed result follows. �

Having completed all the preliminary material, we now give the proof of Theo-
rem 2.1.

Proof. Given λ > 1, pick an ε > 0 small enough such that

0 <
1

1/2− ε−
√

ε
< 2λ .

By standard measure theory, for every measurable subset E ⊆ [0, 1] there exists a
dyadic subinterval IN of [0, 1] of size 2−N such that

|IN ∩ Ec|
|IN |

< ε .

Since {rj}j∈N is an orthogonal system in L2([0, 1]), by a change of variables we obtain

∑
j≥N+1

|aj |2 =
1
|IN |

∫
IN

∣∣∣ ∑
j≥N+1

ajrj

∣∣∣2
and an application of Lemma 2.3 gives

∑
j≥N+1

|aj |2 ≤
1
|IN |

1
(1/2− ε−

√
ε)

∫
I′N∩E

∣∣∣ ∑
j≥N+1

ajrj

∣∣∣2 (12)

where I ′N = I+
N or I ′N = I−N .

The important observation is that the functions rj , j = 0, 1, . . . , N are constant
on IN . This implies that for any choice of a0, . . . , aN , the sum

∑N
j=0 ajrj is a real-valued

constant on IN . We may first assume that

N∑
j=0

ajrj > 0 on IN .

Then we have

∣∣∣ ∞∑
j=N+1

ajrj

∣∣∣ =
∞∑

j=N+1

ajrj ≤
∞∑

j=0

ajrj =
∣∣∣ ∞∑
j=0

ajrj

∣∣∣ on I+
N .

Choosing I ′N = I+
N in (12) we write
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∑
j≥N+1

|aj |2 ≤
1
|IN |

1
(1/2− ε−

√
ε)

∫
I+
N∩E

∣∣∣ ∑
j≥N+1

ajrj

∣∣∣2
≤ 1

|IN |
1

(1/2− ε−
√

ε)

∫
I+
N∩E

∣∣∣ ∑
j≥0

ajrj

∣∣∣2
≤ 2λ

|IN |

∫
I+
N∩E

∣∣∣ ∑
j≥0

ajrj

∣∣∣2
=

λ

|J1|

∫
J1∩E

∣∣∣ ∑
j≥0

ajrj

∣∣∣2

where J1 = I+
N . We argue likewise when

∑N
j=0 ajrj is a negative constant on IN , in

which case we pick J2 = I−N . The claim of the theorem is proved with I = IN , J1 = I+
N ,

and J2 = I−N . �

3. Second formulation

Given a dyadic interval I ⊂ [0, 1], there is an integer N ≥ 0 and m ∈ {0, 1, ..., 2N − 1}
such that I = [m · 2−N , (m + 1) · 2−N ). In particular, |I| = 2−N . Define a function
f ∈ L2([0, 1]) via the Rademacher series:

f(t) =
∞∑

k=0

akrk(t)

for some sequence {ak}k∈N ∈ `2(N). For every k ≤ N , rk is constant on I; we de-
note this constant by rk(I). Furthermore, as {rk}∞k=N is an orthonormal system on
L2

(
I, dt

|I|
)
, we have that

1
|I|

∫
I

∣∣∣ ∞∑
k=N

bkrk(t)
∣∣∣2 dt =

∞∑
k=N

|bk|2 .

So, we have the following identities:

1
|I|

∫
I
f(t) dt =

1
|I|

∫
I

∞∑
k=0

akrk(t) dt

=
1
|I|

∫
I

N∑
k=0

akrk(t) dt +
1
|I|

∫
I

∞∑
k=N+1

akrk(t) dt

=
N∑

k=0

akrk(I) +
1
|I|

∞∑
k=N+1

ak

∫
I
rk(t) dt

=
N∑

k=0

akrk(I)
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and

1
|I|

∫
I
|f(t)|2 dt =

1
|I|

∫
I

∣∣∣∣ N∑
k=0

akrk(t) +
∞∑

k=N+1

akrk(t)
∣∣∣∣2 dt

=
1
|I|

∫
I

∣∣∣∣ N∑
k=0

akrk(I) +
∞∑

k=N+1

akrk(t)
∣∣∣∣2 dt

=
( N∑

k=0

akrk(I)
)2

+
∞∑

k=N+1

|ak|2

=
(

1
|I|

∫
I
f(t) dt

)2

+
∞∑

k=N+1

|ak|2 .

Thus, one obtains

∞∑
k=N+1

|ak|2 =
1
|I|

∫
I
|f(t)|2 dt−

(
1
|I|

∫
I
f(t) dt

)2

=
1
|I|

∫
I

∣∣∣∣f(t)− 1
|I|

∫
I
f(s) ds

∣∣∣∣2dt .

(13)

We now state another general formulation of the inequality in (1).

Theorem 3.1

Given constants A > 1, B ≥ 1, a measurable set E ⊂ [0, 1) with |E| > 0, and
given a point x ∈ E of Lebesgue density for the characteristic function χE , there is a
dyadic subinterval I of [0, 1] containing x (and depending on A, B, and E) such that
for any function f in L2([0, 1]) satisfying(

1
|J |

∫
J
|f(t)|4 dt

)1/4

≤ B

(
1
|J |

∫
J
|f(t)|2 dt

)1/2

(14)

for every dyadic subinterval J of [0, 1], we have:

1
|I|

∫
I

∣∣∣∣f(t)
∣∣∣∣2 dt ≤ A

|I|

∫
I∩E

|f(t)|2 dt . (15)

Proof. The condition |E| > 0 guarantees that there exists a point x ∈ E of Lebesgue
density for the characteristic function χE . For any such point x, the Lebesgue differ-
entiation theorem yields

lim
n→∞

|Ec ∩ In|
|In|

= lim
n→∞

1− |E ∩ In|
|In|

= 1− lim
n→∞

1
|In|

∫
In

χE(t)dt

= 1− χE(x) = 0 ,

where each dyadic interval In is uniquely determined by the condition that it has
measure equal to 2−n and contains x; such intervals shrink to x and the Lebesgue
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differentiation theorem applies. As A > 1, there exists an n0 ∈ N such that:

|In0 ∩ Ec|
|In0 |

<

(
A− 1
A ·B2

)2

. (16)

Now we set I = In0 . We have:

1
|I|

∫
I
|f(t)|2dt =

1
|I|

∫
I∩E

|f(t)|2 dt +
1
|I|

∫
I∩Ec

|f(t)|2 dt

≤ 1
|I|

∫
I∩E

|f(t)|2 dt +

√
|Ec ∩ I|
|I|

(
1
|I|

∫
I
|f(t)|4dt

)1/2

≤ 1
|I|

∫
I∩E

|f(t)|2 dt +

√
|Ec ∩ I|
|I|

B2

|I|

∫
I
|f(t)|2 dt,

where we used the Cauchy-Schwarz inequality and the assumption on f . Solving for
1
|I|

∫
I |f(t)|2dt and recalling (16), we obtain:

1
|I|

∫
I
|f(t)|2 dt ≤ 1

1−
√
|I∩Ec|
|I| B2

1
|I|

∫
I∩E

|f(t)|2 dt

≤ A

|I|

∫
I∩E

|f(t)|2 dt . �

We end with some remarks. If f is a real-valued function, equation (15) obviously
implies:

1
|I|

∫
I
|f(t)|2 dt−

(
1
|I|

∫
I
f(t)dt

)2

≤ A

|I|

∫
I∩E

|f(t)|2 dt .

Thus, if f(t) =
∑∞

k=0 akrk(t) for some real-valued, square-summable sequence {ak}k∈N,
we use identity (13) to express the previous inequality as:

∞∑
k=N+1

|ak|2 ≤
A

|I|

∫
I∩E

|f(t)|2 dt ,

where N = − log2 |I|. Since the left-hand side of the preceding inequality doesn’t
depend on the coefficient a0 of the constant function r0, we may also write:

∞∑
k=N+1

|ak|2 ≤ inf
a0∈R

A

|I|

∫
I∩E

|f(t)− a0|2 dt .

This implies estimate (4) for the Rademacher series.
Next we indicate why Theorem 3.1 applies to lacunary Walsh series as well. In-

deed, the crucial point is to verify that (14) holds for a lacunary Walsh series f . Sagher
and Zhou [6, page 58] proved that

(
1
|J |

∫
J
|f(t)− fJ |pdt

)1/p

≤ B(p, q)
( ∑

k∈KN

|ck|2
)1/2

, (17)



306 Annoni, Grafakos, and Honźık

where f(t) =
∑

k∈K ckwk(t) is a q-lacunary Walsh series, {wk}∞k=0 is the Walsh system
in the Paley order, K is a q-lacunary sequence of natural numbers, N ∈ N, KN = {k ∈
K : k ≥ 2N}, J is a dyadic interval of length 2−N ,

∑
k∈K

|ck|2 < ∞ , fJ =
1
|J |

∫
J

f(t) dt , 0 < p < ∞ ,

and 1 < q < ∞. A version of (13) is easily shown to hold for (q-lacunary or not) Walsh
series f , i.e., ( ∑

k∈KN

|ck|2
)

=
1
|J |

∫
J

∣∣∣∣f(t)− fJ

∣∣∣∣2 dt . (18)

Combining (18) and (17) one obtains

(
1
|J |

∫
J
|f(t)|p dt

)1/p

≤ B(p, q)
(

1
|J |

∫
J

∣∣∣∣f(t)
∣∣∣∣2dt

)1/2

(19)

for every q-lacunary Walsh series f with mean value zero on J . Via the splitting f =
(f − fJ) + fJ , estimate (19) easily extends to all f , with some other constant B′(p, q).
Thus (14) holds for q-lacunary Walsh series and Theorem 3.1 also applies for them.

The second author would like to thank Nigel Kalton for some useful discussions
on this topic.
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