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ABSTRACT

We give equivalent conditions for tensor product of Orlicz sequence spaces, then
we obtain a necessary and sufficient condition for a class of matrix operators
acting on Orlicz sequence spaces to be continuous and compact.

1. Introduction

Let

Jul vl
O(u) = ; o(t)dt and ¥(v) = ; Y(s)ds

be a pair of complementary N—functions, i.e., ¢(t) is right continuous, ¢(0) = 0,
¢(t):0 /S oo0ast:0 oo and 1 is the right inverse of ¢. The Orlicz sequence space

I? is defined to be the set {z = {z;} : pa(\z) = § ®(Az;) < oo for some A > 0}. The
i=1

Luxemburg norm and the Amemyia norm are expressed as

x
= inf : -)<1
loll@) = inf {e > 0: pa(7) <1}

and 1
= inf —[1 k
el = jof 7 (1 + pa(ka).
respectively. To simplify notations, we write shortly 1(®) for (1%, || - l(@)) and I? for
(I*,]| - |l#). In virtue of the basic inequality that: |zll@) < lzlle < 2[|z[/() for every

z € [®, the embedding results for the Luxemburg norm are suitable for the Amemyia
norm.
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o0
Denote by (x,y) the series > x;y;. Observe the following well known facts about
i=1
functionals on 1(®) and 1% (see [3] or [8, Theorem 1.2.12]):

e = sup {|(z, 1) : y € 1, yllw) < 1}

and
2l (@) = sup { I, )| - y € 1, llyllw < 1} .
They will be used in this context. The basic facts on Orlicz spaces can be found in [1]
or [7, 8.
Suppose A = (aj;) is an infinite real matrix. It determines a linear operator A
from 1(®1) into [®2 according to the following rule:

T
Ax = (Zaljtha% i ) € 1%, for any z = (t1,t2,--- ) e IS

7j=1

We call such bounded matrix operator is a member of B(l((bl), l%), in which the set
of all compact matrix operators is denoted by Bc(l(‘bl), I®2). As a particular case, for
the operator from P' to P2 (1 < p1,p2 < o0), the characterization of B(IP!,[P?) (or
B.(IP1,[P?)) has remained a problem (see [4, Chapter 7.§ 5, Problem 12]) and attracted
a lot of researchers (see [2, 5, 6]). [4] characterized B(IP*,[P?) in terms of their elements
when p; or py is 1 or co. [2] answered the question when p; = pa = 2. This paper is
devoted to operators on Orlicz spaces as a generalization of the case 1 < py,p2 < 00,
which means that the results of this paper restricted to the class of the matrix operators
between two Lebesgue sequence spaces are also new.

Let N be the set of natural numbers and ® be an N—function. The Lebesgue
matrix space [® (N x N) is expressed as the set

{A (aij) : ZZ@ (Alaijl) <ooforsome)\>0},

i=1j=1

and the norms on it thereby similarly defined as that of sequence spaces.
If B = (b;j) € IY(N x N) with ¥ being the complementary N —function of ®, we

denote o =
B) = Z Zaijbij .

i=1j=1
Clearly, the following Holder inequality holds:
(A, B) < D> lagllbis] < [ Alla) 1 Bllw -
i=1j=1
The tensor product 1(®1) @ 1(®2) of [(®1) and 1(®2) is defined (see [7, p. 179]) as the
set of the linear span of {z @y : z € I(®1),y € 1(®2)}, where

ty t1s1 1182
x®y::xT-y: to (31’32,...): tos1 toso

fOI'.’E:(tl,tQ,"‘ 7tn7”') andy:(sly‘SQ?'” 78717”')'
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2. Main results

Let us first give a characterization of the Orlicz sequence space [(®). The following
theorem is parallel to [7, Theorem 5.4.2] which dealt with the tensor product of Orlicz
functions spaces (spaces on diffuse measure) but left the result on sequence spaces
unknown.

Theorem 1
Let &1, ®5 and ® be N-functions. Then the following conditions are equivalent:

(i) @(auv) < ®q(u) - Po(v) for some a > 0 and 0 < u,v < ugp;
(ii) There is a constant 0 < C' < oo such that

Iz @ yll@) < Cllzll@n ll1Yll@;

(iit) 1(®1) @ 1(®2) C 1PN x N).

Proof. (i) = (ii): Let 0 # o = (t1,t2,---) € I(®) and 0 # y = (s1, 82, -+ ) € I{®2), Then

xr > t;
poy | — | =2 @1 | — | <1
' (Hx\l«»g) ; (Ilm!!<cp1>)
Y - S5
@ =) Pl 7 — | <L
’ (\yH(ch)) jZ::l <Hy||(<1>2)>

Therefore, t;/||z|(5,) < ®7(1) and si/llyll@,) < ®5 (1), Letting ¢; = max(®7"(1)/ug, 1)
and ¢y = max(®5 (1) /ug, 1), we have

0102\\96H(<1>1 HyH ®)) D4 “\etllzlan ) \ellyle,
=1 Cle”(% = 1 c2lyll(@.,)

> It; ) > ( ;] >
<> ¥ <1
2 (nwn@l 2% Ll

and

Therefore,

(tleon Yo (eteon ),
crezl|zll@) 1yl @) crez||zll @) 1Yl @)

C1C2
lz®yll@) < THQEH(QM)H?JH({&)'

whence

Consequently, (ii) holds by putting C' = cica/a.
(ii) = (iii): This follows by the fact that z ® y € I(®) iff ||z ® yll(@) < oo
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(iii) = (i): In fact, if (i) is false, then there exist a, \, 0,b, \, 0 such that

nbn
@(“ >><1>1(an)-c1>2(bn), n>1.

n4mn

Using the convexity of ® we have

@1(an).<1>2(b)<q>< nbn ) n>1.

4n n
Since @1 (ay) - P2(by) N\, 0, we may assume that ®(a,) < 1/2" dy(b,) < 1/2" for
n > 1. Then choose integers K, and J, such that

2n+1 < K @1(0,”) ~ 27, ﬁ < Jnég(bn) S on
Let z¢ and yg be defined as:
K Kn
—~—— —f——
x02<a1’a1’.--’a1’ ...... ’an’an’...’an’ ...... )’
J1 Jn
———
yo=<b1,b1,--',b1, ...... s by by )
Then
o oo 1
pay (z0) = Y Kn®1(an) < o = L
n=1 n=1
<1
pa: (o) Zmz )< =1
n=1
Therefore, zq € 1(®1) Yo € [(®2)  On the other hand, observe that
J1 In
—_—
albl’--. 7a1b1 ...... albn’--- 7a1bn ...... }Kl
b Dy eeeee- b Do e
$0®y0: ai01, ,a101 a10n, , A10p )
asbi, -+ ,asby ---- Aobp, -+ asby e K,
agbi, -+ ,a2by ------ Qgbpn, -+ agby e

Given € > 0, choose ng > 1/, then we have

pa(e(zo @ y0)) ZZKJ(PE(LZ

i=1j=1
i anbn
ZnZlKan@( - )
> > KnJpd"®1(an)®2(bn)
n=no

= Z 4n+1: ZZ:OO

n=no n=no
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Consequently, zo ® yo & I(®) since & > 0 is arbitrary, which contradicts (iii) and finish
the proof. O

Theorem 2

If ($q, V), (P2, ¥2) and (P, V) be pairs of complementary N —functions. Then
the following conditions are equivalent:

(i) @(auv) < ®1(u) - ¥o(v) for some o > 0 and 0 < u,v < uy;
(i) A € B(1(®1),1®2), for each A = (a;;) € IY(N x N);
(iii) A € B.(1(®1),1%2), for each A = (a;;) € IY(N x N).

Proof. (i) = (ii): Let (i) be satisfied. In view of Theorem 1, there is C' > 0 such that

Iz @ yll@) < Cllzll@nllyllcws) (1)

for all z € 1(®1) and y € 1(Y2). Therefore, A = (a;;) € IY(N x N) implies that
|A|lw < oo and we deduce from (1) that

| Al @y res = sup {[|Ax]|a, : [x]@,) <1}
= sup {|(Az,9)| + ll2ll(@y) < L1yl cway < 1}
= sup {|[(4", 2 @ )| : lzll @) <1, Iyllw,) <1}

< sup {4 lulle ® Yl o) : el r) < L. [wllcun) < 1)
< CllAllv.

That is, A is bounded on [(®1) into [®2 .
(ii) = (iii): For any given A = (a;;) € IY(N x N), put

a1 a2 -+ aip O
as1 azy -+ as, O
A, =
Apnl Ap2 -+ Qpn 0
0 o --- 0 0

Then A, is a finite dimensional operator for each n > 1. Since
A — Axllj@) 2 < C[JA—Aplle — 0

as n — oo, we conclude that A is compact and hence (iii) holds.
(iii) = (i): Suppose that (iii) holds and that (i) is not satisfied. There exist u, \, 0
and v, \, 0 such that

UnpU
cp( Zn”) > By (un)Ua(vn),  m=1,2,

Therefore, we have from a basic property on N —function (see [7, Proposition 2.1.1])

q)l(un)ql2(vn)
U (D1 (un) W2 (vn))

UpUn

T (D1 (1) Wa(vy)) >
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or,

4P v
\1:( 1(tn) 2(””)> < B (1) Ua(vy)
UnUn
Without loss of generality, we assume that ®q(u,) < 2% and Wao(v,) < 2%

every n > 1. Let us choose for each n > 1 two integers K,, and J, such that

1 1 1 1
ﬁ<KnquIS27n: ﬁ<JnU%2§27n
Next we define
A 0 0
0 A, 0
AO — DR ... ... ... ,
0 - A, -
where
11 1
n 11 1
An _ 4 (131(11%)\1/2(1)71) n 2 1
UpUn o : :
1 1 ... 1 e
Then Ag € [Y(N x N). In fact, by (2) and (3) we have
> 4" D1 (uy, ) Yo (vy,)
pu(Ag) = > KnJyV
n=1 UnUn
o0 o0 1
<D Kndny®1(un) Ua(vy) < o
n=1 n=1
Finally, we will show that Ag & B.(IP',[P?). Put
K Kn T
:L‘()_ (ul)ul)." 7u17 ..... 7un’un’.. ’un’ ...... )
and
J1 Jn T
—— ——
y0: (Ul’vl’--. )U17 ...... ’Un’vn’.-- 7Un’ ...... ) .
Then by (5) we deduce that
o0 oo 1
PP, (CC(]) = Z Kn(bl(un) < Z 27 =1
n=1 n=1

and N N
pus(0) = D JnWa(vn) <37 o0 = 1.

n=1 n=1
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Note that
I Tn T
A _ K14‘1>1(U1)\I’2(U1) Kn4”<1)1(un)\112(vn)
0Ty = STyt R ,
U1 Un
whence we conclude that
|Aoll(@y)—s = 5D { | Aox]|a, : [x[@y) <1}
> || Agzo e, = sup {|(Azo, )| « |y (ws) < 1}
oo
> (Aowo, yo) = D KnJp4" @1 (un)¥a(vy)
=1
o 1 "
> —_ =
> Z 1= %
n=1
which contradicts condition (iii). In such a way the proof is finished. O

We obtain the corresponding result for operator on [P spaces mentioned by [4]
from the above theorem:

Corollary. If p1,p2,p € (1,00) and 1/py +1/q1 = 1/p2+1/q2 = 1/p+1/q = 1, then
the following conditions are equivalent:

(i) p > max(p1,¢2);
(i) A € B(IPr,1P2), for each A = (ai;) € 19N x N);
(iii) A € B.(IP*,1P2), for each A = (a;j) € l9(N x N).

Proof. The sequence space [P is generated by the N—function ®(u) = |ulP, so we
reduce to check that (i) is equivalent to (uv)P < auP'v? for some constant o > 0 and
0 < u,v <1, which is routine. O
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