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Abstract

We extend Wolff’s “local smoothing” inequality [19] to a wider class of
not necessarily conical hypersurfaces of codimension 1. This class in-
cludes surfaces with nonvanishing curvature, as well as certain surfaces
with more than one flat direction. An immediate consequence is the
Lp-boundedness of the corresponding Fourier multiplier operators.

The purpose of this article is to extend the “local smoothing” inequality,
proved in [19, 6] for circular cones in Rd, d ≥ 2, and in [10] for more
general conical surfaces in R3, to a wider class of bounded surfaces of
codimension 1 in Rd+1, d ≥ 3.
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Recall that Wolff’s inequality [19] states that if f is a function with
Fourier transform supported in a δ-neighbourhood of the segment of the
circular cone with 1 ≤ |x| ≤ 2, then

∀ε∃Cε : ‖f‖p ≤ Cεδ
−(d−1)/2+d/p−ε‖f‖p,δ, (1)

with d = 2 and p > 74; this was then extended in [6] to

d ≥ 3, p > 2 +
32

3d− 7
, and d ≥ 4, p > 2 +

8
d− 3

.

Here the norm on the right side is defined by

‖f‖p,δ =

(∑
a

‖Ξa ∗ f‖p
p

)1/p

,

where Ξ̂a are, roughly, cutoffs in the Fourier space corresponding to
the natural covering of the δ-neighbourhood of the cone by rectangular
“plates” of thickness δ. We propose to extend this inequality in two
directions. First, we will consider cones generated by more general sur-
faces of codimension 2. Second, we will also allow surfaces with more
than one flat direction, satisfying certain geometrical conditions stated
below; the simplest nontrivial examples are the “k-cones”, defined below
and described in more detail in Section 7. An immediate consequence is
the Lp boundedness of Bochner-Riesz multipliers for the same classes of
surfaces and for appropriate ranges of exponents.

We now define specific classes of surfaces of interest to us. We will
always assume that S is a bounded surface of codimension 1 in Rd+1,
smooth everywhere except for the possible boundary, with all curvatures
bounded from above uniformly by a constant.

A nondegenerate surface in Rl+1 will be a surface S0 defined by an
equation of the type xl+1 = F (x1, . . . , xl), where F is smooth with
all derivatives bounded uniformly in x, and all principal curvatures are
bounded away from zero:

|(D2
xF )u| ≥ c0|u|, u ∈ Rl, (2)

with the lower bound c0 uniform in u. Elliptic surfaces, such as e.g.
a sphere or a paraboloid, are clearly nondegenerate. However, we do
not require the Hessian to be positive definite, hence we also allow
surfaces with both positive and negative curvatures (e.g. hyperbolic
paraboloids). The key nondegeneracy condition (needed in Assumption
(A) below) is that if n(a) denotes the unit normal to S0 at a point a, then
|n(a)− n(b)| & |a− b|; this is guaranteed by (2).

A conical surface in Rd+1 is defined as

S = {tx : x ∈ S0, t ∈ [C1, C2]}, 0 < C1 < C2 <∞, (3)
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where S0 is a surface of dimension l = d − 1 contained in an affine
subspace X ⊂ Rd+1 of dimension d which does not pass through the
origin, such that S0 viewed as a subset of X is a nondegenerate surface
if X is identified with Rd in the obvious way. This class includes circular
cones as well as more general homogeneous quadrics of the form

S = {x : 1 ≤ |x| ≤ 2, 〈Ax, x〉 = 0},

where A is a symmetric (d+ 1)× (d+ 1) matrix of full rank; note that
we do not assume anything about the signature of A.

A k-cone in Rd+1, where 1 ≤ k ≤ d − 1, is constructed as follows.
Let L0 be a (d − k + 1)-dimensional linear subspace of Rd+1, and let
Li = L0 + vi for i = 1, . . . , k, where v1, . . . , vk are linearly independent
vectors such that L0, v1, . . . , vk span Rd+1. In each of the subspaces Li,
i = 0, . . . , k, we fix a bounded strictly convex solid Fi such that Ei =
∂Fi is smooth and has nonvanishing Gaussian curvature. Thus Ei is a
nondegenerate elliptic surface of dimension d− k (i.e. of codimension 1
in Li). We say that a (k + 1)-tuple of points (x0, x1, . . . , xk) is good if
xi ∈ Ei, i = 0, . . . , k, and if the outward unit normal vectors to Ei at xi

are the same. We then let

S =
⋃

(x0,...,xk) good

η(x0, . . . , xk),

where η(x0, . . . , xk) denotes the convex hull of x0, . . . , xk in Rd+1. In
Section 7 we prove that this indeed defines a surface of codimension 1
and that each point a ∈ S belongs to η(x0, . . . , xk) for exactly one (k+1)-
tuple (x0, . . . , xk); we will then call η(x0, . . . , xk) the k-plane at a, and
denote it by η(a).

For illustration purposes, consider the simple case when k = 1 and
L0 and L1 are two parallel hyperplanes. If E0, E1 are spheres of different
radii, then S is a segment of a right circular cone or a slanted circular
cone, depending on the relative location of E0, E1. Similarly, if E0, E1

are spheres of equal radii, S is a segment of a (right or slanted) circular
cylinder. However, if E0, E1 are randomly chosen ellipsoids, then S will
usually not be a cone, a cylinder, or an affine image thereof. For k ≥ 2,
these surfaces may be more difficult to visualize; see Section 7 for more
details. It is likely that similar surfaces may be constructed if Ei are
allowed to be more general surfaces of codimension 1 in Li, but since
it seems difficult to find the precise conditions on such more general Ei

under which the construction works, we choose not to do this here.
What we will actually use in the statement and proof of our main

inequality is that these surfaces admit a uniform “plate covering”, anal-
ogous to that of [19, 6]. Let S be a hypersurface in Rd+1 of one of the
following types:

• S is a nondegenerate hypersurface as defined above. We assume
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that (2) holds, but do not require S to be elliptic. We let k = 0 in
this case.

• S is a conical surface generated by a nondegenerate hypersurface
S0 of codimension 2, as defined above. In this case, we again
assume (2) but make no assumptions on the signs of the curvatures
of S0. We let k = 1.

• S is a k-cone, generated by k+1 nondegenerate surfaces E0, . . . , Ek.
Recall that in this case E0, . . . , Ek are assumed to be elliptic.

Thus, k will always denote the number of “flat” directions of S. For
a ∈ S, we use n(a) to denote the unit normal to S at a. We may assume
that the map x → n(x) is continuous; if S is not orientable, we restrict
our attention to an orientable subset of S. For δ > 0, let Sδ denote the
δ-neighbourhood of S. We write A . B if A ≤ cB for some constant c
independent of δ, and A ≈ B if A . B and B . A. Then S satisfies the
following conditions.

Assumption (A). For each δ > 0 and a ∈ S, let Πa,δ be a rectangular
box centered at a, of dimensions Cδ×Cδ1/2×· · ·×Cδ1/2×C×· · ·×C,
where the short direction is normal to S at a, the long directions are
parallel to the k-plane η(a) at a, and the mid-length directions are tangent
to S at a but perpendicular to η(a). Then:

• cΠa,δ ⊂ Sδ ∩ {x ∈ Rd+1 : (x− a) · n(a) ≤ δ}, for some small c.

• (Consistency) If 0 < δ ≤ σ and if Πa,δ ∩ Πb,σ for some a, b ∈ S,
then Πa,δ ⊂ CΠb,σ.

• Sδ admits a finitely overlapping covering Sδ ⊂
⋃

a∈Mδ
Πa,δ, where

Mδ ⊂ S (henceforth we fix such Mδ for each δ).

• (Angular separation) For any a ∈ Mδ, there are at most O(1)
distinct points b ∈Mδ such that |n(a)− n(b)| ≤ cδ1/2.

Here and in the sequel, “finitely overlapping” means the following: if
a family of sets Sδ is given for each δ, any x ∈ Rd+1 belongs to at most
K sets in Sδ. K,C,C ′, . . . denote constants independent of x, a, b, δ, σ,
and the choice of Mδ and Mσ. If R is a rectangular box, we use CR to
denote the box obtained by dilating R by a factor of C about its center.

We call Πa,δ δ-sectors (note that our terminology is slightly different
from that of [19, 6]). If S is a nondegenerate hypersurface or a conical
surface generated by S0, we may takeMδ to be a maximal δ1/2-separated
subset of S or S0, respectively; the case of k-cones is discussed in Sec-
tion 7. Whenever the choice of the small parameter δ is clear from the
context, we will write Πa instead of Πa,δ. We also let Mδ = |Mδ|. Note
that

|Πa,δ| ≈ δ(d−k)/2+1, Mδ ≈ δ−(d−k)/2. (4)
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Let Ξa be smooth functions such that ‖Ξa‖1 ≈ 1 and {Ξ̂a}a∈Ma
is

a smooth partition of unity on Sδ with supp Ξ̂a ⊂ Πa. Note that the
latter condition implies that Ξ̂a ≈ 1 on a box cΠa of size about δ

d−k
2 +1,

hence ‖Ξa‖22 = ‖Ξ̂a‖22 ≈ δ
d−k

2 +1. We may thus choose Ξa to have size
approximately δ

d−k
2 +1 on a box dual to Πa of volume about δ−

d−k
2 −1, so

that the L1 estimate is satisfied.
If supp f̂ ⊂ Sδ, we define

‖f‖p,δ =

( ∑
a∈Ma

‖Ξa ∗ f‖p
p

)1/p

for 2 ≤ p <∞, and

‖f‖∞,δ = sup
a∈Ma

‖Ξa ∗ f‖∞.

Our main result is the following:

Theorem 0.1
Assume that (A) holds. Then for all functions f with supp f̂ ⊂ Sδ

we have the estimate

∀ε∃Cε : ‖f‖p ≤ Cεδ
−(d−k)/2+(d−k+1)/p−ε‖f‖p,δ, (5)

with Cε depending only on ε and on the implicit constants in (A), pro-
vided that d, k, p satisfy at least one of the following:

(i) k <
d− 1

2
, p > p1(d, k) := 2 +

8
d− 2k − 1

,

(ii) k <
3d− 3

4
, p > p2(d, k) := 2 +

32
3d− 4k − 3

.

For the special case of the spherical cone in Rd+1, this is the result
of [6]. For nondegenerate conical surfaces with d = 2 and k = 1 (i.e.,
cones in R3 generated by plane curves of nonvanishing curvature) the
inequality (5) with p > 74 (the same exponent as in [19]) has already
been obtained by Pramanik and Seeger in [10]. The technique in their
paper was to approximate the cone in question by circular cones to which
a variant of the result of [19] could be applied. Therefore, the main new
cases of interest in the present paper are k-cones with k ≥ 2 and conical
surfaces with both positive and negative curvatures; such surfaces exist
in Rd+1 only if d ≥ 3.

Observe that (ii) gives a better range of k for all d ≥ 2. The range
of p given in (i) is better than (ii) if and only if d > 4k + 1. The best
possible range of p for which (5) could be expected to hold is

p ≥ 2 +
4

d− k
. (6)
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This may be seen by considering the same example as in [19, page 1238]:
construct a function f =

∑
a∈Mδ

fa, where f̂a is supported in a small
cube of sidelength δ contained in Πa, |fa| ≤ 1 on a cube Q of sidelength
δ−1, fa is bounded from below on a smaller proportional cube cQ, and
decays rapidly outside of Q. Then

‖f‖22 ≈
∑

‖fa‖22 ≈Mδ|Q| ≈ δ−(d−k)/2|Q|,

‖f‖p
p & ‖f‖p

L2(Q) |Q|
1−p/2 & δ−((d−k)p)/4|Q|.

Now plug this into the inequality (28) with σ ≈ 1, which will be shown
to follow from (5), and take α → 0. Using also (8) and comparing the
exponents of δ on both sides, we see that (6) must hold.

If S is a conical surface in Rd+1 generated by a nondegenerate surface
S0 in Rd, the exponent of δ in (5) is −d−1

2 + d
p − ε both for S and for

S0. This confirms the observation of [19] that one can deduce (5) for
the nondegenerate case in Rd from the conical case in Rd+1, for those
exponents p for which (5) for the conical case is available. (The idea is to
extend a function supported in a d-dimensional neighbourhood of S0 to a
homogeneous degree 0 function defined near S, and then apply (5) to S.)
However, going through the entire proof with k = 0 allowed, rather than
using the shortcut just described, yields a slightly better range of p for
the nondegenerate case in Rd, namely p > 2 + 8

d−1 as opposed to

2 + min
( 8
d− 3

,
32

3d− 7

)
.

An immediate corollary of Theorem 0.1 is the following result con-
cerning the boundedness of Fourier multipliers associated with S, defined
in the usual manner:

T̂αf = mαf̂ , mα(ξ) = |dist (ξ, S)|αφ(ξ),

where α > 0 and φ ∈ C∞0 is a suitable smooth cut-off function supported
in a neighbourhood of S.

Corollary 0.2

Let S be as in Theorem 0.1. Then Tα, defined as above, are bounded
on Lp(Rd+1) if

α > (d− k + 1)
∣∣∣1
2
− 1
p

∣∣∣− 1
2
, (7)

and if one of the following holds:

(i) k <
d− 1

2
and either p > p1(d, k) or 1 ≤ p <

p1(d, k)
p1(d, k)− 1

,
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(ii) k <
3d− 3

4
and either p > p2(d, k) or 1 ≤ p <

p2(d, k)
p2(d, k)− 1

,

where pi(d, k) are as in Theorem 0.1.

The proof for p > pi(d, k) is identical to that of Corollary 2(ii) in [19],
therefore we do not reproduce it here. For p < pi(d, k)/(pi(d, k) − 1),
the result follows by duality.

The range of α in (7) is sharp for a fixed p, see e.g. [12, pp. 389–
390], or [19] for a discussion of the cases k = 0, 1. On the other hand,
the range of p is not sharp, and in particular it is possible to have Lp-
boundedness of Tα for exponents p > 2 for which (5) fails. Indeed, the
best possible range of p for (5) with k = 0 is p ≥ 2 + 4

d (see (6)), but on
the other hand the spherical Bochner-Riesz multipliers with α as in (7)
are known to be bounded for p > 2 + 4

d+1 and p < 2− 4
d+5 if d ≥ 2 [7],

and the conjectured range is all 1 ≤ p ≤ ∞. Moreover, in dimension 2
(i.e. d = 1, k = 0) Tα are known to be bounded for the optimal range of
exponents 4/3 ≤ p ≤ 4, α > 0, and

4
3 + 2α

< p <
4

1− 2α
, 0 < α ≤ 1/2

([3, 4, 5]).
For the case k = 1, we recover the result of [6] for circular cones and

extend it to more general surfaces. We do not know of any earlier results
of this type for nontrivial (i.e. not cylindrical) surfaces with k ≥ 2. For
further discussion of the existing literature on cone multipliers, we refer
the reader to e.g. [2, 9, 12, 14, 18, 19]. Wolff’s inequality (5) for cones
has also been used to deduce a variety of other results, including an
optimal Lp local smoothing result for solutions of the wave equation [19],
Lp boundedness of maximal operators associated with curves in R3 [10],
boundedness of Bergman projections in tube domains [1]. We plan to
explore the applications of (5) for more general surfaces in a future paper.

The proof of Theorem 0.1 essentially follows the “induction on scales”
arguments in [19, 6], with modifications which we now describe. The
inductive argument of [19, 6] (rescaled to our setting) involves an ap-
plication of (5) on scale

√
δ, then rescaling each

√
δ-sector to a neigh-

bourhood of the entire cone via a Lorentz transformation, followed by
a second application of (5) on scale

√
δ. In our more general setting, a

non-homogeneous scaling cannot be expected to map S to itself, and in
particular Lorentz transformations are usually not available. Instead, we
work directly with the two nested decompositions of S. This will require
us to prove (5) in somewhat greater generality, allowing for functions
with Fourier supports in sectors Sσ

δ = Sδ ∩ Πa,σ for δ ≤ σ � 1. We
do this by first dividing the σ-sector in question into ρ-sectors, where
ρ =

√
σδ is our intermediate scale, and then subdividing the latter into

δ-sectors. Thus (5) for Sσ
δ is obtained by combining (5) for Sσ

ρ and Sρ
δ .
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This of course sounds too good to be true, and it indeed is: if imple-
mented exactly as described, the above argument would fail due to the
accumulation of the δ−Cε-errors arising at each step of the induction.
This problem is resolved as in [19, 6]. Namely, we observe that if the ρ
in Sσ

ρ can be replaced by a slightly bigger scale ρ1−ε0 for some fixed ε0,
we gain additional factors of δCε0 which absorb the troublesome errors.
We then have to find conditions under which it is possible to do so. To
this end, we decompose f into standardized “wave packets”, Fourier-
localized in ρ-sectors and almost localized spatially in the dual plates.
The inequality (5), for large p, is a statement about the size of set of large
values of f . Fix a tiling of Rd+1 by ρ−1+ε0-cubes; then a combinatorial
argument, similar in spirit to Bourgain’s “bush” argument, shows that
if λ is sufficiently large relative to the total number of wave packets, then
the sets of wave packets contributing to the parts of {|f | ≥ λ} localized
in different cubes are essentially disjoint. We can now adjust the scale by
discarding the non-contributing part of each packet (cf. the “two ends”
reduction of [17]). The rest of the proof is arranged so as to make this
step possible, and in particular this is what determines our range of p.

Acknowledgements: We are grateful to the anonymous referee and to
Andreas Seeger for careful reading of the paper and helpful suggestions.
This work was partially supported by NSERC grant 22R80520 and by
NSF grant DMS-0245408. Shortly before this article went to press, we
learned that Garrigós and Seeger have obtained an improvement in the
range of exponents for Wolff’s inequality for elliptic cones; see their
forthcoming paper for details.

1. Notation and preliminaries

General notation:

S: a d-dimensional bounded connected surface in Rd+1, C2 every-
where except boundary, with all curvatures bounded, satisfying (A).

p: an exponent as in Theorem 0.1 which will remain fixed throughout
the paper.

r =
d−k

2 − d−k+1
p

d−k
2

= 1− 2
p
− 2
p(d− k)

.

δ, ρ, σ: small dyadic parameters, always satisfying 0 < δ ≤ ρ ≤ σ . 1.
ε0, ε1, ε2, ε3 : small positive numbers with εj+1 much smaller than

εj , depending only on d, k, p, to be fixed later. They will remain fixed
through Sections 3–6.

t: a dyadic number such that t ≈ (δ/σ)ε0 .
C,Ci, C

′, etc.: constants which may depend on the choice of S and p,
and in particular on the implicit constants in (A), but will always be
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independent of δ and of the choice of sector decomposition in (A). They
may change from line to line and may be adjusted as needed, in particular
after each application of Proposition 3.4.

A . B: A ≤ CB for some constant C.
A ≈ B: A . B and B . A.
A / B: A . (log 1

δ )CB for some constant C.
χE : the indicator function of the set E.
|E|: the Lebesgue measure or cardinality of E, depending on the

context.
A logarithmic fraction of E: a subset of E with measure ' |E|.
An l-cube is a cube of side length l belonging to a suitable fixed

l-grid on Rd+1; thus any two l-cubes are either identical or have disjoint
interiors. If l is fixed, for any x ∈ Rd+1 we let Q(x) be an l-cube such
that x ∈ Q(x).

If R is a rectangular box (e.g. a tube or a plate), we will denote by
cR the box obtained from R by dilating it by a factor of c about its
center.

If R0 is a rectangular box centered at the origin, the dual box to R0

is the rectangular box

R∗0 = {x ∈ Rd+1 : |x · y| ≤ 1 for all y ∈ R0},

where · denotes the usual scalar product in Rd+1. We will sometimes say
that two boxes R,R∗, not centered at the origin, are dual to each other
if and only if their translates R0, R

∗
0 centered at the origin are dual to

each other.
We let φ(x) = (1 + |x|2)−K

2 with K large enough, and φR = φ ◦ u−1
R ,

where uR is an affine map taking the unit cube centered at 0 to the
rectangleR; thus φR is roughly an indicator function ofR with “Schwartz
tails”. If R is a family of rectangular boxes (usually tubes or plates), we
write ΦR =

∑
R∈R φR.

We let ψ(x) : Rd+1 → R be a function with the following properties:
(i) ψ = η2, where η̂ is supported in a small ball centered at 0.
(ii) ψ 6= 0 on a large cube centered at the origin.
(iii)

∑
ν∈Zd+1 ψ(x− ν) ≡ 1.

We also write ψR = ψ ◦ u−1
R with uR as above. If R = Rδ is the unit

cube of sidelength δ centered at 0, we will write ψδ = ψRδ
.

If a family of functions Fδ is given for each δ, we will say that the
functions in Fδ are essentially orthogonal if∥∥∥ ∑

f∈Fδ

f
∥∥∥2

2
≈
∑

f∈Fδ

‖f‖22.

For example, functions with finitely overlapping supports or Fourier sup-
ports are essentially orthogonal.
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Sector decompositions:

Πa,δ: δ-sectors, defined in (A).
Mδ: set of centers of δ-sectors. For nondegenerate surfaces, we may

take Mδ to be any δ1/2-separated subset of S; for conical surfaces, Mδ

may be a δ1/2-separated subset of S ∩ {|x| = C0} for some fixed C0

with C1 < C0 < C2, where C1, C2 are as in (3). The case of k-cones is
discussed in Section 7.

Mδ = |Mδ|.
Sσ

δ (a) = Sδ ∩ Πa,σ, for δ ≤ σ . 1. Whenever the choice of a is
unimportant – which will be most of the time – we will write Sσ

δ instead
of Sσ

δ (a).
Mσ,δ: the number of δ-sectors contained in Sσ

δ .

Note that
Mδ ≈ δ−(d−k)/2, (8)

Mσ,δ ≈Mδ/Mσ ≈ (σ/δ)(d−k)/2. (9)

Indeed, the covering and finite overlap conditions in (A) imply that
Mδ|Πa,δ| ≈ |Sδ| ≈ δ, hence (8) follows from (4). Also, by the finite
overlap and consistency conditions in (A) we have

|Sσ
δ | ≈Mσ,δ|Πa,δ| ≈Mσ,δ|Sδ|/Mδ.

In particular, all Sσ
δ have approximately the same size, hence

|Sσ
δ | ≈ |Sδ|/Mσ.

Comparing the last two estimates and using also (8), we get (9).

Dual plates:

We define πa
0 to be the rectangular box dual to Πa − a:

πa
0 = {x ∈ Rd+1 : |x · (y − a)| ≤ 1, y ∈ Πa} .

We fix a tiling of Rd+1 by translates of πa
0 : Rd+1 =

⋃
b∈Λa

πa
b , where πa

b
is the translate of πa

b centered at b. We will refer to πa
b , b ∈ Λa, as plates

dual to the sector Πa. Thus each π = πa
b has a unique sector Πa to

which it is dual; we will sometimes indicate this by writing Πa = Π(πa
b ).

Note that πa have dimensions ≈ δ−1, δ−1/2, 1 in the directions par-
allel to the short, medium, and long directions of Πa, respectively.

2. The wave packet decomposition

Several basic properties of the norm ‖ · ‖p,δ will be used throughout this
paper. We first record the estimate

‖f‖∞,δ . ‖f‖∞ . Mσ,δ‖f‖∞,δ, supp f̂ ⊂ Sσ
δ . (10)
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The first inequality in (10) follows from

‖f‖∞,δ ≤ max
a
‖Ξa ∗ f‖∞ ≤ ‖Ξa‖1‖f‖∞ . ‖f‖∞,

and the second one from the identity f =
∑

a∈Mδ
Ξa ∗ f . Note also

that the functions Ξa ∗ f have finitely overlapping Fourier supports and
therefore are essentially orthogonal, so that

‖f‖22,δ =
∑

a∈Mδ

‖Ξa ∗ f‖22 ≈ ‖f‖22. (11)

Lemma 2.1

For all p ≥ 2 we have

‖f‖p,δ . ‖f‖2/p
2 ‖f‖1−2/p

∞,δ . (12)

Proof. Let fa = Ξa ∗ f , then

‖f‖p
p,δ =

∑
a

‖fa‖p
p ≤ max

a
‖fa‖p−2

∞ ·
∑

a

‖fa‖22

= ‖f‖p−2
∞,δ‖f‖

2
2,δ.

It now suffices to combine this with (11). �

We now study the structure of functions with Fourier support in Sδ.
More precisely, we want to decompose such functions into “Knapp ex-
amples”, each of which is Fourier localized in a δ-sector and spatially
localized (modulo Schwartz tails) in the plate dual to the sector in ques-
tion. The definition below and the next two lemmas are identical to the
corresponding arguments in [19, 6] modulo notation and rescaling; we
include the proofs for completeness.

Definition 2.2 Let 0 < δ ≤ σ . 1. We define Σσ
δ (a) to be the space of

all functions of the form f =
∑

π∈P fπ, where P = P(f) is a family of
δ-plates such that each πa′

b ∈ P is dual to a sector Π(πa′

b ) = Πa′ centered
at a point a′ ∈ Sσ

δ (a), and
|fπ| . φπ, (13)

supp f̂π ⊂ Π(π). (14)

If P ′ ⊂ P, we say that fP′ =
∑

π∈P′ fπ is a subfunction of f . When
the choice of a is unimportant, we will often omit a from the notation.
Note that for functions in Σσ

δ we have ‖f‖∞ . Mσ,δ instead of (15). If
σ ≈ 1, we will sometimes write Σσ

δ = Σδ.
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Lemma 2.3

Let f ∈ Σσ
δ . Then supp f̂ ⊂ Sσ

δ (a) and

‖f‖∞ . Mσ,δ, (15)

‖f‖p,δ .
(∑

π∈P
|π|
)1/p

for 2 ≤ p ≤ ∞. (16)

Proof. The support statement is clear from the definition. Recall also
that all plates πa

b with fixed a have disjoint interiors; this immediately
implies (15). It remains to prove (16). By (12), we only need to do so
for p = 2 and p = ∞.

We first claim that fπ are essentially orthogonal. Indeed,

‖f‖22 =
∥∥∥ ∑

a∈M

(∑
b

fπa
b

)∥∥∥2

2
≈
∑

a∈M

∥∥∥(∑
b

fπa
b

)∥∥∥2

2
,

since
∑

b fπa
b

is Fourier supported in Πa, and the latter have finite over-
lap. It remains to prove the essential orthogonality of fπa

b
for fixed

a; this follows from an easy argument using the decay of φπ. Since
‖fπ‖22 . ‖φπ‖22 ≈ |π|, this yields (16) for p = 2.

To complete the proof for p = ∞ and therefore for all p, it suffices to
verify that ‖f ∗ Ξa‖∞ . 1 for each Ξa. We have f ∗ Ξa =

∑
π fπ ∗ Ξa,

where the only non-zero terms are those corresponding to π whose dual
plates Π intersect Πa. Since the number of such Π is bounded, and since
the plates π corresponding to each Π are disjoint, it follows that the
plates contributing to f ∗ Ξa have finite overlap. Hence

‖f ∗Ξa‖∞ . max
π
‖fπ ∗Ξa‖∞ . max

π
‖fπ‖∞ . 1. �

Lemma 2.4
Assume that supp f̂ ⊂ Sσ

δ and ‖f‖∞,δ <∞. Then there are fλ ∈ Σσ
δ ,

with dyadic λ satisfying
λ . ‖f‖∞,δ (17)

and with corresponding plate families Pλ, such that

f ≈
∑

λ

λfλ, (18)

∑
λ

λp
∑

π∈Pλ

|π| . ‖f‖p
p,δ (19)

for each fixed p ∈ [2,∞).

Proof. We may assume that f̂ is supported in some δ-sector Πa, so that
‖f‖p,δ = ‖f‖p. Let ψb = ψπa

b
; observe that ‖ψbf‖∞ . ‖f‖∞,δ = ‖f‖∞.
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For λ as in (17), we let Pλ = {πa
b : λ ≤ ‖ψbf‖∞ ≤ 2λ} and

fλ =
∑

πb∈Pλ

λ−1ψ2
bf.

To see that fλ ∈ Σσ
δ , it suffices to verify that each fb := λ−1ψ2

bf
satisfies (13), (14). Indeed, (13) is immediate from the definition; also,
f̂b = ψ̂2

b ∗ f̂ and ψ̂2
b is supported in a translate of cΠa centered at 0 for

some c� 1, hence (14) follows.
We have∑

λ

λfλ =
∑

j

ψ2
bf and 1 .

∑
b

ψ2
b .

∑
b

ψb = 1,

so that (18) follows. Moreover, by Bernstein’s inequality

λp ≈ ‖ψbf‖p
∞ . |Πa|‖ψbf‖p

p ≈ |πa
b |−1‖ψbf‖p

p,

hence ∑
λ

λp
∑

b:πa
b
∈Pλ

|πb| .
∑

b

‖ψbf‖p
p . ‖f‖p

p

as required. �

3. Proof of Theorem 0.1

Let p be as in Theorem 0.1. In the inductive argument that follows,
we will need a variant of our main estimate for functions with Fourier
support in sectors Sσ

δ . In this setting, our main inequality may be stated
as follows: suppose that supp f̂ ⊂ Sσ

δ and

‖f‖p,δ ≤ 1, (20)

then
‖f‖p

p . δ−εMrp+ε
σ,δ (21)

for any ε > 0, where we recall that

r = 1− 2
p
− 2
p(d− k)

. (22)

Observe that (21) becomes (5) when σ = 1.
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Proposition 3.1

For any ε > 0, we have the estimate

‖f‖p
p . δ−εMrp+ε

σ,δ ‖f‖22, (23)

for all f with ‖f‖∞,δ . 1 and supp f̂ ⊂ Sσ
δ .

Assuming Proposition 3.1, let us complete the proof of (21). Pick f
with supp f̂ ⊂ Sσ

δ and obeying (20), then by Lemma 2.4 we have

f ≈
∑

λ≤‖f‖∞

λfλ, fλ ∈ Σσ
δ .

From (19) and Lemma 2.3 we have ‖fλ‖∞,δ . 1 and

1 & λp
∑

π∈Pλ

|π| & λp‖fλ‖22,δ ≈ λp‖fλ‖22, (24)

which together with (23) yields (21) for λfλ.
The conclusion follows by summing over λ if we can show that the

summation can be restricted to the logarithmically many values of λ in
[δK , δ−K′

] for some K,K ′. Indeed, for any C we have
∑

λ≤δK λfλ . δC

if K is large enough, hence (21) holds for this part. It remains to prove
that ‖f‖∞ . δ−K′

. Let fa = Ξa ∗ f , then

‖fa‖∞ . |Πa|1/p‖fa‖p . |Πa|1/p,

by Bernstein’s inequality and (20). The desired bound follows on sum-
ming over a. �

Proposition 3.1 is an immediate consequence of Proposition 3.3 and
Corollary 3.5 below. The main inductive argument is given in Proposi-
tion 3.4, the proof of which will occupy Sections 4-6.

Definition 3.2 We say that P (p, α, ε) holds if for all functions f such
that supp f̂ ⊂ Sσ

δ and ‖f‖∞,δ ≤ 1 we have

|{|f | > λ}| . λ−pδ−εMrp+α
σ,δ ‖f‖22 , (25)

for all 0 < δ ≤ σ . 1, provided that δ is small enough.
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Proposition 3.3
P (p, α, ε) holds for all α, ε > 0.

Proof. We will assume that f is as in Definition 3.2. Observe that (25)
follows automatically from Chebyshev’s inequality if

λp−2 . δ−εMrp+α
σ,δ , (26)

By (10), we may assume that λ ≤ ‖f‖∞ . Mσ,δ. Thus for (26) to hold,
it suffices if Mp−2

σ,δ . δ−εMrp+α
σ,δ , or in other words

Mp−2−rp−α
σ,δ = M

2/(d−k)−α
σ,δ . δ−ε.

This has two consequences of interest to us:

1. (25) holds for all α > 0 if δ−ε & M
2

d−k

σ,δ ≈ σ/δ (the last equality
comes from (9)),

2. P (p, α, ε) holds for any ε > 0 if α ≥ 2
d−k , since then M

2
d−k−α

σ,δ . 1.
The main inductive step is contained in the following proposition.

Proposition 3.4
Fix p > pd and 0 < ε2 < ε. Suppose that P (p, α, ε) holds, and let

ε0 > 0 be sufficiently small (depending only on p, d, k). Then (25) holds
with α and ε replaced by (1 − ε0

6 )α and 4ε, respectively, provided that
σ/δ & δ−ε2 .

Assuming Proposition 3.4 for the moment, let us finish the proof of
Proposition 3.3. Fix α, ε > 0. Fix also α0 > 2/(d− k), sufficiently small
positive numbers ε1, ε2 (depending on d, k, p), and a large integer m0 so
that

m0 >
log(α/α0)

log(1− ε0/6)
, ε1 < 4−m0ε, ε2 < ε1. (27)

By 2. above, P (p, α0, ε1) holds.
Assume that we know P (p, (1−ε0/6)mα0, 4mε1) for some integer m ≥

0. We claim that this implies P (p, (1− ε0/6)m+1α0, 4m+1ε1). Indeed, if

σ/δ . δ−4m+1ε1 ,

then (25) follows from 1. above. Otherwise, we must have

σ/δ & δ−4m+1ε1 ≥ δ−ε1 ≥ δ−ε2 ,

in which case the claim follows from Proposition 3.4. After m0 it-
erations, we obtain P (p, (1 − ε0/6)m0α0, 4m0ε1). From (27) we have
(1−ε0/6)m0α0 < α and 4m0ε1 < ε, hence P (p, α, ε) follows as required. �
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Corollary 3.5

Assume that P (p, α, ε) holds. Then for all f with supp f̂ ⊂ Sσ
δ and

‖f‖∞,δ . 1 we have

‖f‖p
p / δ−εMrp+α

σ,δ ‖f‖22. (28)

Proof. Write |f | ≈
∑

λ λχ{|f |≈λ} with dyadic λ. Then ‖f‖∞ . Mσ,δ

by (10); also, (28) is trivial if ‖f‖∞ . δn for n large enough. The lemma
follows by summing (25) over dyadic λ with δn . λ . Mσ,δ. �

4. A substitute for scaling

In this section we develop the geometrical arguments which will replace
the scaling arguments of [19, 6]. Instead of rescaling S by powers of δ, we
keep S fixed and consider its ρ-neighbourhoods for intermediate values
of ρ between δ and 1. We then need a mechanism for efficient conversion
of functions with Fourier support in Sδ to functions with Fourier support
roughly equal to Sρ. This is done as follows. Take a function f with
supp f̂ ⊂ Sδ, and let fQ = ψQf , where Q is a ρ−1-cube. This localizes f
spatially in Q, modulo Schwartz tails, and (since f̂Q = ψ̂Q ∗ f̂) extends
its Fourier support to Sρ. It is instructive to examine what happens
to a function f = fπ satisfying (13), (14). If ρ .

√
δ (which we will

assume in all applications of the lemma), fQ is essentially obtained from
f by shortening the supporting plate π to length about ρ−1 in the long
direction; to compensate for it, the thickness of the Fourier support Π
increases to ρ.

Lemma 4.1
Assume that supp f̂ ⊂ Sσ

δ , and let Q be a ρ−1-cube for some δ . ρ .

σ. Let fQ = ψQf . Then supp f̂Q ⊂ Sσ
ρ and

‖fQ‖p,ρ . (δ/ρ)1/pM
1−2/p
ρ,δ ‖f‖2/p

2 ‖f‖1−2/p
∞,δ (29)

for all p ≥ 2.

Proof. Observe that ψ̂Q is supported in a ρ-cube centered at 0, and has
size about ρ−d−1 on a proportional cube. We have f̂Q = ψ̂Q ∗ f̂ . The
support statement follows immediately as discussed above. By (12), it
suffices to prove (29) for p = 2 and p = ∞. We have

fQ = ψQf =
∑

a

ψQ(Ξa ∗ f).
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If we convolute this with a function whose Fourier transform is supported
in a ρ-sector, the only contributing δ-sectors will be those that intersect
the ρ-neighbourhood of the ρ-sector in question, hence the L∞ bound
follows. For p = 2, we write

f̂Q(ξ) = ψ̂Q ∗ f̂(ξ) =
∫
ψ̂Q(ξ − η)χSδ

(η)f̂(η)dη,

and use Schur’s test. We have∫
|ψ̂Q(ξ − η)|χSδ

(η)dη . δ/ρ and
∫
|ψ̂Q|(ξ − η)χSδ

(η)dξ . 1.

Hence
‖fQ‖2 = ‖f̂Q‖2 . (δ/ρ)1/2‖f̂‖2 = (δ/ρ)1/2‖f‖2 (30)

as required. �

We also need a substitute for the Lorentz transformations used in
[19, 6, 10]. The key geometrical observation turns out to be the following.
Suppose that f̂ is supported only in a small part of Sδ, say in Sσ

δ for some
δ . σ � 1. Compared to Sδ, Sσ

δ is quite flat. We may therefore convolute
f̂ with the characteristic function of a box R whose dimensions in these
“flat” directions are larger than ρ, and still stay in a ρ-neighbourhood of
Sσ

δ . For σ � 1, this box can be quite a bit larger than a ρ-cube; in the
special case when σ = ρ = δ, it will be a δ-sector as opposed to a δ-cube.
This will result in a considerable gain in (33) below. The reader may
be interested to verify that replacing |R| by |Q| = ρ−d−1 in (33) would
have disastrous consequences at the end of the proof of Theorem 0.11.

Lemma 4.2

Let δ . ρ . σ . 1, and assume that σ ≤ δ1/2. Let f satisfy

supp f̂ ⊂ Sσ
δ (a). We define

R = ρσ−1(Πσ,a − a). (31)

We also let R0 be the box dual to R centered at 0. Fix a translate R of
R0, and let fR = ψRf . Then

|R| = |R|−1 = ρ−d−1σ(d+k)/2, (32)

and:

(i) supp f̂R ⊂ Sσ
Cρ(a),

1It would generate additional negative powers of σ in (65), making it unusable for
our purposes when σ � 1.
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(ii) fR obeys (29) with p = ∞, i.e. ‖fR‖∞,Cρ . Mρ,δ‖f‖∞,δ,

(iii) if ρ .
√
σδ, we have the estimate

‖fR‖2 . M
1/2
σ,δ |R|

1/2‖f‖∞,δ. (33)

Note that if ρ ≈
√
σδ, thenR has dimensions (σδ)−1/2, δ−1/2, (σ/δ)1/2,

and (32) becomes
|R| ≈ σ(k−1)/2δ−(d+1)/2. (34)

Proof. We first claim that for all b ∈ S ∩Πσ,a,

Πρ,b +R ⊂ CΠρ,b. (35)

Indeed, from the consistency condition we have

Πσ,b ⊂ CΠσ,a ⊂ C ′Πσ,b,

hence

Πρ,b +R = Πρ,b + ρσ−1(Πσ,a − a) ⊂ Πρ,b + ρσ−1(Πσ,b − b)

⊂ Πρ,b + C(Πρ,b − b) ⊂ CΠρ,b.

At the last step we used that ρσ−1Πσ,b ⊂ CΠρ,b, which is seen by com-
paring sidelengths and using that ρ . σ.

We now prove (i)-(ii). We have f̂R = ψ̂R ∗ f̂ and supp ψ̂R ⊂ R. As
in the proof of Lemma 4.1, (i) follows from

Sσ
δ (a) +R ⊂ Sσ

ρ (a), (36)

which is an immediate consequence of (35). For (ii), it suffices to verify
that if b ∈ S ∩ Sσ

δ (a), then there are at most Mρ,δ δ-sectors Πδ,b′ , b′ ∈
Mδ, which intersect Πρ,b +R. By (35), any such sectors would have to
intersect CΠρ,b, hence (by the consistency condition in Assumption (A))
they would be contained in CΠρ,b for some C. The cardinality assertion
now follows from the finite overlap property.

It remains to prove (iii). If ρ .
√
σδ, the same argument as in the

proof of (35) shows that b+R is contained in the box Bb obtained from
CΠδ,b by thickening its shortest sidelength to Cρ. Hence the functions
on the right-hand side of the identity fR =

∑
a∈M ψR · (Ξb ∗ f) are

essentially orthogonal since their Fourier supports have finite overlap. It
follows that

‖fR‖22 .
∑

b

‖ψR · (Ξb ∗ f)‖22 .
∑

b

‖f‖2∞,δ ‖ψR‖22 . Mσ,δ|R|‖f‖2∞,δ

as claimed. �
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5. The localization property

Throughout this section we will assume that σ/δ & δ−ε2 , where ε2 > 0
was fixed in Section 3.

Definition 5.1 Let f ∈ Σσ
δ . We say that f localizes at λ if there

are subfunctions fQ of f , where Q runs over tδ−1-cubes (recall that
t ≈ (δ/σ)ε0), such that ∑

Q

|P(fQ)| / |P(f)| (37)

and
|{|f | ≥ λ}| /

∑
Q

|Q ∩ {|fQ| ' λ}|. (38)

Our task is now to find conditions under which f localizes.

Lemma 5.2

Let P be a family of plates, and let W ⊂ Rd+1. Then there is a
relation ∼ between plates in P and tδ−1-cubes Q such that

|{Q : π ∼ Q}| / 1 for all π ∈ P, (39)

and
Ib / t−c1 |W ||P|1/2, (40)

where

Ib =
∫

W

∑
π∈P,π 6∼Q(x)

χπ(x) =
∑
π∈P

|{x ∈W ∩ π : Q(x) 6∼ π}|.

Proof. We may assume that W ⊂ {|x| . δ−1}. For each π ∈ P, we let
Q(π) be the tδ−1-cube with maximal |W ∩Q∩ π| (if there is more than
one, pick one arbitrarily). We then say that π ∼ Q if Q ∩ 10Q(π) 6=
∅. Clearly, the number of such cubes (for a fixed π) is . 1. We now
prove (40).

By dyadic pigeonholing, there are ν and P ′ ⊂ P such that |Ib| / ν|P ′|
and

|{x ∈W ∩ π : π 6∼ Q(x)}| ≈ ν for each π ∈ P ′.

Thus for each π ∈ P ′ there is a cube Q′(π) such that π 6∼ Q′(π) and
|W ∩Q′(π)∩π| & tν. But then |W ∩Q(π)∩π| & tν, by the definition of
Q(π). The total number of cubes covering W is . t−d−1, hence we may
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choose Q,Q′ so that Q = Q(π) and Q′ = Q′(π) for at least t2d+2|P ′|
plates π ∈ P ′. Let

A =
∑

π∈P′
|W ∩Q ∩ π| · |W ∩Q′ ∩ π|,

then for Q,Q′ as above we have

A & t2d+2|P ′| · (tν)2 = t2d+4ν2|P ′|.

But on the other hand,

A =
∫

W∩Q

∫
W∩Q′

∑
π∈P′

χπ(x)χπ(x′)dx′dx

=
∫

W∩Q

∫
W∩Q′

|{π ∈ P ′ : x, x′ ∈ π}|dxdx′.

We claim that the integrand is bounded by t−d. Indeed, let x ∈ Q,
x′ ∈ Q′, then |x − x′| & tδ−1. If x, x′ ∈ πa

b . then the angle between
x−x′ and n(a) is . t−1δ1/2; but by (A), |n(a)−n(a′)| ≥ δ1/2 for a 6= a′,
hence there are at most . t−d distinct a’s as above. Thus

A . t−d|W ∩Q| · |W ∩Q′| . t−d|W |2.

From this and the lower bound just stated, we have2 ν . t−c|W | |P ′|−1/2,
so that

|Ib| / ν|P ′| . t−c|W | |P ′|1/2 ≤ t−c|W | |P|1/2

as required. �

In the sequel, we will use a version of Lemma 5.2 with “Schwartz
tails”. The proof follows word-for-word the standard argument given in
detail in [19, 6], and we see no reason to reproduce it here.

Lemma 5.3
Let W ⊂ Rd+1 be measurable, and let P be a family of plates. Fix

a large constant M0. Then, if the constant K in the definition of φ has
been chosen large enough, there is a relation ∼ between tδ−1-cubes Q
and plates in P satisfying (39) and such that∫

W

Φb
P / t−c|P|1/2|W |+ δM0 |W |, (41)

where
Φb
P(x) =

∑
π∈P,π 6∼Q(x)

φπ(x) (42)

2We could keep track of the exact powers of t but will have no need to do so.
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Lemma 5.4

Let f ∈ Σσ
δ , with plate family P. Assume that

|P| ≤ t2c+2λ2 (43)

with c as in (41). Then f localizes at λ.

Proof. Let W = {|f | ≥ λ}, and let ∼ be the relation defined in 5.3. For
each Q, let fQ =

∑
π∼Q fπ. By (39), (37) holds. Also, we have∫
W

Φb
P / t−c|P|1/2|W | . tλ|W |.

Hence we must have Φb
P(x) / tλ on some set W ∗ ⊂W with proportional

measure. Let x ∈W ∗ ∩Q, then

|f(x)− fQ(x)| =
∣∣∣ ∑

π 6∼Q

fπ(x)
∣∣∣ . Φb

P(x) / tλ.

Hence |fQ(x)| & λ on W ∗ ∩Q as claimed. Observe that the assumption
that δ/σ . δε2 is needed here to ensure that the logarithmic factors in
/ are dominated by t = (δ/σ)ε0 . δε0ε2 . �

Lemma 5.5

Let f ∈ Σσ
δ (a), with plate family P. Fix a tiling {R} of Rd+1 by

translates of the rectangular box R0 defined in Lemma 4.2, with ρ ≈√
σδ. Then either f localizes at λ, or else there is a subfunction f∗ of f

such that |f∗| ' λ on a logarithmic fraction of {|f | ≥ λ} and

‖ψRf
∗‖22 . t−Cλ−2(σ/δ)−k/2Mσ,δ|R||P|. (44)

for each R.

Proof. For each π = πb
b′ ∈ P we let τ b

b′ be a rectangular box containing πb
b′

with the same dimensions except that all short sidelengths are extended
from 1 to

√
σ/δ. From this family of boxes, we choose a maximal subset

T̃ with the property that τ ′ 6⊂ Cτ for any τ ′, τ ∈ T̃ and for a suitable
large constant C, and let T = {2Cτ : τ ∈ T̃ }. Abusing the notation
and standard terminology, we will refer to the boxes in T as tubes and
continue to denote them by τ . Each π ∈ P is then contained in some
τ(π) ∈ T (if there is more than such τ , we choose one arbitrarily).
Observe that the largest angle between two line segments of length ∼ δ−1

contained in a tube τ is bounded by δ
√
σ/δ .

√
δ, hence the angle

separation condition in (A) implies that∣∣{b ∈Mδ : πb
b′ ⊂ τ for some b′}

∣∣ . 1. (45)
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We let Tm be the set of those τ ∈ T with |{π ∈ P : τ(π) = τ}|
between m and 2m. Let also Pm = {π ∈ P : τ(π) ∈ Tm}. Then for
some m we have

|W | ' |{|f | ≥ λ}|,
where W = {x : |f(x)| ≥ λ, |fPm(x)| ' λ}. Fix this value of m, then

|Tm| / |Pm|/m.

We now consider two cases.

Case 1: If λ ≥ t−C(|Pm|/m)1/2, f localizes. The proof is similar to
that of Lemma 5.4: we first construct a relation ∼ between tδ−1-cubes
and tubes in Tm such that (39) holds, and∫

W

Φb
Tm

/ t−C |Tm|1/2|W |+ δM0 |W |, (46)

where M0 is a large constant and

Φb
Tm

(x) =
∑

τ∈Tm,τ 6∼Q(x)

φτ (x). (47)

The construction is identical to that in Lemma 5.3, therefore we omit it.
Since |Tm| / |Pm|m−1, it follows that∫

W

Φb
Tm

/ t−C
( |Pm|
m

)1/2

|W | / tλ|W |.

Hence Φb
Tm

/ tλ on a subset W ∗ ⊂ W with proportional measure. We
write π ∼ Q if τ(π) ∼ Q, and let

fQ =
∑
π∼Q

fπ.

Then (37) follows from (39), and for x ∈W ∗ ∩Q we have

|f(x)− fQ(x)| =
∣∣∣ ∑

π 6∼Q

fπ(x)
∣∣∣ . Φb

Tm
(x) / tλ,

so that |fQ| & λ on W ∗ ∩Q as required. �

Case 2: Assume now that λ ≤ t−C(|Pm|/m)1/2; we will show that
fPm

satisfies (44). Fix R. It is easy to see (cf. the proof of Lemma 4.2)
that ψRfπ are essentially orthogonal, hence

‖ψRfPm
‖22 ≈ ‖

∑
π∈Pm

ψRfπ‖22 .
∫ ∑

π∈Pm

|fπ|2φR .
∫

ΦPm
φR,

where at the last step we used (45).
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Recall that if ρ =
√
σδ then R has dimensions (σδ)−1/2, δ−1/2,

(σ/δ)1/2. The main geometrical observation is that if a plate π = πb
b′

intersects CR at all, then a piece of τ(π) of length ∼ (σδ)−1/2 is entirely
contained in C ′R for a suitable choice of C ′. Indeed, let Bb be the box
defined in the proof of Lemma 4.2, and recall the inclusion R+ b ⊂ Bb.
Thus the converse inclusion holds for the dual boxes. Hence if π inter-
sects CR, then a piece of π of length ∼ (σδ)−1/2 (which is dual to Bb)
is entirely contained in C ′R. Since all dimensions of R are & (σ/δ)1/2,
we may increase C ′ (if necessary) to obtain the same inclusion for τ .

The corresponding Schwartz tails estimate is∫
R

∑
π:τ(π)=τ

φπ . m(σ/δ)−k/2

∫
C′R

φτ (48)

for all R and τ ∈ T . Namely, let T be the infinite tube extending τ in
the direction of its longest axis. If R ∩ CT 6= ∅, (48) follows from the
above observation and from the fact that |τ | = (σ/δ)k/2|π|. Otherwise,
we have the pointwise bound∑

π:τ(π)=τ

φπ(x) . m(σ/δ)−k/2φτ (x),

which again yields (48).
Summing (48) over all τ ∈ T , we obtain∫

R

ΦPm
. m(σ/δ)−k/2

∫
C′R

ΦT

for all R. By an easy covering argument,∫
ΦPm

φR . (σ/δ)−k/2m

∫
ΦT φC′R.

Fix a point x, then the number of tubes with x ∈ τ is bounded by CMσ,δ.
We convert this to a Schwartz tails bound ΦTm . Mσ,δ, and deduce that∫

ΦPmφR . m(σ/δ)−k/2Mσ,δ

∫
φC′R . m(σ/δ)−k/2Mσ,δ|R|.

Recall also that m ≤ t−C |Pm|λ−2. Therefore

‖ψ∆fPm
‖22 .

∫
ΦPm

φR . t−C |P|λ−2(σ/δ)−k/2Mσ,δ|R|. �
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6. Proof of Proposition 3.4

In this section we complete the inductive argument. The outline of the
proof is as follows. Let supp f̂ ⊂ Sσ

δ ; we want to estimate ‖f‖p in terms
of ‖f‖p,δ. To this end, we introduce an intermediate scale ρ =

√
σδ and

first break up Sσ
δ into smaller pieces Sρ

δ , then decompose these further
into δ-sectors. On each Sρ

δ we apply the inductive assumption P (p, α, ε).
We would now like to complete the proof by applying P (p, α, ε) on Sσ

ρ to
deal with the coarse decomposition. This, however, would not decrease
the value of α; therefore at this point we want to change scales from ρ to
ρ1−ε0 , which will ensure the desired gain. We will see that this is possible
if f localizes. Hence the coarse-scale decomposition in Lemma 6.1 is
designed so as to allow localization, either on scale ρ or on a second
intermediate scale between ρ and σ.

We continue to assume that

σ/δ & δ−ε2 , (49)

where we recall that ε2 was chosen in Section 3 so that ε2 < ε. Fix also
a small positive number ε3 with ε3 < ε22.

Lemma 6.1

Assume that P (p, α, ε) is known for some p and α. Assume that

supp f̂ ⊂ Sσ
δ and that ‖f‖∞,δ . 1. Let ρ =

√
σδ. Let also R, R0 be the

boxes defined in Lemma 4.2, and fix a tiling {R} of Rd+1 by translates
of R0. Let λ ≥ 1. Then for any ε > 0 we may find a λ∗ and functions
fR ∈ Σσ

ρ , with respective plate families PR, such that a logarithmic
fraction of {|f | ≥ λ} is contained in

⋃
R{|fR| ≥ λ∗} and

δ2ε3λM−1
ρ,δ . λ∗ . Mσ,ρ, (50)∑

π∈PR

|π| ≤ δ−Cε3
(λ∗
λ

)2

‖ψRf‖22, (51)

∑
R

∑
π∈PR

|π| ≤
(λ∗
λ

)p

δ−ε−Cε3Mrp+α
ρ,δ ‖f‖22. (52)

Proof. We write f =
∑

R ψRf . Using (10) and the Schwartz decay of ψ,
it is easy to prove that

{|f | ≥ λ} ⊂
⋃
R

{|ψRf | ≥ cλ}. (53)

By Lemma 4.2, supp ψ̂Rf ⊂ Sσ
ρ and ‖ψRf‖∞,ρ . Mρ,δ. Lemma 2.4

now yields a decomposition
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ψRf ≈
∑

h

hgR
h ,

where gR
h ∈ Σσ

ρ and h . Mρ,δ.
Since we assume that λ ≥ 1, there are logarithmically many relevant

dyadic values of h. We may therefore choose h = h(R) so that a logarith-
mic fraction of {|ψRf | ≥ δε3λ} is contained in the set {|hgR

h | ≥ δ2ε3λ}.
Finally, we pigeonhole to get a value of h so that a logarithmic fraction
of {|f | ≥ λ} is contained in

⋃
R{|hgR

h | ≥ δ2ε3λ}.
Let λ∗ = δ2ε3λh−1 and fR = gR

h , with this value of h. The lower
bound in (50) follows from the bound on h just stated; for the upper
bound, we use that

λ∗ = δ2ε3λh−1 ≤ ‖gR
h ‖∞ . Mσ,ρ.

Let PR be the plate family for fR. From (19) we have∑
π∈PR

|π| . h−p‖ψRf‖p
p,ρ. (54)

Letting p = 2 and recalling the definition of λ∗, we deduce (51).
It remains to prove (52). By (54), it suffices to show that∑

R

‖ψRf‖p
p,ρ . δ−Cε3Mrp+α

ρ,δ ‖f‖22. (55)

We first claim that∑
R

‖ψRf‖p
p,ρ . ‖f‖p,ρ =

∑
b

‖Ψb ∗ f‖p
p, (56)

where {Ψb} is the partition of unity defining ‖ · ‖p,ρ. Indeed, observe
that ψR(Ξb ∗ f) is Fourier supported in Πb +R. As shown in the proof
of Lemma 4.2, the latter set is contained in a Cρ-neighbourhood of Πb.
Hence the number of b′ such that Ξb′ ∗(ψR ·(Ξb ∗f)) 6= 0 is bounded by a
constant independent of δ and b, and similarly with b and b′ interchanged.
We thus have∑

R

‖ψRf‖p
p,ρ =

∑
R

∑
b

‖Ξb ∗ (ψRf)‖p
p

.
∑

b

∑
R

∑
b′

‖Ξb ∗ (ψR · (Ξb′ ∗ f))‖p
p

.
∑
R

∑
b′

‖ψR · (Ξb′ ∗ f)‖p
p

.
∑
b′

‖Ξb′ ∗ f‖p
p,
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as required.
Note that supp Ψ̂b ∗ f ⊂ Sρ

Cδ. We also have

‖Ψb ∗f‖∞,δ = max
a
‖Ξa ∗Ψb ∗f‖∞ . max

a
‖Ψb‖1‖Ξa ∗f‖∞ . ‖f‖∞,δ . 1.

Applying the inductive assumption P (p, α) in the form (28) to Ψb ∗ f ,
we see that

‖Ψb ∗ f‖p
p . δ−ε−Cε3Mrp+α

ρ,δ ‖Ψb ∗ f‖22.
Combining this with (56) and using the essential orthogonality of Ψb ∗f ,
we obtain (55) as claimed. �

Lemma 6.2
Assume that P (p, α, ε) holds, and that f ∈ Σσ

δ localizes at λ. Let P
be the plate family for f . Then for any β > (1− ε0)α we have

|{|f | > λ}| . λ−pδ−εMrp+β
σ,δ

∑
π∈P

|π|. (57)

Proof. Let W = {|f | ≥ λ}. The localization assumption means that
f has subfunctions fQ, where Q ranges over tδ−1-cubes, such that (37)
holds and

|W | / |
⋃
Q

WQ|,

where WQ = Q ∩ {|fQ| ' λ}.
Let gQ = ψQf

Q. By Lemma 4.1, supp gQ ⊂ Sσ
δ/t and ‖gQ‖∞,δ/t .

Mδ/t,δ. Applying the inductive hypothesis (25) to M−1
δ/t,δgQ, with δ re-

placed by δ/t and λ replaced by (log 1
δ )−CM−1

δ/t,δλ, we obtain

|{|gQ| ' λ}| / (M−1
δ/t,δλ)−p(δ/t)−εMrp+α

σ,δ/t ‖M
−1
δ/t,δgQ‖22

/ λ−pMp−2
δ/t,δM

rp+α
σ,δ/t (δ/t)−ε‖gQ‖22.

By (30), (16), and (37), we have∑
Q

‖gQ‖22 . t
∑
Q

‖fQ‖22 . t
∑
Q

∑
π∈P(fQ)

|π| / t
∑
π∈P

|π|.

Hence

|W | /
∑
Q

|WQ| /
∑
Q

|{|gQ| ' λ}|

/ λ−p(δ/t)−εMp−2
δ/t,δM

rp+α
σ,δ/t t

∑
π∈P

|π|

/ λ−p(δ/t)−εMrp+α
σ,δ

∑
π∈P

|π| · tMp−2−rp−α
δ/t,δ ,
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where at the last step we used that Mδ/t,δMσ,δ/t = Mσ,δ. Recall that
p− 2− rp = 2

d−k and t = (δ/σ)ε0 . Using also (8), we get

tMp−2−rp−α
δ/t,δ = tM

2/(d−k)−α
δ/t,δ ≈ t · (t−(d−k)/2)2/(d−k)−α

≈ t(d−k)α/2 ≈
(
(
σ

δ
)−(d−k)/2

)−ε0α

≈M−ε0α
σ,δ ,

which yields (57) as required. �

Lemma 6.3

Assume that we have P (p, α, ε), and that f ∈ Σσ
δ with plate family

P satisfies
|P| . tCλ4(δ/σ)(3d+1)/4−k. (58)

Then for any γ > (1− ε0
2 )α we have

|{|f | > λ}| . λ−pδ−2ε−Cε3Mrp+γ
σ,δ

∑
π∈P

|π|. (59)

Proof. Apply Lemma 5.5 to f . If f localizes at λ, then we are done
by Lemma 6.2. Otherwise, pick a subfunction f∗ as in Lemma 5.5, and
apply Lemma 6.1 to it. We obtain fR ∈ Σσ

ρ and a value of λ∗ as in (50)
so that

|{|f∗| ' λ}| / |
⋃
R

{|fR| ≥ λ∗})|

and ∑
π∈PR

|π| ≤ δ−Cε3
(λ∗
λ

)2

‖ψRf
∗‖22, (60)

∑
R

∑
π∈PR

|π| ≤ δ−ε−Cε3
(λ∗
λ

)p

Mrp+α
ρ,δ ‖f∗‖22 (61)

From Lemma 5.5 and (60) we have

|PR|ρ−(d−k)/2−1 ≈
∑

π∈PR

|π| . δ−Cε3
λ2
∗
λ4

(σ
δ

)−k/2

Mσ,δ|R||P|.

Plugging in (9) and (34), we obtain after some algebra that

|PR| . δ−Cε3
λ2
∗
λ4

(σ
δ

)(3d+1)/4−k

|P|.

Combining this with (58), we see that

|PR| ≤ δ−Cε3tCλ2
∗.
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By Lemma 5.4 and (49), fR localize at λ∗. Applying Lemma 6.2 we see
that

|{|fR| ≥ λ∗}| . δ−ελ−p
∗ Mrp+β

σ,ρ

∑
π∈PR

|π| (62)

for any β with β > (1− ε0)α. Hence

|{|f | ≥ λ}| /
∑
R

|{|fR| ≥ λ∗}|

≤ δ−ελ−p
∗ Mrp+β

σ,ρ

∑
R

∑
π∈PR

|π|

≤ δ−2ε−Cε3λ−pMrp+β
σ,ρ Mrp+α

ρ,δ ‖f∗‖22
≤ δ−2ε−Cε3λ−pM

rp+(α+β)/2
σ,δ

∑
π∈P

|π|,

where we also used (61) and Lemma 2.3 with p = 2. �

Proof of Proposition 3.4. Assume that supp f̂ ⊂ Sσ
δ and

‖f‖∞,δ ≤ 1. (63)

We observed at the beginning of the proof of Proposition 3.3 that (25)
follows from Chebyshev’s inequality if (26) holds. In particular, it holds
for any α, ε > 0 if λ . M

rp/(p−2)
σ,δ . We may therefore assume that

λ ≥M
rp/(p−2)
σ,δ . (64)

Recall also that the assumptions of Proposition 3.4 include (49).
Choose fR ∈ Σσ

ρ as in in Lemma 6.1, with ρ =
√
σδ. Suppose that we

can prove that fR obey (59), with δ and λ replaced by ρ and λ∗. Then,
using also (52) and (9), we obtain

|{|f | ≥ λ}| /
∑
R

|{|fR| ≥ λ∗}|

. λ−p
∗ δ−2ε−Cε3Mrp+γ

σ,ρ

∑
R

∑
π∈PR

|π|

. λ−pδ−3ε−Cε3Mrp+γ
σ,ρ Mrp+α

ρ,δ ‖f‖22
. λ−pδ−3ε−Cε3Mrp+θ

σ,δ ‖f‖22

for any θ > (α+ γ)/2, as required.
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It thus remain to find conditions under which fR obey the assump-
tions of either Lemma 6.2 or 6.3. From (51), (33), (63) we have

|PR|ρ−(d−k)/2−1 ≈
∑

π∈PR

|π|

. δ−Cε3
(λ∗
λ

)2

‖ψRf‖22

. δ−Cε3
(λ∗
λ

)2

Mσ,δ|R|.

Plugging in the expression (34) for |R|, we obtain after minor simplifi-
cations

|PR| . δ−Cε3
(λ∗
λ

)2

Mσ,δ

(σ
δ

)(d+1)/4

. (65)

Assume first that d > 2k + 1 and p > p1(d, k) := 2 + 8
d−2k−1 . From

(65) and (64) we have

|PR| . δ−Cε3λ2
∗M

1−(2rp)/(p−2)
σ,δ

(σ
δ

)(d+1)/4

.

Recalling (22), we see that 1− 2rp
p−2 = −1+ 4

(d−k)(p−2) . We now also plug
in (9) for Mσ,δ. After some algebra, this yields

|PR| . δ−Cε3λ2
∗

(σ
δ

)−(d−2k−1)/4+2/(p−2)

.

Recall that t = (δ/σ)ε0 . If we assume that ε0 is sufficiently small de-
pending on p, d, k, and if ε3 is small enough compared to the ε2 in (49),
then our assumption that p > p1(d, k) implies that |PR| . tCλ2

∗. By
Lemma 5.4 fR localize, hence Lemma 6.2 applies.

Assume now that p > p2(d, k) := 2 + 32
3d−4k−3 ; in this case we will

see that (58) holds, with λ and δ replaced by λ∗ and ρ. It suffices to
check that the right side of (65) is . tCλ4

∗(ρ/σ)
3d+1

4 −k. After some
simplifications, this is equivalent to

λ2
∗λ

2 & δ−Cε3t−CMσ,δ

(σ
δ

)(5d+3−4k)/8

.

By (64) and (50), we have

λ2λ2
∗ & δCε3λ4M−2

ρ,δ & δCε3M
4rp/(p−2)
σ,δ M−2

ρ,δ ≈ δCε3M
4rp/(p−2)−1
σ,δ ,

where at the last step we used (9). It thus suffices to prove that

M
4rp/(p−2)−1
σ,δ & δ−Cε3t−CMσ,δ

(σ
δ

)(5d+3−4k)/8

.
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Using again (9) and (22), we see after some algebra that this is equivalent
to (σ

δ

)(3d−4k−3)/8−4/(p−2)

& δ−Cε3t−C .

But if p > p2(d, k), then the exponent on the left is positive, hence the
last estimate follows if ε0 was chosen small enough and if ε3 is small
enough compared to ε2 in (49). �

7. Properties of k-cones

We first recall the construction of k-cones described in the introduction.
In this section, we will use superscripts to denote Cartesian coordinates
in Rd+1, e.g. x = (x1, . . . , xd+1).

Let L0 be a (d − k + 1)-dimensional linear subspace of Rd+1, and
let Li = L0 + vi for i = 1, . . . , k, where v1, . . . , vk are linearly inde-
pendent vectors such that L0, v1, . . . , vk span Rd+1. Applying an affine
transformation if necessary, we may assume that

L0 = {(0, . . . , 0, xk+1, . . . , xd+1) : xk+1, . . . , xd+1 ∈ R},

and that for i = 1, . . . , k,

vi = (v1
i , . . . , v

d+1
i ), vi

i = 1, vj
i = 0 if i 6= j.

If x = (x1, . . . , xd+1) ∈ Rd+1, we will also use the notation x = (x⊥, x‖),
where x⊥ = (x1, . . . , xk) and x‖ = (xk+1, . . . , xd+1) denote the compo-
nents orthogonal to L0 and parallel to it, respectively.

We let Ei ⊂ Li, i = 0, . . . , k, be surfaces of dimension d−k such that
Ei is the boundary of a strictly convex solid in Li, is smooth, and has
nonvanishing Gaussian curvature. Thus for each unit vector n ∈ Sd−k,
each Ei contains exactly one point xi such that n is the outward unit
normal vector to Ei in Li at xi. We will then write n = ni(xi). Since Ei

is smooth, the mapping xi → ni(xi) is a smooth diffeomorphism from
Ei to Sd−k.

We say that a (k + 1)-tuple of points (x0, x1, . . . , xk), xi ∈ Rd+1, is
good if xi ∈ Ei, i = 0, . . . , k, and if the outward unit normal vectors to
Ei in Li at xi are the same (i.e. n0(x0) = · · · = nk(xk)). We then let

S =
⋃

(x0,...,xk) good

η(x0, . . . , xk),

where η(x0, . . . , xk) denotes the k-dimensional convex hull of x0, . . . , xk

in Rd+1.
We first verify that η(x0, . . . , xk) is indeed k-dimensional. Indeed, if

η(x0, . . . , xk) had dimension less than k, then the dimension of the affine
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space spanned by η(x0, . . . , xk) and L0 would be less than d+1. But on
the other hand, this affine space contains both L0 and v1, . . . , vk (since
vi−xi ∈ L0), hence must be equal to all of Rd+1, which proves our claim.

Let Ti(xi) be the d− k-dimensional affine space tangent to Ei in Li

at xi. Note that if (x0, . . . , xk) are good, then Ti(xi), i = 0, . . . , k, are
parallel. The above argument shows that Ti(xi), ni(xi), Li span Rd+1.
In fact, we can say slightly more. Let D be a closed disc in Sd−k, and
let

Ei|D = {xi ∈ Ei : ni(xi) ∈ D},
S|D =

⋃
(x0,...,xk) good, ni(xi)∈D

η(x0, . . . , xk).

We may then choose orthonormal bases

F ‖(x0) = {u1(x0), . . . , ud−k(x0)}, (66)

F⊥(x0) = {ud−k+1(x0), . . . , ud(x0)}, (67)

for T0(x0) and η(x0, . . . , xk), respectively, so that each uj(x0) depends
smoothly on x0 ∈ E0|D. (For F ‖, this is clear from smoothness of E0;
for F⊥, it can be done by applying Gram-Schmidt orthonormalization
to x1−x0, . . . , xk−x0.) Let V (x0) denote the volume of a parallelepiped
spanned by F ‖(x0), F⊥(x0), n0(x0). From the above considerations we
have V (x0) 6= 0. But also V (x0) is a continuous function of x0, hence

V (x0) ≥ c0 > 0, x0 ∈ E0|D. (68)

As noted above, η(x0, . . . , xk) depend smoothly on (x0, . . . , xk). Thus
to show that S is a smooth surface of codimension 1 in Rd+1, it suffices
to prove that it is nonsingular, i.e. the different η(x0, . . . , xk) do not
intersect. This follows from the lemma below.

Lemma 7.1

Let L be a (d−k+1)-dimensional affine subspace parallel to L0. If S
intersects L, then the cross-section E := S ∩L is a closed smooth d− k-
dimensional surface with nonvanishing Gaussian curvature, bounding a
strictly convex body in L. Moreover, each η(x0, . . . , xk) intersects L at
a unique point x ∈ E ∩ η(x0, . . . , xk). The mapping x0 → x is smooth,
and the unit outward normal vector to E in L at x is equal to n0(x0).

Proof. Suppose that z = (z1, . . . , zd+1) ∈ L ∩ η(z0, . . . , zk), and that
z /∈ {z0, . . . , zk}. Since z belongs to the convex hull of z0, . . . , zk, taking
the first k coordinates we may write

z⊥ = α0(0, . . . , 0) + α1(1, 0, . . . , 0) + · · ·+ αk(0, . . . , 0, 1),
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with all αi ≥ 0,
∑k

j=0 αj = 1, and at least one αj > 0. Since along
η(z0, . . . , zk) each zj , j > k, is a linear function of z1, . . . , zk, we must
in fact have

z = α0z0 + · · ·+ αkzk.

Similarly, if x is any other point in LS with x ∈ L ∩ η(x0, . . . , xk), then
x⊥ = z⊥, so that

x = α0x0 + · · ·+ αkxk,

with the same α0, . . . , αk. This shows that x depends smoothly on x0.
Next, we show that the mapping x0 → x is one-to-one. Suppose to

the contrary that x ∈ L ∩ η(x0, . . . , xk) ∩ η(y0, . . . , yk). Then

x‖ = α0x
‖
0 + · · ·+ αkx

‖
k = α0y

‖
0 + · · ·+ αky

‖
k. (69)

Consider, however, the scalar product

n0(x0) · (α0w
‖
0 + · · ·+ αkw

‖
k), (70)

where (w0, . . . , wk) ranges over all good k-tuples. By the strict convexity
of each Ei, (70) is maximized when (w0, . . . , wk) = (x0, . . . , xk), and only
there. But this contradicts the second equality in (69).

Interpreting (70) as the distance from the point w ∈ L∩η(w0, . . . , wk)
to the plane {y ∈ L : n0(x0) · (y‖ − x‖) = 0, and observing that it is a
smooth function of w0, we see that E is indeed a smooth surface in the
neighbourhood of x0. The argument in the last paragraph now shows
that n0(x0) is indeed the unit outward normal vector to E in L at x. �

We now define a covering of Sδ, δ > 0, by δ-sectors as follows. We
may assume that S is contained in a large cube of sidelength C0. Fix a
δ1/2-separated subset N of the unit sphere Sd−k. For i = 0, 1, . . . , k, let
Mi be the set of points in Ei where the outward unit normal vectors in
Li belong to N . We then define M to be the set of the centers of mass
of η(x0, . . . , xk), xi ∈ Mi. We also define the corresponding δ-sectors
to be rectangular boxes Πa centered at a ∈ M such that if a is the
center of mass of η(x0, . . . , xk), then Πa has sidelengths C × · · · × C in
the directions parallel to η(x0, . . . , xk), Cδ1/2× · · · ×Cδ1/2 in directions
tangent to S at a but perpendicular to η(x0, . . . , xk), and Cδ in the
direction parallel to n(a), the normal vector to S at a. Here C is a large
constant with C > 2C0, to be fixed later.

First, let Π0
a = Πa∩L0. Then Π0

a is a rectangular box, centered at x0,
of dimensions at least Cδ1/2× · · ·×Cδ1/2×Cδ, where the long axes are
tangent to E0 at x0. We claim that the dimensions of this box cannot
exceed C ′δ1/2×· · ·×C ′δ1/2×C ′δ, for some other constant C ′. To this end
it suffices to prove that the maximal number of disjoint translates of the
box spanned by (δn0(x0), δu1(x0), . . . , δud−k(x0)) (recall that ui were
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defined in (66)) that can be placed inside Π0
a is bounded by . δ−(d−k)/2.

But consider the corresponding translates of the box spanned by

(δn0(x0), δu1(x0), . . . , δud−k(x0), ud−k+1(x0), . . . , ud(x0)).

They are also disjoint, each one has volume & δd−k+1 (by (68)), and
they are all contained in Πa which has volume ≈ δ

d−k
2 +1. Thus the

claim follows by comparing volumes.
This shows that {Π0

a}a∈M0 is, if C is large enough, a standard finitely
overlapping covering of the δ-neighbourhood of E0 in L0 by rectangular
boxes of dimensions roughly Cδ1/2 × · · · × Cδ1/2 × Cδ, with centers in
a δ1/2-separated set M0. The same argument can now be repeated for
E1, . . . , Ek. In particular, this implies the finite overlap property.

It remains to prove the angular separation property. We may re-
strict our attention to a small segment S|D as defined earlier such that
n0(x0) 6= −n0(y0) for any x0, y0 ∈ E0|D. We then want to prove that if
x, y ∈M, x 6= y, then |n(x)− n(y)| & δ1/2. It suffices to prove that

|n(x)‖ − n(y)‖| & δ1/2.

But if x ∈ η(x0, . . . , xk), y ∈ η(y0, . . . , yk), then n(x)‖ = c(x0)n0(x0)
(since both vectors are orthogonal to T0(x0)), and similarly n(y)‖ =
c(y0)n0(y0). By the nonvanishing curvature assumption for E0, the angle
between n0(x0) and n0(y0) is at least δ1/2; hence it suffices to prove
that c(x0), c(y0) & 1. But on the other hand, we have c(x0) = V (x0),
where V (x0) is the volume of the parallelepiped defined before (68), and
similarly for y0. Thus the claim follows from (68).
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