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Abstract

We examine several scalar oscillatory singular integrals involving a real-
analytic phase function φ(s, t) of two real variables and illustrate how
one can use the Newton diagram of φ to efficiently analyse these objects.
We use these results to bound certain singular integral operators.

1. Introduction

Arnold conjectured and Varčenko verified that sharp asymptotics for
a scalar oscillatory integral with phase function φ can be measured in
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terms of the Newton diagram of φ. For any smooth real-valued function
φ ∈ C∞(Rd) with Taylor expansion

∑
α bαx

α, the Newton diagram Π of
φ is the unbounded polyhedron formed as the smallest closed convex set
in the positive cone Rd+ containing

⋃

α∈Λ

{x ∈ R
d| x ≥ α}

where Λ = {α ∈ Zd+| bα 6= 0} and α ≤ x is the partial order defined
by α1 ≤ x1, . . . , αd ≤ xd where α = (α1, . . . , αd) and x = (x1, . . . , xd).
When d = 1 the Newton diagram is a half-line and simply encodes the
smallest nonvanishing Taylor coefficient of φ.

In this paper we will describe an elementary method initiated in [2, 3]
and [4] (see also [8, 10]) by analysing certain two dimensional oscillatory
integrals of the form

Iλ(K) =

∫ ∫
eiλφ(s,t)K(s, t)χ(s, t) dsdt

for large real λ and various (possibly) singular kernels K. Here φ is
real-analytic at the origin (0, 0), φ(0, 0) = 0, and χ ∈ C∞

c (R2). When
K ≡ 1, the behaviour of Iλ(1) for large λ is determined by the Newton
distance β of Π, defined as the positive parameter such that β1 lies on
the boundary of Π (here 1 = (1, 1)).

β 1

v1

v2

v3

E1

Π

Figure 1.

The boundary of Π consists of finitely many vertices {V1, . . . , VN}
and compact edges {E1 = V1V2, . . . , EN−1 = VN−1VN}, together with
two infinite (vertical and horizontal) edges E0 and EN . To each edge
Ej , 0 ≤ j ≤ N , we associate the corresponding part of the phase
φEj (s, t) =

∑
α∈Ej∩Λ cαs

α1tα2 . We say that φ is R-nondegenerate if

for each compact edge Ej , 1 ≤ j ≤ N − 1,

∇φEj (s, t) 6= 0

for all (s, t) with st 6= 0.
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Theorem 1.1 (Varčenko [15])

Let φ be R-nondegenerate, real-valued and real-analytic at the origin
(0, 0) such that φ(0) = ∇φ(0) = 0. If χ ∈ C∞

c (R2) is supported in a
sufficiently small neighbourhood of (0, 0) and if

i) β1 /∈ {V1, . . . , VN} or β = 1, then

Iλ(1) = c1 λ
−1/β +O(λ−(1/β+ǫ))

for some ǫ > 0;

ii) β1 = Vj for some j and β > 1, then

Iλ(1) = c2 λ
−1/β logλ+O(λ−1/β).

Here c1 and c2 are explicit constants depending on φ.

As an application of our elementary method we will give a new proof
of Theorem 1.1 in Section 4. The proof does not use any resolutions of
singularities.

Remarks 1.2

• Theorem 1.1 is not true without the assumption that φ is R-
nondegenerate since a (real-analytic) change of variables leaves
Iλ(1) unchanged but can change the Newton diagram and dis-
tance of φ. The R-degenerate phase φ(s, t) = (s− t)k with Newton
distance β = 1/2k provides a simple example. A rotation trans-

forms this example to the R-nondegenerate phase φ̃(s, t) = sk with

Newton distance β̃ = 1/k which is the correct decay parameter for
Iλ(1) in this case. An interesting substitute for R-nondegeneracy
is discussed in [6].

• If β > 1 and β1 lies in the interior of the compact edge Ej , the
constant c1 in part i) of Theorem 1.1 is equal to

χ(0, 0)

∫ ∫
eiφEj

(s,t) dsdt;

the existence of this oscillatory integral is discussed in Section 4.
The precise values for the constants c1 and c2 in all cases can be
determined from the proofs given below.

It is interesting to compare Varčenko’s result with the bilinear form
Iλ(K) on L2(R) where K(s, t) = f(s)g(t) is the product of two arbitrary
L2 functions. This effectively fixes the coordinate axes (s, t) and a result
of Phong and Stein [9] states that the sharp decay estimate for the L2

norm of this bilinear form is O(λ−1/2β) for any real-analytic φ (here
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β is the Newton distance to the Newton diagram associated to ∂2
s,tφ).

Such results arise from the study of certain degenerate Fourier integral
operators associated to generalised Radon transforms along curves in the
plane which is a topic studied by many authors. The C∞ case has been
successfully treated by Seeger [13] and Rychkov [11] (see also [5]).

Another instance where one has sharp results for any real-analytic
phase φ occurs when K(s, t) = 1/st is the double Hilbert transform
singular kernel. In fact we have

Theorem 1.3

Let φ be any real-valued phase function which is real-analytic at (0, 0)
and K(s, t) = 1/st. Then for χ ∈ C∞

c (R2) supported in a sufficiently
small neighbourhood of the origin and identically equal to 1 near (0, 0),

Iλ(K) = Cφ logλ + O(1)

where Cφ is an explicit constant which may or may not vanish, depending
on φ.

Remarks 1.4

• A similar result for polynomial phases was established in [8].
• Consider the translation-invariant singular integral operator Tf =
f ∗S, where S is the principal-valued distribution defined on a test
function ψ by

〈S, ψ〉 =

∫ ∫
ψ(s, t, φ(s, t))χ(s, t) ds/s dt/t.

The multiplier m = Ŝ for this operator is related to Iλ(K) in The-
orem 1.3 by m(0, 0, λ) = Iλ(K). The proof of Theorem 1.3 can be
modified to show that T is bounded on all Lp(R3), 1 < p < ∞ if
and only if every vertex Vj , 1 ≤ j ≤ N , of the Newton diagram of
φ has at least one even component. This extends the result in [2]
from polynomial to real-analytic surfaces and we will indicate the
required modifications in Section 5 (see also [10] for a further ex-
tension). Interestingly this result for T is false in the C∞ category,
even if φ has some nonvanishing derivative; that is, even if φ is of
finite-type in some sense. An example is produced in Section 5.

• Recently certain variants of Theorem 1.3 have been used in the
study of real-analytic mappings φ : T2 → Tk between tori which
have the property that the change of variable f → f ◦ φ linear
transformation maps absolutely convergent Fourier series to uni-
formly convergent (with respect to rectangular summation) Fourier
series. See [4].
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In each of the three cases, K ≡ 1, K(s, t) = f(s)g(t), or K(s, t) =
1/st, the nature of K dictates the decomposition of Iλ(K) needed to
understand its behaviour for large λ. When K(s, t) = f(s)g(t) is the
product of two arbitrary L2(R) functions, a subtle decomposition away
from the zero set of ∂2

stφ is used by Phong and Stein [9] to estimate the
norm of the form Iλ(fg). We will use a more elementary decomposition,
one with respect to the edges {Ej} of the Newton diagram Π of φ in the
proof of Theorem 1.1, and one with respect to the vertices {Vj} of Π
in the proof of Theorem 1.3. In both cases the two decompositions are
similar as well as the method used to analyse Iλ(1) and Iλ(1/st).

To illustrate the method in a simple setting we prove the following
proposition in the next section.

Proposition 1.5

For any real-valued φ of a single variable which is real-analytic at 0,

Iλ =

∫

|s|≤1

eiλφ(s) ds/s = O(1). (1)

Remark 1.6 Proposition 1.5 is well-known; in fact, higher dimensional
versions, where 1/s is replaced by a general homogeneous Calderón-
Zygmund kernel K(x) = Ω(x)/|x|d with Ω ∈ L logL(Sd−1) having mean
value zero, also hold. These are special instances of the theory of gener-
alised singular Radon transforms; see for example, [14].

In the next section we will sketch the proof of Proposition 1.5, high-
lighting an idea which will be used in the proofs of Theorems 1.1 and 1.3.
In Section 3 we describe the basic decomposition of Iλ(K) for bothK ≡ 1
and K(s, t) = 1/st and prove some basic estimates. In Section 4 we com-
plete the proof of Theorem 1.1. The final section is devoted to the proof
of Theorem 1.3 as well as describing how to extend the main result in [2]
regarding the singular integral operator T (defined in the remarks after
the statement of Theorem 1.3) from polynomial to real-analytic surfaces.

2. Proof of Proposition 1.5

We may assume that φ(0) = 0. The Newton diagram of φ simply picks
out the first nonvanishing bk 6= 0 Taylor coefficient of φ(s) =

∑
n≥k bns

n.

In particular this tells us that φ(s) ∼ bks
k for s small (note that we may

restrict the integration of Iλ in (1) to an arbitrarily small interval |s| ≤ ǫ
- independent of λ - which creates an O(1) error). Thus for small s the
monomial bks

k dominates the other terms in the expansion of φ and we



176 Carbery, Wainger, and Wright

will see that for sufficiently small ǫ > 0,

∫

|s|≤ǫ

eiλφ(s) ds/s =

∫

|s|≤ǫ

eiλbks
k

ds/s + O(λ−δ/k) (2)

for some δ > 0. The second integral in (2) is zero if k is even whereas
when k is odd, it is equal to πsgn(bk)/k + O(1/λ) which gives us an
asymptotic description of Iλ and in particular proves (1).

We decompose the first integral in (2) dyadically in s (in higher
dimensions it is natural to decompose into dyadic annuli since Ω ∈
L logL(Sd−1) possesses some regularity which should be compared to
the homogeneous example K(s, t) = 1/st of Theorem 1.3),

∑

p>p0

∫

2−p≤|s|≤2−p+1

eiλφ(s)ds/s :=
∑

p>p0

Ip(λ)

where we write

Ip(λ) =

∫

1≤|s|≤2

eiλ2−pkφp(s)ds/s

with
φp(s) = bks

k +
∑

n>k

2−(n−k)pbns
n.

Here φp is a normalised phase adapted to the dyadic interval 2−p ≤
|s| ≤ 2−p+1 indexed by p and on which φ has size 2−pk. Similarly we
decompose the second integral in (2)

∫

|s|≤ǫ

eiλbks
k

ds/s :=
∑

p>p0

IIp(λ)

where

IIp(λ) =

∫

1≤|s|≤2

eiλ2−pkbks
k

ds/s.

We examine the difference Ip(λ) − IIp(λ) for each p.
The idea is very simple. For small λ2−pk we gain in the difference

since φp(s) − bks
k = O(2−p) for large p and so

|Ip(λ) − IIp(λ)| ≤ C2−p λ2−pk.

For large λ2−pk we treat Ip and IIp separately, integrating by parts to
obtain

|Ip(λ) − IIp(λ)| ≤ C [λ2−pk]−N
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for any N > 0. Putting these estimates together shows that

|Ip(λ) − IIp(λ)| ≤ C 2−pδ min(λ2−pk, [λ2−pk]−δ)

for some δ > 0. Summing in p establishes (2). �

The basic idea for the proofs of Theorems 1.1 and 1.3 is the same;
however a single monomial of φ(s, t) =

∑
α bαs

α1tα2 no longer dominates
all the other monomials. For Iλ(1) we will decompose the integration
into various regions corresponding to each edge Ej , 0 ≤ j ≤ N of the
Newton diagram Π. In the region corresponding to Ek, say, the mono-
mials along Ek (that is, the monomials appearing in φEk

) will dominate
in a certain sense. For Iλ(1/st) we will decompose the integration into
various regions corresponding to each vertex Vj , 1 ≤ j ≤ N of Π. In the
region corresponding to Vk, say, the monomial of φ corresponding to Vk
will dominate in a certain sense. In both cases we will compare matters
to the corresponding integral where the phase φ is replaced by φEk

or the
monomial corresponding to the vertex Vk, creating an allowable error.

3. Basic decompositions

In this section we fix a real-valued, real-analytic phase function φ(s, t) =∑
α bαs

α1tα2 with Newton diagram Π consisting of vertices {Vj}Nj=1 and

edges {Ej}Nj=0.

v1

v2

v3

n 1

n 2

E 1

Π

s11 = n1·v1

n1·1
1

Figure 2.

Let nj denote an inward normal vector to the edge Ej , 0 ≤ j ≤ N ,
as indicated in Figure 2. The components of nj can be chosen to be
rational and for notational convenience, we will normalise the normals
nj , 0 ≤ j ≤ N , so that all components have a common denominator.

To each compact edge Ej = VjVj+1, 1 ≤ j ≤ N − 1, we associate the
positive parameter sj = (nj · Vj)/(nj · 1) which will serve to measure
the decay rate of the part of Iλ(1) corresponding to Ej . Similarly, if
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the end vertices V0 and VN do not lie along the coordinate axes, we set
s0 = (n0 · V1)/(n0 · 1) and sN = (nN · VN )/(nN · 1) for the noncompact
edges E0 and EN . If either V0 or VN lie along one of the coordinate axes,
we set s0 = (n1 · V0)/(n0 +n1) · 1 or sN = (nN−1 · VN )/(nN−1 +nN ) · 1,
respectively. Geometrically sj is the parameter such that sj1 lies on the
line extension of Ej . Hence if the ray {s1}s≥0 intersects the edge Ej ,
then sj = β is the Newton distance of Π. The situation is depicted in
Figure 2 with E1 and s1.

We begin the analysis of

Iλ(K) =

∫ ∫
eiλφ(s,t)K(s, t)χ(s, t) dsdt

where χ ∈ C∞
c (R2) is supported in a small neighbourhood of (0, 0) and

K ≡ 1 or K(s, t) = 1/st. Fix a nonnegative, even ψ ∈ C∞
c supported in

{s : 1/2 ≤ |s| ≤ 2} such that
∑

p∈Z
ψ(2ps) = 1 for s 6= 0. Then

Iλ(K) =
∑

P=(p,q)

∫ ∫
eiλφ(s,t)K(s, t)χ(s, t)ψ(2ps)ψ(2qt) dsdt (3)

and the integral in the sum is supported in the dyadic rectangle

{(s, t) : |s| ∼ 2−p, |t| ∼ 2−q},
indexed by the integer lattice point P = (p, q) where both p, q are large
and positive due to the small support of χ.

The basic decomposition of Iλ(K) will be expressed as a decomposi-
tion of L = {P = (p, q) ∈ N × N}. We begin with K(s, t) = 1/st and
define, for each vertex Vj , 1 ≤ j ≤ N , of Π, the cone C(Vj) = {P =
σnj−1 + ρnj ∈ L : σ, ρ ≥ 0} in L. See Figure 3.

v1

v2

v3

n 2

n 1

+

−

Π

n 2

n 1

P

C(V2)

Cm(V2)

α

Figure 3.

It is clear that L = ∪Nj=1C(Vj) gives an essentially disjoint decom-
position of L. By our convention that all rational components of the
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normals {nj} have a common denominator, P = σnj−1 + ρnj ∈ C(Vj)
implies that σ = k/dj and ρ = ℓ/dj for some fixed positive integer dj
and integers k, ℓ ≥ 0. Hence the points of C(Vj) are parameterised by
a certain subcollection Aj ⊂ {(k, ℓ) ∈ N × N} of positive integer lattice
points. Furthermore for any α ∈ Π, P · (α − Vj) ≥ 0 or 2−P ·α ≤ 2−P ·Vj

for all P ∈ C(Vj) and hence the monomial bVjs
Vj,1tVj,2 of φ correspond-

ing to the vertex Vj dominates all the other monomials bαs
α1tα2 of φ on

those dyadic rectangles indexed by P ∈ C(Vj). This gives us the basic
decomposition of

Iλ(1/st) =

N∑

j=1

Sλ,j(1/st) :=

N∑

j=1

∑

P∈C(Vj)

Ij,P (1/st)

where Ij,P (K) (K(s, t) = 1/st in this instance) is the P = (p, q) integral
in (3). We will compare this to

Mλ,j(1/st) =
∑

P∈C(Vj)

IIj,P (1/st)

where

IIj,P (1/st) =

∫ ∫
eiλbVj

sVj,1 tVj,2

χ(s, t)ψ(2ps)ψ(2qt) ds/s dt/t.

In fact, we will show that

Sλ,j(1/st) −Mλ,j(1/st) = O(1) (4)

for each 1 ≤ j ≤ N and the behaviour of each Mλ,j(1/st) is easy to
understand.

We shall need a further decomposition of C(Vj) = ∪m≥0Cm(Vj)
where

Cm(Vj) =
{
P =

m+ k

dj
nj−1 +

m

dj
nj ∈ L : k ∈ N

}

∪
{
P =

m

dj
nj−1 +

m+ ℓ

dj
nj ∈ L : ℓ ∈ N

}

:=C+
m(Vj) ∪ C−

m(Vj).

See Figure 3. In particular this divides each cone C(Vj) into two parts,
C−(Vj) = ∪m≥0C

−
m(Vj) and C+(Vj) = ∪m≥0C

+
m(Vj). This leads us to

the cones C(Ej) = C−(Vj) ∪C+(Vj+1) in L associated to each compact

edge Ej = VjVj+1, 1 ≤ j ≤ N − 1. To the noncompact edges E0 and EN
we associate C(E0) = C+(V1) and C(EN ) = C−(VN ) respectively. This
gives us another decomposition of L = ∪Nj=0C(Ej) but now with respect
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to the edges {Ej} of the Newton diagram Π of φ; each cone C(Ej) =
∪m≥0Cm(Ej) decomposes further where Cm(Ej) = C−

m(Vj)∪C+
m(Vj+1).

We will use this decomposition to analyse Iλ(1). In fact we decompose

Iλ(1) =
N∑

j=0

Sλ,j(1) :=
N∑

j=0

∑

P∈C(Ej)

Ij,P (1)

and then compare each Sλ,j(1) to

Mλ,j(1) =
∑

P∈C(Ej)

IIj,P (1)

where

IIj,P (1) =

∫ ∫
eiλφEj

(s,t)χ(s, t)ψ(2ps)ψ(2qt) dsdt.

We will show that

Sλ,j(1) −Mλ,j(1) = O(λ−(1/sj+δj)) (5)

for some δj > 0; recall that sj = (nj · Vj)/(nj · 1) ≤ β where β is the
Newton distance of Π. This shows that in some sense, the monomials
appearing in φEj dominate the other monomials of φ on those dyadic
rectangles indexed by P ∈ C(Ej).

In either case K ≡ 1 or K(s, t) = 1/st, if P ∈ C(Vj), we write

Ij,P (K) = 2−P ·1

∫ ∫
eiλ2−P ·Vjφj,P (s,t)χ(2−ps, 2−qt)

× K(2−ps, 2−qt)ψ(s)ψ(t) dsdt

where

φj,P (s, t) = 2P ·Vjφ(2−ps, 2−qt) = bVjs
Vj,1tVj,2

+
∑

α∈[Π\Vj ]∩Λ

2−P ·(α−Vj)bαs
α1tα2

is a normalised phase with respect to P ∈ C(Vj). We will compare each
Ij,P (K), for P ∈ C(Vj), to IIj,P (K) defined above which can be written
as

IIj,P (K) = 2−P ·1

∫ ∫
eiλ2−P ·VjφK,j,P (s,t)

× χ(2−ps, 2−qt)K(2−ps, 2−qt)ψ(s)ψ(t) dsdt

where
φ1/st,j,P (s, t) = bVjs

Vj,1tVj,2
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if P ∈ C(Vj) and

φ1,j,P (s, t) = 2P ·VjφEj (2
−ps, 2−qt)

if P ∈ C−(Vj) whereas

φ1,j,P (s, t) = 2P ·VjφEj−1 (2
−ps, 2−qt)

if P ∈ C+(Vj). Recall that C(Vj) = C−(Vj) ∪C+(Vj) and

C(Ej) = C−(Vj) ∪ C+(Vj+1).

As in Proposition 1.5 we split the analysis of the difference Ij,P (K)−
IIj,P (K) for P ∈ C(Vj) into the cases when λ2−P ·Vj is small and large.
Again we will gain in the difference. To understand this when K(s, t) =
1/st and P ∈ C(Vj), we need to estimate the difference

φj,P (s, t) − φ1/st,j,P (s, t) =
∑

α∈[Π\Vj ]∩Λ

bα2−(α−Vj)·P sα1tα2

for |s|, |t| ∼ 1. We observe that δj,1 > 0 and δj,2 > 0 where

δj,1 := inf
α∈[Π\Ej]∩Λ

(α − Vj) · nj and δj,2 := inf
α∈[Π\Ej−1]∩Λ

(α− Vj) · nj−1.

Hence for P ∈ Cm(Vj),

(α− Vj) · P ≥ m/dj(α− Vj) · (nj−1 + nj) ≥ δjm

for some δj > 0, uniformly for α ∈ Π \ Vj . This implies that φj,P (s, t)−
φ1/st,j,P (s, t) = O(2−δjm) and thus

Iλ,P (1/st) − IIλ,P (1/st) = O(2−δjm[λ2−P ·Vj ]), (6)

uniformly for P ∈ Cm(Vj).
In order to understand the difference Ij,P (K)−IIj,P (K) when K ≡ 1

and P ∈ C(Ej) = C−(Vj)∪C+(Vj+1), we need to estimate the difference

φj,P (s, t) − φ1,j,P (s, t) =
∑

α∈[Π\Ej ]∩Λ

bα2−(α−Vj)·P sα1tα2

for |s|, |t| ∼ 1 if P ∈ C−(Vj), and the difference

φj+1,P (s, t) − φ1,j+1,P (s, t) =
∑

α∈[Π\Ej ]∩Λ

bα2−(α−Vj+1)·P sα1tα2
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for |s|, |t| ∼ 1 if P ∈ C+(Vj+1). In the first case for P ∈ C−
m(Vj), we

have

(α − Vj) · P ≥ m+ k

dj
(α− Vj) · nj ≥ δj,1

dj
[m+ k],

and in the second case, for P ∈ C+
m(Vj+1),

(α− Vj+1) · P ≥ m+ k

dj+1
(α− Vj+1) · nj ≥ δj+1,2

dj+1
[m+ k];

in both instances, these hold uniformly for α ∈ Π \ Ej . Thus for some
ǫj > 0,

Ij,P (1) − IIj,P (1) = O(2−ǫj(m+k)2−P ·1[λ2−P ·Vr ]), (7)

uniformly for P ∈ Cm(Ej) = C−
m(Vj) ∪ C+

m(Vj+1) where r = j or j +
1 depending on whether P ∈ C−

m(Vj) or P ∈ C+
m(Vj+1), respectively.

Estimates (6) and (7) are good when λ2−P ·Vj is small.
Complementary estimates when λ2−P ·Vj is large are easily obtained

for IIj,P (K) in both cases K ≡ 1 and K(s, t) = 1/st. When K(s, t) =
1/st, integration by parts shows that for P ∈ C(Vj),

IIλ,P (1/st) =

∫ ∫
eiλ2−P ·Vj bVj

sVj,1 tVj,2

χ(2−ps, 2−qt)ψ(s)ψ(t) ds/s dt/t

= O([λ2−P ·Vj ]−N ) (8)

for any N > 0.
On the other hand, when K ≡ 1, we have

|∇φ1,j,P (s, t)| = |∇[2P ·VjφEj (2
−ps, 2−qt)]| ≥ δj > 0 (9)

on the support of ψ(s)ψ(t), uniformly for P ∈ C−(Vj) ⊂ C(Ej), say,
whenever Ej is a compact edge (similarly for P ∈ C+(Vj+1) ⊂ C(Ej)).
This follows from the R-nondegeneracy hypothesis that ∇φEj never
vanishes away from the coordinate axes. In fact, more generally, for
P = σn0 + τnj with σ, τ > 0,

2P ·VjφEj (2
−ps, 2−qt) = bVjs

Vj,1tVj,2 +
∑

α∈[Ej\Vj ]∩Λ

δ(α−Vj)·n0bαs
α1tα2

where δ = 2−σ and (α − Vj) · n0 > 0 whenever α ∈ Ej \ Vj . The
R-nondegeneracy hypothesis implies that the gradient of AφEj (Bs,Ct)
does not vanish whenever st 6= 0 and A,B and C positive fixed cons-
tants; therefore, we see that the gradient of the above expression, de-
noted by F(s, t, δ) say, is nonzero for (s, t) in the support of ψ(s)ψ(t) and
δ > 0. But the above expression also shows that F(s, t, 0) 6= 0 and since
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F is clearly continuous on the compact product supp(ψ(s)ψ(t)) × [0, 1]
we see that F is uniformly bounded below on this product, establish-
ing (9). A similar argument gives a bound from below of the gradient of
2P ·Vj+1φEj (2

−ps, 2−qt), uniformly for P = σnj + τnN with σ, τ > 0.
Even for the noncompact edges E0 and EN , (9) continues to hold

whether or not φ is R-nondegenerate, as long as the components of P =
(p, q) are large and positive which is the situation when the support of
χ is sufficiently small. For

P =
m+ k

d1
n0 +

m

d1
n1 ∈ Cm(E0) = C+

m(V1),

say,

φ1,0,P (s, t) =
∑

α∈E0∩Λ

2−P ·(α−V1)bαs
α1tα2

= sV1,1

[
bV1t

V1,2 +
∑

α∈E0∩Λ

α2>V1,2

2
− m

d1
(α−V1)·n1bαt

α2

]
.

However m = c q since n0 is proportional to (1, 0) and from this, it is
easily seen that (9) also holds for the noncompact edges as well since q
can be chosen to be large if the support of χ is small.

Hence, for P ∈ C−(Vj) ⊂ C(Ej) say, since any Ck norm of φ1,j,P is
bounded above, an integration by parts argument shows that

IIj,P (1) = 2−P ·1

∫ ∫
eiλ2−P ·Vjφ1,j,P (s,t)χ(2−ps, 2−qt)ψ(s)ψ(t) dsdt

= O(2−P ·1[λ2−P ·Vj ]−N ) (10)

for any N > 0. Similarly for P ∈ C+(Vj+1) ⊂ C(Ej).
To prove similar estimates for Ij,P (K), we need similar derivative

bounds for the normalised phases φj,P (s, t) = 2P ·Vjφ(2−ps, 2−qt) which
we establish in the following lemma.

Lemma 3.1

For every M > 0 and 1 ≤ j ≤ N , there exists constants δj , CM,j > 0
such that for (s, t) ∈ supp(ψ(s)ψ(t)) and P ∈ C(Vj) large in the sense
that both p and q in P = (p, q) are large,

i) ‖φj,P ‖CM ≤ CM,j ;
ii) if j = 1 and P ∈ C+(V1) or if j = N and P ∈ C−(VN ),

|∇φj,P (s, t)| ≥ δj ;
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iii) there is some derivative ∂α such that

|∂αφj,P (s.t)| ≥ δj ;

iv) if in addition, φ is R-nondegenerate,

|∇φj,P (s, t)| ≥ δj

holds for any 1 ≤ j ≤ N .

Proof. Since

φj,P (s, t) = 2P ·Vjφ(2−ps, 2−qt) =
∑

α

2−P ·(α−Vj)bαs
α1tα2

and 2−P ·(α−Vj) ≤ 1 for P ∈ C(Vj) and α ∈ Π, we see that i) holds. The
proof of part ii) is similar to the proof given above that the gradient of
φ1,0,j is bounded below. We leave the details to the reader.

For parts iii) and iv), suppose that P ∈ C−(Vj) (the proof when P ∈
C+(Vj) is similar). Furthermore, we may suppose that 1 ≤ j ≤ N − 1
so that P ∈ C(Ej) and Ej is a compact edge; otherwise we are in the
situation of part ii). For part iii), we write

φj,P (s, t) = bVjs
Vj,1tVj,2 +

∑

α∈Π\Vj

2−P ·(α−Vj)bαs
α1tα2

and consider the ∂Vj derivative of φj,P :

∂Vjφj,P (s, t) = cj +
∑

α∈Π\Vj :

α1≥Vj,1, α2≥Vj,2

2−P ·(α−Vj)cαs
α1−Vj,1tα2−Vj,2

where cj is nonzero. Since P ∈ C−(Vj) and 1 ≤ j ≤ N − 1, we have
that α ∈ Π \ Vj such that α1 ≥ Vj,1, α2 ≥ Vj,2 implies that α ∈ Π \ Ej .
Hence, for

P =
m

dj
nj−1 +

m+ k

dj
nj ∈ C−

m(Vj)

and α ∈ [Π \ Ej ] ∩ Λ,

(α− Vj) · P ≥ m+ k

dj
(α− Vj) · nj ≥

δj,1
dj

[m+ k]

and in this case, m + k ∼ max(p, q) which we are taking to be large.
This shows that |∂Vjφj,P (s, t)| ≥ |cj |/2 if p and q are large, completing
the proof of part iii).
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For part iv), we write

φj,P (s, t) = 2P ·VjφEj (2
−ps, 2−qt) +

∑

α∈Π\Ej

2−P ·(α−Vj)bαs
α1tα2

and use (9) to uniformly bound from below the gradient of the first term,
φ1,j,P . It suffices to show that the gradient of the second term can be
made as small as we like by taking P = (p, q) large enough. This follows
by the same argument in part iii) to show that 2−P ·(α−Vj) is uniformly
small if the max(p, q) is large. This completes the proof of Lemma 3.1. �

As a consequence of Lemma 3.1 we obtain the complementary es-
timates for Ij,P (K), P ∈ C(Vj), when λ2−P ·Vj is large. For instance,
when K(s, t) = 1/st, parts i) and iii) of Lemma 3.1, together with an
integration by parts argument (using a version of van der Corput’s lemma
in higher dimensions; see for example, [14]) shows that for P ∈ C(Vj),

Ij,P (1/st) =

∫ ∫
eiλ2−P ·Vjφj,P (s,t)χ(2−ps, 2−qt)ψ(s)ψ(t) ds/s dt/t

= O([λ2−P ·Vj ]−δ) (11)

for some δ > 0. On the other hand, when K ≡ 1, parts i), ii) and iv) of
Lemma 3.1, together with an integration by parts argument, imply that
for P ∈ C−(Vj) ⊂ C(Ej), say,

Ij,P (1) = 2−P ·1

∫ ∫
eiλ2−P ·Vjφj,P (s,t)χ(2−ps, 2−qt)ψ(s)ψ(t) dsdt

= O(2−P ·1[λ2−P ·Vj ]−N ) (12)

for any N > 0. A similar estimate holds for Ij,P (1) when P ∈ C+(Vj) ⊂
C(Ej−1).

4. Proof of Theorem 1.1

Recall that we are trying to understand the oscillatory integrals

Iλ(K) =

∫ ∫
eiλφ(s,t)K(s, t)χ(s, t) dsdt

where φ is a real-valued, real-analytic phase at (0, 0), χ ∈ C∞
c (R2) is

supported in a sufficiently small neighbourhood of (0, 0), and either K ≡
1 or K(s, t) = 1/st. In both cases Iλ(K) =

∑
j Sλ,j(K) where for K ≡ 1

and 0 ≤ j ≤ N ,

Sλ,j(1) =
∑

P∈C(Ej)

Ij,P (1),



186 Carbery, Wainger, and Wright

and for K(s, t) = 1/st and 1 ≤ j ≤ N ,

Sλ,j(1/st) =
∑

P∈C(Vj)

Ij,P (1/st).

Here, if P ∈ C(Vj),

Ij,P (K) = 2−P ·1

∫ ∫
eiλ2−P ·Vjφj,P (s,t)χ(2−ps, 2−qt)

× K(2−ps, 2−qt)ψ(s)ψ(t) dsdt

where φj,P (s, t) = 2P ·Vjφ(2−ps, 2−qt).
In this section we complete the proof of Theorem 1.1 which con-

cerns the case K ≡ 1 under the additional hypothesis that φ is R-
nondegenerate. As described in the previous section we compare Sλ,j(1)
with Mλ,j(1) =

∑
P∈C(Ej)

IIj,P (1). From (7), (10) and (12), we see

that for P ∈ Cm(Ej) = C−
m(Vj) ∪ C+

m(Vj+1) (that is, P = m
dj
nj−1 +

m+k
dj

nj or P = m+k
dj+1

nj + m
dj+1

nj+1),

|Ij,P (1) − IIj,P (1)| ≤ CN,j2
−ǫj(m+k)2−P ·1 min(1, [λ2−P ·Vr ]−N ) (13)

for some ǫj > 0 and any N > 0. Here r = j or r = j + 1 depending
on whether P ∈ C−

m(Vj) or P ∈ C+
m(Vj+1) respectively. By choosing N

large enough and summing over all m, k ≥ 0, we obtain

Sλ,j(1) −Mλ,j(1) = O(λ−(1/sj+δj))

for some δj > 0, establishing (5) and reducing the analysis of Iλ(1) to∑
jMλ,j(1) (it is convenient to sum first in k and then m if Vr does not

lie on one of the coordinate axes; otherwise sum in the opposite order).
To bound Mλ,j(1) =

∑
P∈C(Ej)

IIj,P (1), we use (10) to see that for

P ∈ C(Ej),

|IIj,P (1)| ≤ CN,j2
−P ·1 min(1, [λ2−P ·Vr ]−N )

for any N > 0 and this leads to the estimate Mλ,j(1) = O(λ−1/sj ), for
each 0 ≤ j ≤ N as long as the vertex Vr does not lie along the line
{s1}s>0. When Vr lies along this line, summing the above estimates
(say, in the case r = j so that we are summing over P ∈ C−(Vj)) adds
an extra factor of logλ due to the fact that sj−1 = sj in this case (after
summing in k, we are left with O(log λ) terms of order 1 in the m sum).

This gives us the correct estimate for Iλ(1) when the Newton distance
β is strictly larger than 1. To get the asymptotic refinement we first
consider the case when β1 /∈ {V1, . . . , VN}. Let Ej0 denote the edge
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whose interior contains β1. For j 6= j0, the bounds Mλ,j(1) = O(λ−1/sj )
mentioned above contribute to the error estimate. Next we observe that

∫ ∫
e
iλφEj0

(s,t)
χ(s, t) dsdt−Mλ,j0(1) = O(λ−(1/β+ǫ)) (14)

for some ǫ > 0. In fact the above difference is equal to

∑

P /∈C(Ej0)

∫ ∫
e
iλφEj0

(s,t)
χ(s, t)ψ(2ps)ψ(2qt) dsdt =:

∑

P /∈C(Ej0)

IIIλ,P (1).

If P /∈ C(Ej0 ) then there exist σ > 0 and positive numbers a, b, c and
d such that either P = kan0 + ℓbnj0 for certain positive integers k, ℓ
satisfying k ≥ σℓ, or P = kcnj0 + ℓdnN for certain positive integers k, ℓ
satisfying ℓ ≥ σk. Concentrating on those P /∈ C(Ej0 ) which are linear
combinations of n0 and nj0 , we write

IIIλ,P (1) = 2−P ·1

∫ ∫
eiλ2

−P ·Vj0 φ̃P (s,t)χ(2−ps, 2−qt)ψ(s)ψ(t) dsdt

where φ̃P (s, t) = 2P ·Vj0φEj0
(2−ps, 2−qt); the general argument establish-

ing (9) shows that the gradient of this normalised phase is also uniformly
bounded below. Hence integration by parts shows

|IIIλ,P (1)| ≤ C2−P ·1 min(1, [λ2−P ·Vj0 ]−N )

for any N > 0. Summing over all such P = kan0 + ℓbnj0 , choosing N
large enough, establishes (14).

This leaves us with developing the asymptotic behaviour of

I(λ) =

∫ ∫
e
iλφEj0

(s,t)
χ(s, t) dsdt

as λ tends to infinity. Let m denote the absolute value of the slope
of the edge Ej0 and assume that m is positive and finite (that is, Ej0
is a compact edge); the other cases are easier to handle. Finally we
may assume that 1 /∈ Ej0 ; otherwise both vertices (2, 0) and (0, 2) lie
on Ej0 and the R-nondegeneracy hypothesis implies that φEj0

has a

nondegenerate critical point at (0, 0) and so stationary phase asymptotics
can be invoked.

Let (A,B) denote the strictly positive components of the vector
nj0/(Vj0 · nj0) and note that α · (A,B) = 1 for all α ∈ Ej0 since for
such α, (α − Vj0) · nj0 = 0. Making the change of variables s → λ−As
and t→ λ−Bt gives us

I(λ) = λ−1/β

∫ ∫
e
iφEj0

(s,t)
χ(λ−As, λ−Bt) dsdt.
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We split the above integral by writing

χ(λ−As, λ−Bt) = [χ(λ−As, λ−Bt) − χ(λ−As, 0)]

+ [χ(λ−As, 0) − χ(0, 0)] + χ(0, 0).

We denote the first difference by χ1(s, t) and the second difference as
χ2(s). Here we are implicitly assuming the existence of the oscillatory

integral
∫ ∫

e
iφEj0

(s,t)
dsdt for the case we are considering; however the

argument sketched below also shows that this integral does indeed exist.
We concentrate on showing

S2(λ) :=

∫ ∫
e
iφEj0

(s,t)
χ2(s) dsdt = O(λ−ǫ0) (15)

for some ǫ0 > 0. It is slightly easier to show that S1(λ) = O(λ−δ0 ) for
some δ0 > 0 and this, together with (15), gives the desired result. We
split the region of integration defining S2(λ) into three parts; |s| ≥ C|t|m,
|s| ≤ C−1|t|m and C−1|t|m ≤ |s| ≤ C|t|m. The first and second regions
correspond to where the monomials associated to the endpoint vertices
Vj0 and Vj0+1, respectively, are pointwise larger than the other monomi-
als in φEj0

. In either case, the size of any derivative of the phase φEj0
is

understood (being determined by the endpoint vertices) and straightfor-
ward integration by parts arguments show the decay estimates O(λ−ǫ)
for some ǫ > 0 in these cases.

We shall concentrate on estimating the part of the integral defining
S2(λ) over the third region where all the monomials in φEj0

have the

same size. We make the change of variable t → s1/mt (treating the
positive and negative s integrals separately), reducing the analysis of
S2(λ) to

∫ ∫

1/C≤|t|≤C

e
isα1+α2/mφEj0

(1,t)
s1/mχ2(s)dsdt.

Here the exponent α1 +α2/m = α · (1, 1/m) is constant as α varies over
Ej0 ∩ Λ and the basic observation is that the constant

η := (α− 1) · (1, 1/m)

is strictly positive since we are assuming that 1 /∈ Ejo . Consider first
the part of the integral where s > λδ for any δ > 0; that is

S2,δ ≡
∫

s>λδ

s1/m
∫

1
C ≤|t|≤C

eis
rQ(t)dt ds

where Q(t) ≡ φEj0
(1, t) and r = 1 + 1

m + η.
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We split the t integral in S2,δ around the critical points of Q. Away
from the critical points of Q (where |Q′(t)| & 1) an integration by parts
argument shows that the t integral is O(1/s1+η) which allows us to
estimate that part of S2,δ successfully. In a small neighbourhood of
a critical point of Q, say |t − α| < ǫ for small ǫ > 0 where Q′(α) =
0, 1/C ≤ |α| ≤ C, we make the change of variable t→ t−α to write this
part of S2,δ as

S2,δ,α ≡
∫

s>λδ

eiQ(α)sr

s1/m
∫

|t|<ǫ

eis
rP (t)dt ds

where P (t) ≡ Q(t + α) − Q(α) is a polynomial satisfying |P (t)| .
|t|k0 , |P ′(t)| & |t|k0−1 on the interval |t| < ǫ for some k0 ≥ 2. Since
φ is R-nondegenerate, we see that Q(α) 6= 0. An integration by parts
argument (in s) shows that

S2,δ,α = C

∫

s>λδ

eiQ(α)sr

s1/m
∫

|t|<ǫ

eis
rP (t)P (t)dt ds + O(λ−ε)

for some constnat C and ε > 0. Now integrating by parts in the t integral
shows that S2,δ,α = O(λ−ε) for every nonzero critical point α of Q and
any δ > 0.

For the part where s ≤ λδ, we write

χ2(s) = sλ−A
∫ 1

0

∂χ/∂s(λ−Asσ, 0)dσ

and trivially estimate

∫ 1

0

∫

|t|∼1

∫

s≤λδ

e
isα·(1,1/m)φEj0

(1,t) s

λA
∂χ

∂s
(λ−Asσ, 0)dsdt dσ

= O(λ−(A−2δ)).

Taking δ < A/2 establishes (15), completing the proof that

I(λ) = λ−1/βχ(0, 0)

∫ ∫
e
iφEj0

(s,t)
dsdt+O(λ−(1/β+ǫ)).

For the case β1 ∈ {V1, . . . , VN}, say β1 = Vj0 , we consider only the
situation when β > 1 since otherwise stationary phase methods apply.
From the above analysis we have

Iλ(1) =
∑

P∈C(Ej0−1)∪C(Ej0)

∫ ∫
eiλφ(s,t)χ(s, t)ψ(2ps)ψ(2qt)dsdt

+O(λ−(1/β+ǫ))
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for some ǫ > 0. Furthermore, similar arguments already used show that
the above sum is equal to

∑

P∈C(Vj0 )

∫ ∫
e
iλbVj0

(st)β

χ(s, t)ψ(2ps)ψ(2qt)dsdt+O(λ−1/β)

and the sum is easily seen to be equal to cλ−1 logλ + O(1/λ) for some
c 6= 0 since β is a positive integer larger than 1. We omit the details.
This completes the proof of Theorem 1.1. �

5. Analysis of Iλ(1/st) and T

In this section we complete the proof of Theorem 1.3. Recall that we are
trying to understand the oscillatory integral

Iλ(1/st) =

∫ ∫
eiλφ(s,t)χ(s, t) ds/s dt/t

where φ is a real-valued, real-analytic phase at (0, 0) and χ ∈ C∞
c (R2) is

supported in a sufficiently small neighbourhood of (0, 0). Furthermore

Iλ(1/st) =
∑

1≤j≤N

Sλ,j(1/st)

where

Sλ,j(1/st) =
∑

P∈C(Vj)

Ij,P (1/st)

and for P ∈ C(Vj),

Ij,P (1/st) =

∫ ∫
eiλ2−P ·Vjφj,P (s,t)χ(2−ps, 2−qt)ψ(s)ψ(t) ds/s dt/t

where φj,P (s, t) = 2P ·Vjφ(2−ps, 2−qt).
As described in Section 3 we compare Sλ,j(1/st) with

Mλ,j(1/st) =
∑

P∈C(Vj)

IIj,P (1/st).

From (6), (8) and (11), we see that for P ∈ Cm(Vj),

|Ij,P (1/st) − IIj,P (1/st)| ≤ Cj2
−ǫjm min(λ2−P ·Vj , [λ2−P ·Vj ]−ǫj ) (16)
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for some ǫj > 0. If the endpoint vertices V0 and VN do not lie along the
coordinate axes, then we can sum over P ∈ Cm(Vj) to obtain

∑

P∈Cm(Vj)

|Ij,P (1/st) − IIj,P (1/st)| ≤ C2−δjm (17)

for some δj > 0. Summing in m establishes (4).
With regard to the singular integral operator Tf = f ∗ S mentioned

in the remarks after the statement of Theorem 1.3, the operator corre-
sponding to Ij,P (1/st) is the convolution operator Tj,Pf = f ∗Sj,P where
for P ∈ C(Vj), Sj,P is the distribution defined on a test function ρ by

〈Sj,P , ρ〉 =

∫ ∫
ρ(s, t, φ(s, t))χ(s, t)ψ(2ps)ψ(2qt)ds/sdt/t.

Similarly the operator Mj,P f = f ∗ Uj,P corresponding to IIj,P is de-
fined exactly in the same way except φ is replaced by the monomial
bVjs

Vj,1tVj,2 . The above bounds translate in this setting to the fact that
the difference operators {Tj,P −Mj,P }P∈Cm(Vj) are almost orthogonal

whose sum has an L2 operator norm bound of O(2−δjm). Using appro-
priate Littlewood-Paley theory these L2 estimates can be converted into
Lp, 1 < p <∞ estimates; see [2].

Thus, if the vertices V0 and VN do not lie along the coordinate
axes, summing over m ≥ 0 reduces the analysis of Iλ(1/st) and T to∑

jMλ,j(1/st) and
∑
jMjf =

∑
j

∑
P∈C(Vj)

Mj,P f , respectively. As

in [2], if each vertex Vj has at least one even component, the operator∑
jMj is bounded on all Lp, 1 < p <∞ (if one of the components of Vj

is even, then clearly Mλ,j(1/st) ≡ 0). If there exists a vertex Vj whose
components are both odd, then one can argue exactly as in [2] to show
that T is not bounded on L2. Finally, it is not difficult to show that∑

jMλ,j(1/st) = Cφ logλ + O(1) for an explicit Cφ depending on the
signs of the coefficients bVj for those vertices Vj which have both com-
ponents odd. This is carried out in [8] where one can find a formula for
Cφ.

If either V0 or VN lies along the coordinate axes, the sum (17) col-
lapses. In this case (at least for those P ∈ C+(V1) or P ∈ C−(VN )), we
need to replace II1,P , say, with

II1,P =

∫ ∫
eiλφ(0,t)χ(s, t)ψ(2ps)ψ(2qt) ds/s dt/t.

Similarly we need appropriate replacements for IIN,P as well as for the
operators M1,P and MN,P . With these substitutions, the sum esti-
mate (17) now holds as well as the fact that the difference operators
{T1,P −M1,P }P∈C+

m(V1)
, say, are almost orthogonal whose sum has an
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L2 operator norm bound of O(2−δm) for some δ > 0. This case was
overlooked in [2].

We shall now show that the result determining the Lp boundedness
for the singular integral operator T does not extend to φ ∈ C∞, even in
the finite-type category. For any ǫ > 0, we consider the operator

Tǫf(x, y, z) = p.v.

∫

|s|,

∫

|t|≤ǫ

f(x− s, y − t, z − φ(s, t)) ds/s dt/t (18)

where φ(s, t) = s2t+ψ(s) and ψ is an appropriate smooth function near
s = 0 such that ψ(k)(0) = 0 for all k ≥ 0. In this case there is only one
vertex, (2, 1), for the Newton polygon Π of φ. We will show that when
ψ is convex and odd, a necessary and sufficient condition for (18) to be
unbounded on L2 for all ǫ > 0 is that there exists a sequence sj ց 0
such that for

σj < sj satisfying ψ′(σj) = ψ(sj)/sj , then we have sj/σj → ∞. (19)

This is just the contrapositive to the (local) h doubling condition used
in [7] to analyse Hilbert transforms along convex curves in the plane. In
fact we will show that for every ǫ > 0,

mǫ(ξ, η, γ) =

∫

|s|,

∫

|t|≤ǫ

ei[ξs+ηt+γφ(s,t)] ds/s dt/t

is an unbounded function. We take η = 0 and perform the t integral
first;

mǫ(ξ, 0, γ) =

∫

|s|≤ǫ

ei[ξs+γψ(s)]

∫

|t|≤ǫ

eiγs
2t dt/t ds/s

= −2

ǫ∫

0

sin(ξs+ γψ(s))I(s2) ds/s

where I(s2) = 2
∫ ǫ
0 sin(γs2t)dt/t. Here we are assuming that ψ is odd.

Since I(s2) = O(γs2) and I(s2) = sgn(γ)π +O(1/γs2), we see that (for
γ < 0)

mǫ(ξ, 0, γ) = 2π

ǫ∫

|γ|−1/2

sin(ξs+ γψ(s)) ds/s + O(1).

Now take j so large in (19) that sj < ǫ and ψ′′(σj) < π. For such a
j, consider −γ = π/[2h(σj)] and ξ = −γψ′(σj). Then since sj < ǫ, we
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have

ǫ∫

|γ|−1/2

sin(ξs+ γψ(s)) ds/s =

sj∫

|γ|−1/2

sin(ξs+ γψ(s)) ds/s + O(1)

by the convexity of ψ (see [7]). Also ψ′′(σj) < π guarantees that

|γ|−1/2 < σj and so (see [7], page 740)

sj∫

|γ|−1/2

sin(ξs+ γψ(s))ds/s ≥
(sj+σj)/2∫

σj

sin(ξs+ γψ(s))ds/s

> 1/
√

2 log((1 + (sj/σj))/2)

and by (19) this completes the proof that mǫ is an unbounded function
of ξ, η and γ. �
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