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ABSTRACT

We examine several scalar oscillatory singular integrals involving a real-
analytic phase function ¢(s,t) of two real variables and illustrate how
one can use the Newton diagram of ¢ to efficiently analyse these objects.
We use these results to bound certain singular integral operators.

1. Introduction

Arnold conjectured and Varcenko verified that sharp asymptotics for
a scalar oscillatory integral with phase function ¢ can be measured in
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172 CARBERY, WAINGER, AND WRIGHT

terms of the Newton diagram of ¢. For any smooth real-valued function
¢ € C>(R?) with Taylor expansion Y. b,z®, the Newton diagram II of
¢ is the unbounded polyhedron formed as the smallest closed convex set
in the positive cone Ri containing

U{xeRd|x2a}

acl
where A = {a € Z%| by # 0} and a < z is the partial order defined
by a1 < z1,...,aq4 < x4 where a = (a1,...,aq4) and x = (x1,...,24).

When d = 1 the Newton diagram is a half-line and simply encodes the
smallest nonvanishing Taylor coefficient of ¢.

In this paper we will describe an elementary method initiated in [2, 3]
and [4] (see also [8, 10]) by analysing certain two dimensional oscillatory
integrals of the form

I(K) = / / eSO K (s, 1) x(s,t) dsdt

for large real A and various (possibly) singular kernels K. Here ¢ is
real-analytic at the origin (0,0), ¢(0,0) = 0, and y € C>°(R?). When
K =1, the behaviour of I(1) for large A is determined by the Newton
distance 3 of I, defined as the positive parameter such that g1 lies on
the boundary of II (here 1 = (1,1)).

Figure 1.

The boundary of IT consists of finitely many vertices {Vi,...,Vn}
and compact edges {F; = V1Va,...,Ex_1 = Vy_1Vn}, together with
two infinite (vertical and horizontal) edges Ey and En. To each edge
E;,0 < j < N, we associate the corresponding part of the phase
oE;(s,t) = ZaeEjﬁA cas®1t*2. We say that ¢ is R-nondegenerate if
for each compact edge F;,1 <j < N —1,

Vo, (s,t) # 0

for all (s,t) with st # 0.



Singular integrals and the Newton diagram 173

Theorem 1.1 (Varcenko [15])

Let ¢ be R-nondegenerate, real-valued and real-analytic at the origin
(0,0) such that ¢(0) = V¢(0) = 0. If x € C(R?) is supported in a
sufficiently small neighbourhood of (0,0) and if

i) 1 ¢ {Vi,...,Vn} or B =1, then
(1) = e AP oA~ (1/Bte))

for some € > 0;
ii) 1 =V} for some j and § > 1, then

IN1) = ca AP log A + O(N1/P).
Here ¢; and cq are explicit constants depending on ¢.

As an application of our elementary method we will give a new proof
of Theorem 1.1 in Section 4. The proof does not use any resolutions of
singularities.

Remarks 1.2

e Theorem 1.1 is not true without the assumption that ¢ is R-
nondegenerate since a (real-analytic) change of variables leaves
I,(1) unchanged but can change the Newton diagram and dis-
tance of ¢. The R-degenerate phase ¢(s,t) = (s —t)* with Newton
distance § = 1/2k provides a simple example. A rotation trans-
forms this example to the R-nondegenerate phase ¢(s,t) = s* with
Newton distance 5 = 1/k which is the correct decay parameter for
I,(1) in this case. An interesting substitute for R-nondegeneracy
is discussed in [6].

o If 3 > 1 and f1 lies in the interior of the compact edge E;, the
constant ¢; in part ¢) of Theorem 1.1 is equal to

x(O,O)//eWEf(S’t) dsdt:

the existence of this oscillatory integral is discussed in Section 4.
The precise values for the constants ¢; and co in all cases can be
determined from the proofs given below.

It is interesting to compare Varcenko’s result with the bilinear form
I\(K) on L*(R) where K (s,t) = f(s)g(t) is the product of two arbitrary
L? functions. This effectively fixes the coordinate axes (s,t) and a result
of Phong and Stein [9] states that the sharp decay estimate for the L?

norm of this bilinear form is O(A\~'/2%) for any real-analytic ¢ (here
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0 is the Newton distance to the Newton diagram associated to 8§1t¢).
Such results arise from the study of certain degenerate Fourier integral
operators associated to generalised Radon transforms along curves in the
plane which is a topic studied by many authors. The C*° case has been
successfully treated by Seeger [13] and Rychkov [11] (see also [5]).

Another instance where one has sharp results for any real-analytic
phase ¢ occurs when K(s,t) = 1/st is the double Hilbert transform
singular kernel. In fact we have

Theorem 1.3

Let ¢ be any real-valued phase function which is real-analytic at (0, 0)
and K (s,t) = 1/st. Then for x € C°(R?) supported in a sufficiently
small neighbourhood of the origin and identically equal to 1 near (0,0),

I(K) = Cylogh + O(1)

where Cy is an explicit constant which may or may not vanish, depending

on ¢.
Remarks 1.4

e A similar result for polynomial phases was established in [8].

e Consider the translation-invariant singular integral operator T'f =
f*S, where S is the principal-valued distribution defined on a test
function v by

(S, ) = //w(s,t,qb(s,t))x(s,t) ds/sdt /1.

The multiplier m = § for this operator is related to Iy (K) in The-
orem 1.3 by m(0,0,\) = I,(K). The proof of Theorem 1.3 can be
modified to show that 7" is bounded on all LP(R3),1 < p < oo if
and only if every vertex V;,1 < j < N, of the Newton diagram of
¢ has at least one even component. This extends the result in [2]
from polynomial to real-analytic surfaces and we will indicate the
required modifications in Section 5 (see also [10] for a further ex-
tension). Interestingly this result for 7' is false in the C'*° category,
even if ¢ has some nonvanishing derivative; that is, even if ¢ is of
finite-type in some sense. An example is produced in Section 5.

e Recently certain variants of Theorem 1.3 have been used in the
study of real-analytic mappings ¢ : T2 — T* between tori which
have the property that the change of variable f — f o ¢ linear
transformation maps absolutely convergent Fourier series to uni-
formly convergent (with respect to rectangular summation) Fourier
series. See [4].
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In each of the three cases, K = 1, K(s,t) = f(s)g(t), or K(s,t) =
1/st, the nature of K dictates the decomposition of I(K) needed to
understand its behaviour for large \. When K(s,t) = f(s)g(t) is the
product of two arbitrary L?(R) functions, a subtle decomposition away
from the zero set of 9% ¢ is used by Phong and Stein [9] to estimate the
norm of the form I(fg). We will use a more elementary decomposition,
one with respect to the edges {E;} of the Newton diagram IT of ¢ in the
proof of Theorem 1.1, and one with respect to the vertices {V;} of II
in the proof of Theorem 1.3. In both cases the two decompositions are
similar as well as the method used to analyse I (1) and I, (1/st).

To illustrate the method in a simple setting we prove the following
proposition in the next section.

Proposition 1.5

For any real-valued ¢ of a single variable which is real-analytic at 0,
I, = / M) ds/s = O(1). (1)
Is|<1

Remark 1.6 Proposition 1.5 is well-known; in fact, higher dimensional
versions, where 1/s is replaced by a general homogeneous Calderén-
Zygmund kernel K (z) = Q(z)/|z|? with Q € Llog L(S?~!) having mean
value zero, also hold. These are special instances of the theory of gener-
alised singular Radon transforms; see for example, [14].

In the next section we will sketch the proof of Proposition 1.5, high-
lighting an idea which will be used in the proofs of Theorems 1.1 and 1.3.
In Section 3 we describe the basic decomposition of I (K) for both K =1
and K (s,t) = 1/st and prove some basic estimates. In Section 4 we com-
plete the proof of Theorem 1.1. The final section is devoted to the proof
of Theorem 1.3 as well as describing how to extend the main result in [2]
regarding the singular integral operator T' (defined in the remarks after
the statement of Theorem 1.3) from polynomial to real-analytic surfaces.

2. Proof of Proposition 1.5

We may assume that ¢(0) = 0. The Newton diagram of ¢ simply picks
out the first nonvanishing by # 0 Taylor coefficient of ¢(s) = >, 5, bns™.

In particular this tells us that ¢(s) ~ bys* for s small (note that we may
restrict the integration of Iy in (1) to an arbitrarily small interval |s| < e
- independent of A - which creates an O(1) error). Thus for small s the
monomial b;s* dominates the other terms in the expansion of ¢ and we
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will see that for sufficiently small € > 0,

/ M) ds/s = / giAbrs” ds/s + O(\~%F) (2)
|s|<e

Is|<e

for some 6 > 0. The second integral in (2) is zero if k is even whereas
when k is odd, it is equal to mwsgn(bg)/k + O(1/\) which gives us an
asymptotic description of Iy and in particular proves (1).

We decompose the first integral in (2) dyadically in s (in higher
dimensions it is natural to decompose into dyadic annuli since Q €
Llog L(S? ') possesses some regularity which should be compared to
the homogeneous example K (s,t) = 1/st of Theorem 1.3),

i>\¢(5)d — I.(\
e S/S .
3 / . fsi= S L

P>Po P>Ppo

where we write
I,(\) = / ei)‘rpk‘bp(s)ds/s
1<]s|<2

with
bp(s) = brs® + Z 9~ (n=kpp sn.
n>k

Here ¢, is a normalised phase adapted to the dyadic interval 277 <
|s| < 27P*! indexed by p and on which ¢ has size 27P%. Similarly we
decompose the second integral in (2)

. K
/ ek s /s = Z I1,(N)
ls|<e P>Po

where

II,(\) = / eMrpkb’“Skds/s.
1<]s[<2

We examine the difference I,,(\) — II,(\) for each p.
The idea is very simple. For small A27P* we gain in the difference
since ¢, (s) — bps® = O(27P) for large p and so

|, (\) — IL,(\)| < C27P \27PF,
For large A27PF we treat I, and II, separately, integrating by parts to

obtain
[L,(N) = IT,(\)| < C[A27PM7N



Singular integrals and the Newton diagram 177

for any IV > 0. Putting these estimates together shows that
|I,(\) — IT,(\)| < C27P min(\27PF, [\27Pk]~2)
for some ¢ > 0. Summing in p establishes (2). O

The basic idea for the proofs of Theorems 1.1 and 1.3 is the same;
however a single monomial of ¢(s,t) = " bas**t*? no longer dominates
all the other monomials. For I)(1) we will decompose the integration
into various regions corresponding to each edge F;,0 < j < N of the
Newton diagram II. In the region corresponding to Ej, say, the mono-
mials along Ej; (that is, the monomials appearing in ¢g, ) will dominate
in a certain sense. For I(1/st) we will decompose the integration into
various regions corresponding to each vertex V;,1 < j < N of II. In the
region corresponding to Vj, say, the monomial of ¢ corresponding to Vj
will dominate in a certain sense. In both cases we will compare matters
to the corresponding integral where the phase ¢ is replaced by ¢ g, or the
monomial corresponding to the vertex Vi, creating an allowable error.

3. Basic decompositions

In this section we fix a real-valued, real-analytic phase function QSJSS, t) =
Yo bas®1t?? with Newton diagram IT consisting of vertices {V;};Z; and

edges {E;}1,.

Figure 2.

Let n; denote an inward normal vector to the edge E;,0 < j < N,
as indicated in Figure 2. The components of n; can be chosen to be
rational and for notational convenience, we will normalise the normals
n;,0 < j < N, so that all components have a common denominator.
To each compact edge F; = V;V;41,1 < j < N — 1, we associate the
positive parameter s; = (n; - V;)/(n; - 1) which will serve to measure
the decay rate of the part of I)(1) corresponding to F;. Similarly, if
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the end vertices Vp and Vi do not lie along the coordinate axes, we set
30 = (ng-V1)/(no-1) and sy = (ny - Vy)/(nn - 1) for the noncompact
edges Ey and E. If either Vj or Vj lie along one of the coordinate axes,
we set so = (n1-Vo)/(ng+mn1)-1or sy = (ny-1-Vn)/(nn—1+nn) -1,
respectively. Geometrically s; is the parameter such that s;1 lies on the
line extension of E;. Hence if the ray {sl},>o intersects the edge Ej,
then s; = (3 is the Newton distance of II. The situation is depicted in
Figure 2 with E; and s;.
We begin the analysis of

I\(K) z//ei’\¢(s’t)K(s,t)x(s,t) dsdt

where y € C°(R?) is supported in a small neighbourhood of (0,0) and
K =1or K(s,t) = 1/st. Fix a nonnegative, even ¢ € C° supported in
{s:1/2 < |s| <2} such that ) ., (2Ps) =1 for s # 0. Then

L(K)= ) / / eSO K (s, 1) x (s, 1)1 (2Ps)h(274) dsdt — (3)
P

=(p,q)

and the integral in the sum is supported in the dyadic rectangle
{(Svt) : |S| ~27P, |t| ~ 27(1}7

indexed by the integer lattice point P = (p, q) where both p, ¢ are large
and positive due to the small support of .

The basic decomposition of I (K) will be expressed as a decomposi-
tion of L = {P = (p,q) € N x N}. We begin with K(s,t) = 1/st and
define, for each vertex V;,1 < j < N, of II, the cone C(V;) = {P =
onj_1+pn; € L: o,p >0} in L. See Figure 3.

Figure 3.

It is clear that L = Uj»vle(V}) gives an essentially disjoint decom-
position of L. By our convention that all rational components of the
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normals {n;} have a common denominator, P = on;_1 + pn; € C(V;)
implies that o = k/d; and p = £/d; for some fixed positive integer d;
and integers k,¢ > 0. Hence the points of C(V}) are parameterised by
a certain subcollection A; C {(k,¢) € N x N} of positive integer lattice
points. Furthermore for any « € I, P - (« V) >0or2 <oV
for all P € C(V;) and hence the monomial by, s"51¢"5:2 of ¢ correspond-
ing to the Vertex V; dominates all the other monomials bas®1t*? of ¢ on
those dyadic rectangles indexed by P € C(V;). This gives us the basic
decomposition of

N
I (1/st) = ZSAJ 1/st) :Z Z I; p(1/st)
j=1 PEC(V,

where I; p(K) (K(s,t) = 1/st in this instance) is the P = (p, ¢) integral
in (3). We will compare this to

My ;(1/st)= Y II;p(1/st)
PeC(V;)

where
11 p(1/st) = //e“bvjsvj’ltvj’2x(s,t)w(zps)w(%) ds/s dt/t.
In fact, we will show that

Sx,j(1/st) = My ;(1/st) = O(1) (4)

for each 1 < j < N and the behaviour of each M) ;(1/st) is easy to
understand.

We shall need a further decomposition of C'(V;) = Un>0Cm(V;)
where

m+k
dj

Om(%):{P: nj,1—|—§nj€L:k€N}
J

14
U{P:ﬁnj,1+m+ TLJ'GLSKGN}
d; d;

= CH(V) U Co(V)).

See Figure 3. In particular this divides each cone C(V;) into two parts,
C~=(V;) = Um>0C,,(V;) and C+( i) = Unm>0C;t (V;). This leads us to
the cones C(E;) = C~ (V;) UCH( J+1) in L associated to each compact
edge E; = V;Vj41,1 < j < N —1. To the noncompact edges Fy and En
we associate C(Eg) = CT (V1) and C(En) = C~ (V) respectively. This
gives us another decomposition of L = Uj-V:OC (E;) but now with respect
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to the edges {E,} of the Newton diagram II of ¢; each cone C(E;) =
Unm>0Chm (E;) decomposes further where C,,, (E;) = C,. (V;)UC;H ( J+1)
We will use th1s decomposition to analyse I A(l) In fact we decompose

N N
D= "S0:=> >
j=0

J=0 PeC(Ej)

and then compare each Sy (1) to

My;(1)= > II;p(1)

PEC(E;)
where
II;p(1) = / / e (503 (o )(2P8)0p(27¢) dsdlt.
We will show that
Sxi(1) = My (1) = O(A~ /a0 (5)

for some ¢; > 0; recall that s; = (n; - V;)/(n; - 1) < B where § is the
Newton distance of II. This shows that in some sense, the monomials
appearing in ¢g, dominate the other monomials of ¢ on those dyadic
rectangles indexed by P € C(Ej).

In either case K =1 or K(s t) =1/st, it P € C(V;), we write

I - 92~ Pl// 7P.Vj¢j’P(S’t)X(27pS,27qt)

x K(27Ps,279%)(s)u(t) dsdt
where
¢j,p(s,t) = 27V6(27Ps,279) = by, s¥011"72

+ Y 2 PV, senge
a€c[II\V;]NA

is a normalised phase with respect to P € C(V;). We will compare each
L p(K), for P € C(V;), to I11; p(K) defined above which can be written

as
II;p(K) = 2—P1// X2~ Vi g, p (s,0)

X(27Ps,279) K (2775, 279%)(s)w(t) dsdt

where
b1/st,5,P(8:1) = by, sViVi2
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if P e C(V;) and
prj,p(s,t) =2"Vigp (277s,27%)
if P € C~(V;) whereas
prjp(s,t)=2"Yigp  (277s,27%)
if P € C*(V;). Recall that C(V;) = C~(V;) UCT (V) and
C(E;) = C~(V;) UCH (V).

As in Proposition 1.5 we split the analysis of the difference I; p(K) —

II; p(K) for P € C(Vj) into the cases when A2~V is small and large.
Again we will gain in the difference. To understand this when K(s,t) =
1/st and P € C(V;), we need to estimate the difference

¢j,P(Svt) - (bl/st,j,P(Sat) = Z ba27(a7v}).P5ath2
a€c[II\V;]NA

for |s|, [t| ~ 1. We observe that ;1 > 0 and 62 > 0 where

0;1:= inf —V:)-n; and 6,9 := inf - Vi) -n;_1.
91 ae[nl{lEj]ﬂA(a ]) ftj and 05,2 ae[n\lgj,l]ﬂ/\(a ]) -1

Hence for P € C,,(V}),
(a=Vj) - Pzm/dj(a—Vj) - (nj1+mn;) = dm

for some 6; > 0, uniformly for o € IT'\ V;. This implies that ¢; p(s,t) —
¢1/st,j,P(57t) = 0(275]‘771) and thus

Dyp(1/st) = Ty p(1/st) = 027%™ X2~ V7)), (6)
uniformly for P € Cy, (V).

In order to understand the difference I; p(K)—1I; p(K) when K =1
and P € C(E;) = C~ (V;)UCT (Vj41), we need to estimate the difference

bj.p(s,t) — p1jp(s,t) = Z by 2~ (= Vi) P gonyas
a€c[II\E;]NA

for |s|, [t| ~ 1 if P € C~(V;), and the difference

¢j+1,P(Sat) _¢1,j+1,P(3,t) — Z ba2*(a7Vj+1)-PSa1ta2
ae[M\E,]NA
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for [s],|t] ~ 1 if P € C*(Vj41). In the first case for P € C;,(V;), we
have

+k 5,
(a=Vj)-P > T (a=V;)m; > 2% [t A,
j j
and in the second case, for P € C}f (V;41),
+k 0
(0= Vi) P 2 S (0= Vign) oy 2 =52 k)
J+1 J+1

in both instances, these hold uniformly for o € II \ E;. Thus for some
€5 > 0,

Lp(1) = I;p(1) = O(2~ 9" HP2= P 2= V), (7)

uniformly for P € Cp,,(E;) = C,,,(V;) UC(Vy1) where r = j or j +
1 depending on whether P € C,,(V;) or P € C(Vj41), respectively.
Estimates (6) and (7) are good when A2~F"Vi is small.

Complementary estimates when A\2~7"V5 is large are easily obtained
for II; p(K) in both cases K = 1 and K (s,t) = 1/st. When K (s,t) =
1/st, integration by parts shows that for P € C(V}),

I\ p(1/st) = / / N2 by IR (9mp g 9=ap)y(s)ep(t) ds/s dt/t
= O(x2~ Vi) (8)

for any NV > 0.
On the other hand, when K = 1, we have

[Vé1,5p(s,1)| = [V[27 V1, (2775,279)]] > §; > 0 (9)

on the support of ¥(s)y(t), uniformly for P € C~(V;) C C(E;), say,
whenever Ej is a compact edge (similarly for P € C*(Vj41) C C(Ej)).
This follows from the R-nondegeneracy hypothesis that Vég, never
vanishes away from the coordinate axes. In fact, more generally, for
P =ong +mn; with 0,7 > 0,

27 Vop, (2775, 270) = by, sV 4 Y T gla Vi mop, sges
a€[E;\V;1nA

where § = 277 and (o — V;) - ng > 0 whenever o € E; \ V;. The
R-nondegeneracy hypothesis implies that the gradient of A¢p,(Bs,Ct)
does not vanish whenever st # 0 and A, B and C positive fixed cons-
tants; therefore, we see that the gradient of the above expression, de-
noted by F(s,t, ) say, is nonzero for (s,t) in the support of ¥(s)y(¢) and
0 > 0. But the above expression also shows that F(s,t,0) # 0 and since
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F is clearly continuous on the compact product supp(¢(s)i(t)) x [0,1]
we see that F is uniformly bounded below on this product, establish-
ing (9). A similar argument gives a bound from below of the gradient of
2P Vitrgp (27Ps,279%), uniformly for P = on; + tny with o, 7 > 0.

Even for the noncompact edges Fy and Ey, (9) continues to hold
whether or not ¢ is R-nondegenerate, as long as the components of P =
(p,q) are large and positive which is the situation when the support of
x is sufficiently small. For

k
m+ no + ﬁnl S Om(Eo) = O;E(Vl),
dy dy

P =
say,

acFEgNA

— SV171 bvltV1,2+ Z 2_%(a_vl)'"1bat0t2 .

aceFEqgNA
az>Vy o

However m = cq since ng is proportional to (1,0) and from this, it is
easily seen that (9) also holds for the noncompact edges as well since g
can be chosen to be large if the support of x is small.

Hence, for P € C~(V;) C C(E;) say, since any C* norm of ¢ ; p is
bounded above an mtegratlon by parts argument shows that

II;p(1) = 2~ Pl// D276 () ) (7P s 27 ) (s )ab(t) dsdt

for any N > 0. Similarly for P € CT(V;41) C C(E;).

To prove similar estimates for I; p(K), we need similar derivative
bounds for the normalised phases ¢; p(s,t) = 2F°Vig(27Ps,279) which
we establish in the following lemma.

Lemma 3.1

For every M > 0 and 1 < j < N, there exists constants 5], Cumy >0
such that for (s,t) € supp((s)p(t )) and P € C(Vj}) large in the sense
that both p and q in P = (p,q) are large,

i) |l¢j.pllem < Curj;
ii)ifj=1and P € C*(Vi) orif j = N and P € C~(Vy),

Vi p(s,t)] > &
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iii) there is some derivative 0% such that
0%¢5.p(st)] = &
iv) if in addition, ¢ is R-nondegenerate,
IVojp(s,t)] = 6;
holds for any 1 < j < N.

Proof. Since

¢jp(s,t) =20 Vig(27Ps, 270t) = Y 27 Plam Vil g ge

and 277 (@=Vi) <1 for P € C(V;) and « € TI, we see that i) holds. The
proof of part i) is similar to the proof given above that the gradient of
®1,0,; is bounded below. We leave the details to the reader.

For parts ¢it) and iv), suppose that P € C~(V;) (the proof when P €
C*(V;) is similar). Furthermore, we may suppose that 1 < j < N —1
so that P € C(E;) and E; is a compact edge; otherwise we are in the
situation of part 7). For part iii), we write

$j.p(s,t) = by s¥ort¥ie 4 " 97 PlarVip, garge
acIl\V;

and consider the OVi derivative of ¢; p:

8‘/j¢j p(s,t)=c¢; + Z 9P a=Vi)e g1 Viagoe Vi
a€ll\V; :
a12Vj1, az>2Vj 2
where ¢; is nonzero. Since P € C~(V;) and 1 < j < N — 1, we have

that o € IT'\ V; such that a1 > Vj 1, a2 > Vj o implies that o € IT'\ Ej.
Hence, for

+k _
P = dﬁnj_l+md_nj € C.(V5)
i i
and a € [IT\ E;] NA,
k 0;
(a=Vy) P> "2 (0= V) ony > -1

d; d;

and in this case, m + k ~ max(p,q) which we are taking to be large.
This shows that [0Y7¢; p(s,t)| > |c;j|/2 if p and q are large, completing
the proof of part 7ii).
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For part iv), we write

¢j.p(s,t) =2VYigg (2775279 + 27 PlerVilp oo
a€cll\E;

and use (9) to uniformly bound from below the gradient of the first term,
¢1,4,p- It suffices to show that the gradient of the second term can be
made as small as we like by taking P = (p, ¢) large enough. This follows
by the same argument in part 74i) to show that 2~7(*=V3) is uniformly
small if the max(p, q) is large. This completes the proof of Lemma 3.1. O

As a consequence of Lemma 3.1 we obtain the complementary es-
timates for I; p(K), P € C(V;), when A277"Vi is large. For instance,
when K(s,t) = 1/st, parts ¢) and i) of Lemma 3.1, together with an
integration by parts argument (using a version of van der Corput’s lemma
in higher dimensions; see for example, [14]) shows that for P € C(V),

I;p(1)st) = // TP Yib1p () (27, 27 (s () ds /s dt ¢
2PV ) (1)

for some § > 0. On the other hand, when K = 1, parts i), #4) and iv) of
Lemma 3.1, together with an integration by parts argument, imply that
for Pe C™ ( ) C C(Ej), say,

L) =270 [ [ ennet s atyu(spu(o dsde
= 0@ Pip2~PVi—N) (12)

for any N > 0. A similar estimate holds for I; p(1) when P € C*(V;) C
O(Ejfl).

4. Proof of Theorem 1.1

Recall that we are trying to understand the oscillatory integrals

K)= //eiW(S’t)K(s,t)X(s,t) dsdt

where ¢ is a real-valued, real-analytic phase at (0,0), x € C°(R?) is
supported in a sufficiently small neighbourhood of (0, 0), and either K =
Lor K(s,t) = 1/st. In both cases I(K) = >, S ;(K) where for K =1

and 0 < j < N,
S)\,] Z I;
PeC(E;)
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and for K(s,t) =1/st and 1 < j < N,

Sy,j(1/st) = Z L p(1/st).

PeC(Vj)

Here, if P € C(V}),

fplh) =2 Pl/ / 20y (2775, 27

x K(27Ps,279%)(s)u(t) dsdt

where ¢; p(s,t) =2FVigp(27Ps,279¢).

In this section we complete the proof of Theorem 1.1 which con-
cerns the case K = 1 under the additional hypothesis that ¢ is R-
nondegenerate. As described in the previous section we compare S ;(1)
with My ;(1) = Y pecs, )Iij(l). From (7), (10) and (1 ) we see
that for P € C,(E;) = C,,(V;) U C;t(Vip1) (that is, P = Tni-1+

mtk —miky, 4 m .
7n; or P = G nJ—i—dHInJH),

I p(1) = II; p(1)] < Oy ;2792 P L min(1, A2~ 7V ]=N) (13
’ Js ]

for some €; > 0 and any N > 0. Here r = j or r = j + 1 depending
on whether P € C;l(Vj) or P € C}}(Vj41) respectively. By choosing N
large enough and summing over all m, k > 0, we obtain

Syi(1) = My (1) = O(A~ (/55 F9:))

for some §; > 0, establishing (5) and reducing the analysis of (1) to
>_; M;(1) (it is convenient to sum first in & and then m if V;. does not
lie on one of the coordinate axes; otherwise sum in the opposite order).

To bound My ;(1) = 3 pec(g,) 11,p(1), we use (10) to see that for
P e C(E)),

II: p(1)| < Cn ;27 P Y min(1, (N2~ P V=N
3 sJ

for any N > 0 and this leads to the estimate M, ;(1) = O(A~'/*), for
each 0 < 57 < N as long as the vertex V, does not lie along the line
{s1}s>0. When V, lies along this line, summing the above estimates
(say, in the case r = j so that we are summing over P € C~(V})) adds
an extra factor of log A due to the fact that s;,_; = s; in this case (after
summing in k, we are left with O(log \) terms of order 1 in the m sum).

This gives us the correct estimate for Iy (1) when the Newton distance
0 is strictly larger than 1. To get the asymptotic refinement we first
consider the case when 51 ¢ {Vi,...,Vn}. Let E;, denote the edge
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whose interior contains 1. For j # jo, the bounds M) j(1) = O(A~1/#)
mentioned above contribute to the error estimate. Next we observe that

// NN (s,t) dsdt — My j, (1) = O(A~(1/8+9)) (14)

for some € > 0. In fact the above difference is equal to

3 // 20 0y (s, (2P s)p(20t) dsdt =2 Y ITI p(1)

ch EJ()) ch(Ejo)

If P ¢ C(Ej,) then there exist o > 0 and positive numbers a, b, ¢ and
d such that elther P = kang + lbn;j, for certain positive 1ntegers k, 0
satisfying k > o/, or P = kcnj, + ¢dny for certain positive integers k, l
satisfying ¢ > ok. Concentrating on those P ¢ C(Ej,) which are linear
combinations of ny and nj,, we write

IITy p(1) =2"F1 / / eiAQ’P'Vﬂ'°3§<Sﬁt>X(2fﬁs,2*Qt)¢(s)¢(t) dsdt

where q?;a(s, t)=2PViogp, (27Ps,27); the general argument establish-
ing (9) shows that the gradient of this normalised phase is also uniformly
bounded below. Hence integration by parts shows

111, p(1)] < C27F1min(1, (A2~ FVio] =)

for any N > 0. Summing over all such P = kang + ¢bn;,, choosing N
large enough, establishes (14).
This leaves us with developing the asymptotic behaviour of

/ / P08 (D) 3 (s,1) dsdt

as A tends to infinity. Let m denote the absolute value of the slope
of the edge Ej, and assume that m is positive and finite (that is, Ej,
is a compact edge); the other cases are easier to handle. Finally we
may assume that 1 ¢ Ej ; otherwise both vertices (2,0) and (0, 2) lie
on Ej, and the R-nondegeneracy hypothesis implies that ¢, has a
nondegenerate critical point at (0, 0) and so stationary phase asymptotics
can be invoked.

Let (A, B) denote the strictly positive components of the vector
njo/ (Ve - mj,) and note that o - (4,B) = 1 for all o € Ej, since for
such a, (a — Vj,) - nj, = 0. Making the change of variables s — A\~
and t — APt gives us

(\)=A"17° //eiqujo(S’t)X()\*As, A Pt) dsdt.
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We split the above integral by writing

X(/\fAs,/\th) = [X()fAs,/\th) — X()\fAS,O)]
+ [X(A™s,0) = x(0,0)] + x(0,0).

We denote the first difference by x1(s,t) and the second difference as
X2(s). Here we are implicitly assuming the existence of the oscillatory

integral f f ¢"?%i0 () dsdt for the case we are considering; however the

argument sketched below also shows that this integral does indeed exist.
We concentrate on showing

S2(A) = //ew'fjo(s’t)xg(s) dsdt = O(A\™°) (15)

for some €y > 0. It is slightly easier to show that S;(\) = O(A~%) for
some dp > 0 and this, together with (15), gives the desired result. We
split the region of integration defining Sa(\) into three parts; |s| > C|t|™,
|s| < C7L[t|™ and C1[t|™ < |s| < C|t|™. The first and second regions
correspond to where the monomials associated to the endpoint vertices
Vi, and Vj, 41, respectively, are pointwise larger than the other monomi-
als in ¢, . In either case, the size of any derivative of the phase ¢, is
understood (being determined by the endpoint vertices) and straightfor-
ward integration by parts arguments show the decay estimates O(A™€)
for some € > 0 in these cases.

We shall concentrate on estimating the part of the integral defining
S2(A) over the third region where all the monomials in ¢, have the

same size. We make the change of variable t — s'/™t (treating the
positive and negative s integrals separately), reducing the analysis of

SQ()\) to
1/c<t<e

Here the exponent ag + ae/m = a- (1,1/m) is constant as « varies over
Ej, N'A and the basic observation is that the constant

n = (a=1)-(1,1/m)

is strictly positive since we are assuming that 1 ¢ FE, . Consider first
the part of the integral where s > A for any § > 0; that is

So.s E/ sl/m/ e M gt ds
’ s>A8 L<t<c

where Q(t) = ég;, (1,t) and r = 1 + L
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We split the ¢ integral in S s around the critical points of (). Away
from the critical points of @ (where |Q'(t)| = 1) an integration by parts
argument shows that the t integral is O(1/s'™") which allows us to
estimate that part of Sy s successfully. In a small neighbourhood of
a critical point of @, say |t — a| < € for small ¢ > 0 where Q'(a) =
0,1/C < |a| < C, we make the change of variable t — t — « to write this
part of Sy 5 as

52.5.a E/ eiQ(a)STsl/m/ e P gt ds
s>A0 [t|<e

where P(t) = Q(t + a) — Q(«a) is a polynomial satisfying |P(t)] <
[t|¥o, |P'(t)| 2 [t|*o~! on the interval |t| < e for some ky > 2. Since
¢ is R-nondegenerate, we see that Q(a) # 0. An integration by parts
argument (in s) shows that

Sy50=C / 1Q()s" g1/m / e POP(tYdtds + ONF)
>\ [t|<e

for some constnat C' and € > 0. Now integrating by parts in the ¢ integral
shows that Sz 5, = O(A™¢) for every nonzero critical point a of @ and
any 6 > 0.

For the part where s < \°, we write

1
x2(s) = S)FA/ dx/0s(\"s0,0)do
0

and trivially estimate

G Mg (1) S OX (AL 0\dsdt d
/ /t|~1/<)\5 o A (98( s50,0)dsdt do

_O)\(A 25

Taking 6 < A/2 establishes (15), completing the proof that
I(A) = A’”"X(O,O)//ei‘i’f% D dsdt + O(A~(/0+9),

For the case f1 € {V1,...,Vn}, say 1 = Vj,, we consider only the
situation when 8 > 1 since otherwise stationary phase methods apply.
From the above analysis we have

(1) = > / / A\ (s, 8)0p(2P )0 (298 ) dsdt

PeC(Ej,-1)UC(Ej,)
+O( 1/ﬁ+5))
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for some ¢ > 0. Furthermore, similar arguments already used show that
the above sum is equal to

z>\bv (st) ﬁ S P q < 1/8
> // L) (2Ps) (2% )dsdt + O(A~H7)

PeC(Vjy)
and the sum is easily seen to be equal to cA~*log A + O(1/)) for some

¢ # 0 since (3 is a positive integer larger than 1. We omit the details.
This completes the proof of Theorem 1.1. O

5. Analysis of I(1/st)and T

In this section we complete the proof of Theorem 1.3. Recall that we are
trying to understand the oscillatory integral

I (1/st) // Ay (s,t) ds/sdt/t

where ¢ is a real-valued, real-analytic phase at (0,0) and y € C2°(R?) is
supported in a sufficiently small neighbourhood of (0,0). Furthermore

I(1/st) = Z Sx,j(1/st)

1<j<N
where

Sx,j(1/st) = Z I; p(1/st)

PeC(Vj)

and for P € C(V}),
I p(1/st) = // 2705 p (503 (2725, 27 U (s)e)(t) ds/s dt/t

where ¢; p(s,t) =2FVigp(27Ps,279¢).
As described in Section 3 we compare Sy ;(1/st) with

My (1/st)y= > IIp(1/st).
PEC(V;)

From (6), (8) and (11), we see that for P € Cy,(V;),

|I; p(1/st) — IT; p(1/st)] < C;27™ min(A2~FY5 (N2~ FVi]=%)  (16)



Singular integrals and the Newton diagram 191

for some €; > 0. If the endpoint vertices V; and Viy do not lie along the
coordinate axes, then we can sum over P € Cy,(V;) to obtain

> L p(1/st) =TI p(1/st)| < C27%™ (17)

for some 6; > 0. Summing in m establishes (4).

With regard to the singular integral operator T'f = f * S mentioned
in the remarks after the statement of Theorem 1.3, the operator corre-
sponding to I,; p(1/st) is the convolution operator T} pf = f*S; p where
for P € C(V}), S; p is the distribution defined on a test function p by

<5j,P=P>=//p(S7t, P(s,t))x (s, 1)1 (2P ) (2%)ds / sdt/t.

Similarly the operator M; pf = f * U; p corresponding to I1; p is de-
fined exactly in the same way except ¢ is replaced by the monomial
by, sVi1tViz2 | The above bounds translate in this setting to the fact that
the difference operators {7 p — M; p}pec,,(v;) are almost orthogonal

whose sum has an L? operator norm bound of O(27%™). Using appro-
priate Littlewood-Paley theory these L? estimates can be converted into
LP 1 < p < oo estimates; see [2].

Thus, if the vertices Vy and Vy do not lie along the coordinate
axes, summing over m > 0 reduces the analysis of I(1/st) and T to
> My (1/st) and 30, Mif = 3.5 pec(v,) Mjpf, respectively. As
in [2], if each vertex V; has at least one even component, the operator
Ej M; is bounded on all L?,1 < p < oo (if one of the components of V;
is even, then clearly My ;(1/st) = 0). If there exists a vertex V; whose
components are both odd, then one can argue exactly as in [2] to show
that T is not bounded on L2. Finally, it is not difficult to show that
> My ;(1/st) = Cylog A + O(1) for an explicit Cy depending on the
signs of the coefficients by, for those vertices V; which have both com-
ponents odd. This is carried out in [8] where one can find a formula for
Cy.
If either Vj or Vi lies along the coordinate axes, the sum (17) col-
lapses. In this case (at least for those P € C*(V}) or P € C~ (Vy)), we
need to replace I p, say, with

ILp = / / MO\ (5, 8)1p(2Ps)ep(298) ds/s dt /t.

Similarly we need appropriate replacements for Iy p as well as for the
operators M p and My p. With these substitutions, the sum esti-
mate (17) now holds as well as the fact that the difference operators
{Th,p — Mlvp}PeC,fl(Vl)’ say, are almost orthogonal whose sum has an
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L? operator norm bound of O(27°™) for some § > 0. This case was
overlooked in [2].

We shall now show that the result determining the LP boundedness
for the singular integral operator T does not extend to ¢ € C'*°, even in
the finite-type category. For any ¢ > 0, we consider the operator

T.f(z,y,2) = p.v./ / flx—s,y—t,z—d(s,t)) ds/sdt/t (18)

Is], [t|<e

where ¢(s,t) = 52t +1)(s) and v is an appropriate smooth function near
s = 0 such that 1) (0) = 0 for all k¥ > 0. In this case there is only one
vertex, (2,1), for the Newton polygon IT of ¢. We will show that when
¥ is convex and odd, a necessary and sufficient condition for (18) to be
unbounded on L? for all € > 0 is that there exists a sequence s; \, 0
such that for

o; < s; satisfying ¢’ (0;) = 1(s;)/s;j, then we have s;/0; — oo. (19)

This is just the contrapositive to the (local) h doubling condition used
in [7] to analyse Hilbert transforms along convex curves in the plane. In
fact we will show that for every e > 0,

)= [ [ e i
Isl, [t|<e

is an unbounded function. We take n = 0 and perform the ¢ integral
first;

me(€,0,7v) = /ei[ﬁs-ﬂw(S)] / et dt/tds/s

|s|<e [t|<e

€

- / sin(Es +y(s)[(s%) ds /s

0

where I(s?) = 2 [; sin(ys?t)dt/t. Here we are assuming that ¢ is odd.
Since I(s?) = O(vys?) and I(s?) = sgn(y)m + O(1/7s?), we see that (for
7 <0)

me(€,0,7) = 27 / sin(&s + y(s))ds/s + O(1).

|y|—t/2

Now take j so large in (19) that s; < € and ¢”(0;) < . For such a
J, consider —y = 7/[2h(0;)] and £ = —y¥'(0;). Then since s; < €, we
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have
sin(gs +y(s))ds/s = [ sinfés +0(s) ds/s + O()
Ir1=1/2 Iyl 12

by the convexity of ¢ (see [7]). Also ¢"(0;) < m guarantees that
|v|~1/2 < o; and so (see [7], page 740)

8j (sj+oj)/2
sin(gs +yuds/s = [ sinsu(s)ds/s
12 o

> 1/v21og((1 + (s;/05))/2)

and by (19) this completes the proof that m. is an unbounded function
of £, m and ~. O
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