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46100 Burjassot-Valencia, (SPAIN)

E-mail: oscar.blasco@uv.es

T.A. Gillespie

School of Mathematics and Maxwell Institute for Mathematical Sciences

University of Edinburgh, Edinburgh EH9 3JZ, (SCOTLAND)

E-mail: t.a.gillespie@ed.ac.uk

Received August 7, 2008. Revised November 6, 2008

Abstract

It is shown that for 1 < p1, p2 < ∞, 1/p3 = 1/p1 + 1/p2, p3 ≥ 1 there
exists C1 (independent of n) such that

‖Rk(f, g)‖Lp3 (Rn) ≤ C1‖f‖Lp1 (Rn)‖g‖Lp2 (Rn)

where

Rk(f, g)(x) = bn lim
ε→0

∫
|y|>ε

f(x− y)g(x+ y)
yk

|y|n+1
dy,

and bn is chosen so that Rk has norm 1 as a bilinear map from L2(Rn) ×
L2(Rn) → L1(Rn). In the case p3 > 1 it is even shown that

∥∥∥( n∑
k=1

|Rk(f, g)|2
)1/2∥∥∥

Lp3 (Rn)
≤ C2‖f‖Lp1 (Rn)‖g‖Lp2 (Rn)

for some constant C2 independent of the dimension.
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1. Introduction

It is well known that the method of transference is a useful procedure for obtain-
ing norm estimates independent of the dimension for classical operators acting on
Lp(Rn, dx) (see for instance [1, 13, 14]) and even in the weighted situation (see for
instance [7, 8, 9]). The aim of this note is to combine the techniques and methods at
our disposal from the linear case (see [1, 6, 7, 18, 13]) and the “bilinear transference”
method, introduced in [4] (and extended in [2, 3]), to show the boundedness of certain
bilinear multipliers defined in Rn with the norm independent of the dimension n.

One particular case of interest in this note is the bilinear version of the classical
Riesz transforms on Rn, defined for 1 ≤ k ≤ n by

(Rkf)(x) = cn lim
ε→0

∫
ε<|y|<1/ε

f(x− y)
yk

|y|n+1
dy, k = 1, 2, ..., n (1)

where cn = Γ(n+1
2 )π−(n+1)/2, or equivalently, and more useful, by

(Rkf )̂(ξ) =
−iξk

(
∑n

j=1 ξ
2
j )1/2

f̂(ξ), k = 1, 2, ..., n (2)

where f̂(ξ) =
∫
Rn f(x)e−2πi〈x,ξ〉dx. These operators are known to satisfy, for

1 < p <∞, the estimate∥∥∥( n∑
k=1

|Rk(f)|2
)1/2∥∥∥

Lp(Rn)
≤ C‖f‖Lp(Rn) (3)

with a constant C independent of n.
The Riesz transforms are the basic examples of Calderón-Zygmund operators with

kernels which are odd and homogeneous of degree 0.
Throughout the paper K(x) = Ω(x)

|x|n , where Ω is an odd function, homogeneous of
degree 0 and integrable over Σn−1, i.e. Ω(−x) = −Ω(x) and Ω(λx) = Ω(x) for x ∈ Rn

and λ > 0, with Ω(u) ∈ L1(Σn−1). We define

TΩ(f) = cn(Ω) lim
ε→0

∫
ε<|y|<1/ε

f(x− y)
Ω(y)
|y|n

dy

where cn(Ω) is chosen such that ‖TΩ‖L2(Rn)→L2(Rn) = 1, i.e.

cn(Ω)−1 = ‖K̂‖L∞(Rn).

We use the notations vn = πn/2

Γ(n
2
+1) for the volume of the unit ball and write dσ

the normalized area measure of the sphere Σn−1. We shall see from our considerations
that actually the following result holds true: The condition

nvncn(Ω)‖Ω‖Σn−1 ≤ C (4)

implies
‖TΩ(f)‖Lp(Rn) ≤ C‖f‖Lp(Rn)

for all 1 < p <∞ with a constant C independent of n.
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Proposition 1.1

Let a 6= 0 and Ωa(x) = 〈a, x
|x|〉. Then

cn(Ωa) = |a|−1π−(n+1)/2Γ
(n+ 1

2

)
=
cn
|a|
.

Proof. It is elementary to show that if Ω is odd then

K̂(ξ) =
iπnvn

2

∫
Σn−1

Ω(u)sign〈u, ξ〉dσ(u).

Hence |K̂(ξ)| ≤ πnvn
2 ‖Ω‖L1(Σn−1). In particular for Ω = Ωa one gets K̂(a) =

iπnvn
2

∫
Σn−1

|Ωa(u)|dσ(u).
Hence

πnvncn(Ωa)‖Ωa‖L1(Σn−1) = 2. (5)

On the one hand, using polar coordinates, one has∫
|x|≤1

|〈a, x〉|dx =
n

n+ 1
vn‖Ωa‖L1(Σn−1),

and, on the other hand, using Fubini’s theorem, one also has∫
|x|≤1

|〈a, x〉|dx = |a|
∫
|x|≤1

|x1|dx = |a|2vn−1

n+ 1
.

Hence nvn‖Ωa‖L1(Σn−1) = 2|a|vn−1 which gives

cn(Ωa) =
1

|a|πvn−1
= |a|−1π−(n+1)/2Γ

(n+ 1
2

)
.

�

In the last decade the bilinear Hilbert transform, given by

H(f, g)(x) = lim
ε→0

1
π

∫
|y|>ε

f(x− y)g(x+ y)
y

dy

for f, g belonging to the Schwarzt class S(R), was shown by M. Lacey and C. Thiele to
be bounded from L2(R)×L2(R) into L1(R) solving an old question by A. Calderón. In
their fundamental work they discover that the parameter p3 in the range space could
go even below 1.

Theorem 1.2 (see [11, 12])
Let 1 < p1, p2 <∞, 1/p3 = 1/p1 + 1/p2 and 2/3 < p3 <∞. Then there exists a

constant C > 0 such that

‖H(f, g)‖Lp3 (R) ≤ C‖f‖Lp1 (R)‖g‖Lp2 (R). (6)
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Actually, the bisublinear maximal Hilbert transform, defined by

H∗(f, g)(x) = sup
ε>0

1
π

∣∣∣ ∫
|y|>ε

f(x− y)g(x+ y)
y

dy
∣∣∣

for f, g belonging to the Schwarzt class S(R), was also shown to be bounded from
L2(R) × L2(R) into L1(R) by M. Lacey (see [10]), i.e. there exists a constant C > 0
such that

‖H∗(f, g)‖L1(R) ≤ C‖f‖L2(R)‖g‖L2(R). (7)

In a similar way we shall define the bilinear version of the operator TΩ and shall try
to get its boundedness from Lp1(Rn)×Lp2(Rn) into Lp3(Rn) under the same conditions
on pi. To analyze the independence of the dimension for the norm of the corresponding
bilinear operator one needs to select the right normalization constant bn(Ω). Let us
introduce the natural choice in the following definition.

Definition 1.3 Given Ω as above we define

BΩ(f, g)(x) = bn(Ω) lim
ε→0

∫
ε<|y|<1/ε

f(x− y)g(x+ y)
Ω(y)
|y|n

dy,

where bn(Ω) is chosen in such a way that

‖BΩ‖L2(Rn)×L2(Rn)→L1(Rn) = 1.

Let us also mention the formulation in terms of Fourier transforms which is left
to the reader.

Remark 1.1 Let f, g ∈ S(Rn). Then

BΩ(f, g)(x) = bn(Ω)
∫

Rn

∫
Rn
f̂(ξ)ĝ(η)K̂(ξ − η)e2πi〈(ξ+η),x〉dξdη. (8)

Proposition 1.4

Let a ∈ Rn \ {0} and Ωa(x) = 〈a,x〉
|x| . Then, for e1 = (1, 0, ..., 0),

bn(Ωa) = |a|−1bn(Ωe1).

Proof. Let A be an orthogonal transformation of Rn such as Ae1 = a
|a| and write

fA(x) = f(Ax). Then, for f, g ∈ S(Rn),

B̃Ωa(f, g)(Ax) = lim
ε→0

∫
ε<|y|<1/ε

f(Ax− y)g(Ax+ y)
〈a, y〉
|y|n+1

dy

= |a| lim
ε→0

∫
ε<|u|<1/ε

fA(x− u)gA(x+ u)
u1

|u|n+1
du

= |a|B̃Ωe1
(fA, gA)(x).

This allows to conclude the result. �
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Definition 1.5 For a = ek, Ω(x) = xk
|x| , k = 1, 2, ..., n, the bilinear Riesz transform is

given by

(Rk(f, g))(x) = bn lim
ε→0

∫
|y|>ε

f(x− y)g(x+ y)
yk

|y|n+1
dy (9)

= −ibn
cn

∫
Rn

∫
Rn
f̂(ξ)ĝ(η)

ξk − ηk

|ξ − η|
e2πi〈(ξ+η),x〉dξdη, (10)

where
b−1
n = ‖B̃Ωe1

‖L2(Rn)×L2(Rn)→L1(Rn).

Hence

BΩa = |a|−1
n∑

k=1

akRk, a ∈ Rn \ {0}.

Our aim is to show that the transforms Rk (and more generally BΩ for certain Ω)
define bounded bilinear maps from Lp1(Rn)×Lp2(Rn) into Lp3(Rn) for 1

p3
= 1

p1
+ 1

p2
for

1 < p1, p2 <∞ and certain values of p3 with norm independent of the dimension. As
in the linear case we shall make use of the method of rotations and some transference
results.

Let us mention the transference results we shall need later on. Let G be a
l.c.a group with Haar measure m, let R : G → L(Lp(µ), Lp(µ)) be a representa-
tion of G into the space of bounded linear operators on Lp(µ) for some measure space
(Ω,Σ, µ), i.e. t → Rt verifies RtRs = Rt+s for t, s ∈ G, limt→0Rtf = f for f ∈ Lp(µ)
and supt∈G ‖Rt‖ <∞. For a given K ∈ L1(G) with compact support we denote

CK(φ, ψ)(s) =
∫

G
φ(s− t)ψ(s+ t)K(t)dm(t)

(defined for nice functions φ, ψ defined on G). We consider the transferred operator
by the formula

TK(f, g)(w) =
∫

G
R−tf(w)Rtg(w)K(t)dm(t)

where f and g are functions defined on Ω.

Theorem 1.6 (see [4])
Let 1 ≤ p1, p2 <∞ and 1/p3 = 1/p1 +1/p2 and let R be a representation of R on

acting Lpi(µ) for i = 1, 2. Assume that there exists a map S : R → L(Lp3(µ), Lp3(µ))
given by t→ St such that St are invertible with supt∈R ‖St‖ = 1 and

Ss
(
(R−tf)(Rtg)

)
= (Rs−tf)(Rs+tg)

for s, t ∈ R, f ∈ Lp1(µ) and g ∈ Lp2(µ).
If K ∈ L1(G) has compact support and the bilinear operator CK is bounded from

Lp1(G)× Lp2(G) into Lp3(G) with “norm” Np1,p2(CK) then TK is also bounded from
Lp1(µ)× Lp2(µ) to Lp3(µ) and with norm bounded by CNp1,p2(CK).

Here is its maximal counterpart.



254 Blasco and Gillespie

Theorem 1.7 (see [2, 3])
Let us assume the hypotheses in Theorem 1.6 and that S−1

u are positive opera-
tors. Let {Kj}j be a family of kernels in L1(G) with compact supports {Cj}j , such
that the corresponding bisublinear maximal operator

C∗
K(φ, ψ)(s) = sup

j∈N

∣∣∣ ∫
G
φ(s− t)ψ(s+ t)Kj(t)dm(t)

∣∣∣, (11)

is bounded from Lp1(G)×Lp2(G) to Lp3(G) with norm less than or equal to N({Kj}j).
Then we have that the maximal operator

T ∗K(f, g) = sup
j

∣∣TKj (f, g)(w)
∣∣ = sup

j

∣∣∣ ∫
G
R−tf(w)Rtg(w)Kj(t)dm(t)

∣∣∣
is bounded from Lp1(µ)× Lp2(µ) to Lp3(µ) and it has norm bounded by CN({Kj}j).

We now define the directional bilinear Hilbert transform Rn and bisublinear ma-
ximal Hilbert transform as follows: Given u ∈ Σn−1 we denote

Hu(f, g)(x) = lim
ε→0

1
π

∫
ε<|t|<1/ε

f(x− tu)g(x+ tu)
dt

t

and
H∗u(f, g)(x) = sup

ε>0

1
π

∣∣∣ ∫
ε<|t|<1/ε

f(x− tu)g(x+ tu)
dt

t

∣∣∣.
We also use the notation

H(f, g)(x, y) = Hy/|y|(f, g)(x), x ∈ Rn, y ∈ Rn, y 6= 0.

For each u ∈ Σn−1 denote Ru : R → L(Lp(Rn), Lp(Rn)) the representation given
by Ru

t f(x) = f(x − tu). Hence Theorem 1.6 and Theorem 1.7 can be applied, using
St = Ru

t together with the estimates (6) and (7) to obtain the following result.

Corollary 1.8

Let 1 < p1, p2 < ∞, p3 > 2/3 and 1/p3 = 1/p1 + 1/p2. Then Hu and H∗u are
bounded from Lp1(Rn)×Lp2(Rn) into Lp3(Rn) with norm independent of u if |u| = 1.

In particular H∗u(f, g) ∈ L1(Rn) for each f, g ∈ S(Rn) and

sup
|u|=1

‖H∗u(f, g)‖L1 ≤ C‖f‖L2‖g‖L2 .

Here is now our version of the method of rotations in the bilinear case.

Theorem 1.9

Let Ω ∈ L1(Σn−1) be odd and homogeneous of degree 0 and let ψn ∈ L1(R+, dr
r ).

Define dµn(x) = ψn(|x|)dx and 〈f, g〉µn =
∫
Rn f(x)g(x)ψn(|x|)dx. Then

BΩ(f, g)(x) =
π

2
nvnbn(Ω)

∫
Σn−1

H(f, g)(x, u)Ω(u)dσ(u), x ∈ Rn (12)

BΩ(f, g)(x) =
πbn(Ω)

2‖ψn‖L1(R+, dr
r

)

〈H(f, g)(x, .),K〉µn , x ∈ Rn (13)

for f, g ∈ S(Rn).
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Proof. Note that if f and g belong to S(Rn) then for each x ∈ Rn the function

φx(y) = (f(x− y)g(x+ y)− f(x)g(x))
Ω(y)
|y|n

χ{|y|≤1}

+ f(x− y)g(x+ y)
Ω(y)
|y|n

χ{|y|>1}

belongs to L1(Rn) and one actually has

BΩ(f, g)(x) = bn(Ω)
∫

Rn
φx(y)dy.

Similarly for each x ∈ Rn and u ∈ Σn−1

ψx,u(t) = (f(x− tu)g(x+ tu)− f(x)g(x))
χ{0<|t|≤1}

t

+ f(x− tu)g(x+ tu)
χ{|t|>1}

t

belongs to L1(R) (in fact, since f and g belong to S(Rn), |ψx,u| is majorized by an
integrable function for all |u| = 1, one has that sup|u|=1

∫
R |ψx,u(t)|dt <∞) and

H(f, g)(x, u) =
1
π

∫
R
ψx,u(t)dt.

We use the spherical coordinates to obtain (12).

BΩ(f, g)(x) = nvnbn(Ω)
∫
Σn−1

∫
0<t<∞

tn−1φx(tu)dtdσ(u)

=
nvn

2
bn(Ω)

∫
Σn−1

∫
0<|t|<1

(
f(x− tu)g(x+ tu)− f(x)g(x)

)dt
t

Ω(u)dσ(u)

+
nvn

2
bn(Ω)

∫
Σn−1

∫
1<|t|<∞

f(x− tu)g(x+ tu)
dt

t
Ω(u)dσ(u)

=
1
2
nvnbn(Ω)

∫
Σn−1

( ∫
R
ψx,u(t)dt

)
Ω(u)dσ(u)

=
π

2
nvnbn(Ω)

∫
Σn−1

Ω(u)H(f, g)(x, u)dσ(u).

The previous arguments allow us to apply Fubini argument and to conclude that

〈H(f, g)(x, ·),K〉µn =
∫

Rn
H(f, g)(x, y)

Ω(y)
|y|n

ψn(|y|)dy

= nvn

( ∫ ∞

0

ψn(r)
r

dr
)( ∫

Σn−1

H(f, g)(x, u)Ω(u)dσ(u)
)

=
2‖ψn‖L1(R+, dr

r
)

πbn(Ω)
BΩ(f, g)(x).

�

Let us now get the basic estimate on bn(Ω).
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Proposition 1.10

Let Ω be defined as in the introduction. Then

bn(Ω) ≤ cn(Ω).

Proof. Denote

B̃ε
Ω(f, g)(x) =

∫
ε<|y|<1/ε

f(x− y)g(x+ y)
Ω(y)
|y|n

dy

and
T̃ ε

Ω(f)(x) =
∫

ε<|y|<1/ε
f(x− y)

Ω(y)
|y|n

dy.

If f, g ∈ S(Rn) and ε > 0 then the function

f(x− y)g(x+ y)
Ω(y)
|y|n

χ{ε<|y|<1/ε} ∈ L1(Rn × Rn).

Hence we have

‖B̃ε
Ω(f, g)‖L1(Rn) ≥

∣∣∣ ∫
Rn

∫
ε<|y|<1/ε

f(x− y)g(x+ y)
Ω(y)
|y|n

dydx
∣∣∣

=
∣∣∣ ∫

Rn

∫
ε<|y|<1/ε

f(x′)g(x′ + 2y)
Ω(y)
|y|n

dydx′
∣∣∣

=
∣∣∣ ∫

Rn

∫
2ε<|y′|<1/2ε

f(x)g(x− y′)
Ω(y′)
|y′|n

dy′dx
∣∣∣

=
∣∣∣ ∫

Rn
f(x)T̃ 2ε

Ω (g)(x)dx
∣∣∣.

On the other hand,

B̃∗
Ω(f, g)(x) = sup

ε>0
|B̃ε

Ω(f, g)(x)|

≤ sup
ε>0

∣∣∣ ∫
Σn−1

∫
ε<t<1/ε

f(x− tu)g(x+ tu)
Ω(u)
t

dtdσ(u)
∣∣∣

≤ sup
ε>0

∣∣∣ ∫
Σn−1

∫
ε<t<1/ε

f(x− tu)g(x+ tu)
Ω(u)
t

dtdσ(u)
∣∣∣

≤
∫
Σn−1

∣∣∣ sup
ε>0

∫
ε<t<1/ε

f(x− tu)g(x+ tu)
dt

t

∣∣∣|Ω(u)|dσ(u)

= C

∫
Σn−1

|H∗u(f, g)(x)||Ω(u)|dσ(u).

Using the previous estimate and (7) one concludes that B∗
Ω(f, g) ∈ L1(Rn).

Given (εn)n with εn > 0 and limn εn = 0 one has that

B̃Ω(f, g)(x) = lim
n→∞

|B̃εn
Ω (f, g)(x)| ∈ L1(Rn)

and T̃Ω(g) = limn T̃
εn
Ω (g).
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Therefore, from the Lebesgue dominated convergence theorem one has

‖B̃Ω(f, g)‖L1(Rn) = lim
n→∞

‖B̃εn
Ω (f, g)‖L1(Rn)

≥ lim inf
n→∞

∣∣∣ ∫
Rn
f(x)T̃ 2εn

Ω (g)(x)dx
∣∣∣

≥
∣∣∣ ∫

Rn
f(x)T̃Ω(g)(x)dx

∣∣∣.
Now taking the supremum over f, g ∈ S(Rn) with ‖f‖L2(Rn) = ‖g‖L2(Rn) = 1 we

obtain
‖B̃Ω‖L2(Rn)×L2(Rn)→L1(Rn) ≥ ‖T̃Ω‖L2(Rn)→L2(Rn)

and the result follows. �

An application of Minkowski’s inequality in Theorem 1.9, combined with Theo-
rem 1.6, allows us to conclude the following boundedness result.

Theorem 1.11

Let Ω be an odd kernel, homogeneous of degree 0, and let 1 < p1, p2 <∞, p3 ≥ 1
and 1/p3 = 1/p1 + 1/p2. Then BΩ : Lp1(Rn)× Lp2(Rn) to Lp3(Rn) is bounded with

‖BΩ‖Lp1×Lp2→Lp3 ≤
π

2
‖H‖Lp1×Lp2→Lp3nvnbn(Ω)‖Ω‖L1(Σn−1).

Finally combining Theorem 1.11, Proposition 1.10 and (5) one obtains our main
result.

Corollary 1.12

Let |a| = 1, 1 < p1, p2 < ∞, p3 ≥ 1 and 1/p3 = 1/p1 + 1/p2. Then
∑n

k=1 akRk is
bounded from Lp1(Rn)×Lp2(Rn) to Lp3(Rn) with norm independent of the dimension.

Remark 1.2 Observe that Theorems 1.9 and 1.11 are valid for vector-valued kernels.
We can consider Ω̄(x) = (Ω1(x), ...,Ωn(x)) = x

|x| as a `n2 -valued kernel, where Ωi = Ωei .
Defining

BΩ̄(f, g) =
(
R1(f, g), ..., Rn(f, g)

)
= bn

∫
Rn
f(x− y)g(x+ y)

y

|y|
dy,

the previous method does not give the analogue of (3). Note that ‖Ω̄(x)‖`n
2

= 1 for
each x ∈ Rn gives

‖Ω̄‖L1(Σn−1,`n
2 ) = 1

and now, using bn ≤ cn, one can only estimate 4πn/2bn(Ω̄)
Γ(n

2
) ‖Ω̄‖L1(Σn−1,`2) ≤ C

√
n.

Our aim is now to show that in spite of this observation, also the norm for the `n2 -
valued formulation of the bilinear Riesz transform, at least for p3 > 1, is independent
of the dimension.

Let us select ψn(r) = (2π)−n/2rn+1e−r2/2 and Ω(x) = Ωa(x), |a| = 1, in Theo-
rem 1.9. Observe that

‖ψn‖L1( dr
r

) = (2π)−n/2
∫ ∞

0
rne−r2/2dr = (2π)−n/22(n−1)/2Γ

(n+ 1
2

)
=

√
π

2
cn
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which gives
2‖ψn‖L1( dr

r
)

πbn(Ω)
=

√
2
π

cn
bn
.

In particular, denoting by dγn(y) = (2π)−n/2e−|y|
2/2dy the Gaussian measure our

formula (13) becomes

〈H(f, g)(x, ·), 〈a, ·〉〉γn =
√

2
π

cn
bn
BΩa(f, g)(x). (14)

Observing that the coordinate functions yk are an orthonormal system in L2(γn)
and following G. Pisier ([13]) we define An to be the subspace generated by {y1, ..., yn}
in L2(γn) and by Q : L2(γn) → An the orthogonal projection, that is

Q(f)(y) =
n∑

k=1

( ∫
Rn
f(y)ykdγn(y)

)
yk. (15)

Hence applying (14) to this particular case one gets the following analogue to the
result given in [13]

Q(H(f, g))(x, y) =
√

2
π

cn
bn

n∑
k=1

ykRk(f, g)(x). (16)

This allows us to repeat Pisier’s argument ([13]) and get the following analogue
of (3).

Theorem 1.13

Let 1 < p1, p2 <∞, 1/p3 = 1/p1 + 1/p2, p3 > 1. There exists C independent of n
such that ∥∥∥( n∑

k=1

|Rk(f, g)|2
)1/2∥∥∥

Lp3 (Rn)
≤ C‖f‖Lp1 (Rn)‖g‖Lp2 (Rn). (17)

Proof. Following Pisier’s proof one first uses the fact that∥∥∥ n∑
k=1

λkyk

∥∥∥
Lp(γn)

=
( n∑

k=1

|λk|2
)1/2

γ(p) (18)

where
γ(p) =

( ∫
R
|t|pe−t2/2 dt√

2π

)1/p
.

∥∥∥( n∑
k=1

|Rk(f, g)|2
)1/2∥∥∥p3

Lp3 (Rn)

= γ(p3)−p3

∥∥∥ n∑
k=1

ykRk(f, g)
∥∥∥p3

Lp3 (Rn×γn)

≤ C
(bn
cn

)p3∥∥Q(H(f, g))
∥∥p3

Lp3 (Rn×γn)

≤ C‖Q‖p3

Lp3 (γn)→Lp3 (γn)‖H(f, g)‖p3

Lp3 (Rn×γn)

≤ C‖Q‖p3

Lp3 (γn)→Lp3 (γn)‖f‖
p3

Lp1 (Rn)‖g‖
p3

Lp2 (Rn).

�
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