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Abstract

In the context of a finite measure metric space whose measure satisfies a growth
condition, we prove “T1” type necessary and sufficient conditions for the bound-
edness of fractional integrals, singular integrals, and hypersingular integrals on
inhomogeneous Lipschitz spaces. We also indicate how the results can be ex-
tended to the case of infinite measure. Finally we show applications to Real and
Complex Analysis.

1. Introduction. Definitions and statement of the theorems

Let (X, d, µ) be a finite measure metric space whose measure µ satisfies a n-dimensional
growth condition, that is, (X, d) is a metric space and µ is a finite Borel measure that
satisfies the following condition: there is n > 0 and a constant A > 0 such that
µ(Br) ≤ Arn, for all balls Br of radius r and for all r > 0. Note that this condition
allows the consideration of non-doubling as well as doubling measures.
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Our results will apply to functions defined on the support of µ, of course the
support of µ has to be well defined, where supp(µ) is the smallest closed set F such
that for all Borel sets E, E ⊂ F c, µ(E) = 0. For example, if X is separable then the
support of µ is well defined. Furthermore to avoid any confusion we will assume that
X = supp(µ).

The inhomogeneous Lipschitz-Hölder spaces of order β, 0 < β ≤ 1 , will be denoted
Λβ and consists of all bounded functions f that satisfy

sup
x 6=y∈X

|f(x)− f(y)|
dβ(x, y)

< ∞ .

The space Λβ is a Banach space with the norm

‖f‖Λβ
= sup

x∈X
|f(x)|+ sup

x 6=y∈X

|f(x)− f(y)|
dβ(x, y)

.

It will be useful to have a notation for each term in the norm, let

sup(f) = sup
x∈X

|f(x)| , and |f |β = sup
x 6=y∈X

|f(x)− f(y)|
dβ(x, y)

.

The results in this paper have extensions to the case µ(X) = ∞, but the cons-
tants depend on the normalization of the integrals at infinity, we will indicate these
extensions after the section on proofs. On the other hand, the case of homogeneous
Lipschitz spaces was treated in [2, 3], and [4]. The letter C or c will denote a constant
not necessarily the same at each ocurrence.

Let Ω = X × X\∆, where ∆ = {(x, y) : x = y} . A function Lα(x, y) : Ω → C,
where C is the set of complex numbers, will be called a standard fractional integral
kernel of order α, 0 < α < 1, when there are constants B1 and B2 such that

(L1) |Lα(x, y)| ≤ B1

dn−α(x, y)
.

(L2) |Lα(x1, y)− Lα(x2, y)| ≤ B2
dγ(x1, x2)

dn−α+γ(x1, y)
, for some γ, α < γ ≤ 1 , and

2d(x1, x2) ≤ d(x1, y) .

The fractional integral of order α of a function f in Λβ is defined by:

Lαf(x) =
∫

Lα(x, y)f(y)dµ(y) .

Note that in particular Lα(x, y) = 1
dn−α(x,y) is a standard fractional kernel of order α.

Theorem 1

Let 0 < α < γ ≤ 1, 0 < β < 1, and α + β ≤ 1 when 1 < n or α + β < n when
n ≤ 1. The following statements are equivalent:

a) Lα1 ∈ Λα+β.

b) Lα : Λβ → Λα+β is bounded.
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We define now the singular integral kernels that we will consider in Theorem 2
and Theorem 3. A function K(x, y) : Ω → C will be called a standard singular integral
kernel when there are constants C1,C2 and a number γ, 0 < γ ≤ 1, such that

(S1) |K(x, y)| ≤ C1

dn(x, y)

(S2) |K(x1,y)−K(x2, y)| ≤ C2
dγ(x1, x2)
dn+γ(x1, y)

, for 2d(x1, x2) ≤ d(x1, y) .

Let η be a function in C1 [0,∞) such that 0 ≤ η ≤ 1, η(s) = 0 for 0 ≤ s ≤ 1/2 and
η(s) = 1 for 1 ≤ s. Let Kε(x, y) = η(d(x,y)

ε )K(x, y), ε > 0 where K(x, y) is a standard
singular integral kernel. We will denote Tε the operator Tεf(x) =

∫
Kε(x, y)f(y)dµ(y) .

Theorem 2

Let K(x, y) be a standard singular integral kernel. Let 0 < β < min(n, γ). The
following two statements are equivalent:

a) ‖Tε1‖Λβ
≤ C, for all ε > 0.

b) Tε : Λβ → Λβ are bounded and ‖Tε‖Λβ→Λβ
≤ C ′, for all ε > 0 .

One of the novelties in this Theorem is that the cancellation condition (S3) for
all x (see below) follows from part a).

In Theorem 3 we will consider Principal Value Singular Integrals. We will denote
by Lipβ the space of classes of measurable functions f for which there is a g ∈ Λβ such
that f = g except for a set E that depends on f , with µ(E) = 0. The norm of f in
Lipβ is defined as ‖f‖Lipβ

= ‖f‖∞ + |f |β , where

|f |β = sup
x 6=y∈X

|g(x)− g(y)|
dβ(x, y)

= sup
x 6=y∈X−E

|f(x)− f(y)|
dβ(x, y)

.

We also need to add the following two conditions on the kernel:

(S3)
∣∣∣ ∫

r1<d(x,y)<r2

K(x, y)dµ(y)
∣∣∣ ≤ C3 for all 0 < r1 < r2 < ∞, µ− a.e in x .

(S4) lim
ε→0

∫
ε<d(x,y)<1

K(x, y)dµ(y) exists µ− a.e in x .

The principal value singular integral of a function f ∈ Lipβ is defined by

Kf(x) = lim
ε→0

∫
ε<d(x,y)

K(x, y)f(y)dµ(y)

Theorem 3

Let K(x, y) be a standard singular integral kernel that in addition satisfies (S3)
and (S4). Let 0 < β < min(n, γ) and f ∈ Lipβ. Then Kf(x) is well defined µ− a.e.
and the following two statements are equivalent:

a) K1 ∈ Lipβ

b) K : Lipβ → Lipβ is bounded.

A function Dα(x, y) : Ω → C will be called a standard hypersingular kernel of
order α , 0 < α < 1 , when there are constants E1 and E2 such that:
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(D1) |Dα(x, y)| ≤ E1

dn+α(x, y)
,

(D2) |Dα(x1, y)−Dα(x2, y)| ≤ E2
dγ(x1, x2)

dn+α+γ(x1, y)
, for some γ, 0 < γ ≤ 1, and 2d(x1, x2) ≤

d(x1, y).

The hypersingular integral of order α of a function f ∈ Λβ, α < β ≤ 1, is defined
by:

Dαf(x) =
∫

Dα(x, y) [f(y)− f(x)] dµ(y) .

Note that in particular Dα(x, y) = 1
dn+α(x,y) is a standard hypersingular kernel of order

α when X = Rn and µ is the Lebesgue measure, we have

∫ 1
dn+α(x, y)

[f(y)− f(x)] dy = cα(∆α/2f)(x)

for f sufficiently smooth and 0 < α < 2 .

Theorem 4

Let 0 < α < β ≤ 1 and β − α < n . Then Dα: Λβ → Λβ−α is bounded.

Note that Dα1 = 0 by definition. Also, Theorem 4 and its proof are valid without
changes in the case µ(X) = ∞ .

2. Proofs

We would like to point out that the proofs are based on classical methods, see for
example [9], adjusted to the modern “T1” formulation and to the present general con-
text. For carrying out the proofs we need the following known lemma about measures
that satisfy the n-dimensional growth condition.

Lemma
Let (X, d, µ) be a measure metric space such that µ satisfies the n-dimensional

growth condition, and r > 0. Then

1.
∫

d(x,y)<r

1
dn−δ(x, y)

dµ(y) ≤ c1r
δ, 0 < δ < n .

2.
∫

r≤d(x,y)

1
dn+δ(x, y)

dµ(y) ≤ c2r
−δ, 0 < δ

3.
∫

r/2≤d(x,y)<r

1
dn(x, y)

dµ(y) ≤ c3 .

Proof of the Lemma. The three parts are consequences of the growth condition. To
prove part 1, we rewrite the integral as a series, bound each term using the growth
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condition, and we add the resulting series. In detail we have:

∫
d(x,xo)<r

1
dn−δ(x, xo)

dµ(x) =
∞∑

k=0

∫
2−k−1r≤d(x,xo)<2−kr

1
dn−δ(x, xo)

dµ(x)

≤
∞∑

k=0

µ(B2−kr(xo))
(2−k−1r)n−δ

≤ A
∞∑

k=0

(2−kr)n

(2−k−1r)n−δ

= Arδ
( 2n

2δ − 1

)
.

To prove part 2 we perform a similar estimate:

∫
d(x,xo)≥r

1
dn+δ(x, xo)

dµ(x) =
∞∑

k=0

∫
2kr≤d(x,xo)<2k+1r

1
dn+δ(x, xo)

dµ(x)

≤
∞∑

k=0

µ(B2k+1r(xo))
(2kr)n+δ

≤ A
∞∑

k=0

(2k+1r)n

(2kr)n+δ

= Ar−δ
( 2n2δ

2δ − 1

)
.

Finally for part 3 we have:

∫
r/2≤d(x,y)<r

1
dn(x, y)

dµ(y) ≤ µ(Br(xo))
(r/2)n

≤ A2n.

Proof of Theorem 1. Observe first that 1 ∈ Λβ and therefore condition b) implies
condition a). We will prove now that condition a) implies condition b). We can just
consider the case Lα(x, y)= 1

dn−α(x,y) , because the general case is proven in the same
way, and we will denote Lα = Iα.

Condition (L1) is clearly valid. To show that condition (L2) is verified, we use
the Mean Value Theorem. Consider 2d(x1, x2) ≤ d(x1, y), and 0 < θ < 1 we have:∣∣∣∣ 1

dn−α(x1, y)
− 1

dn−α(x2, y)

∣∣∣∣ ≤ sup
θ

∣∣∣(−n + α)(θd(x1, y) + (1− θ)(d(x2, y))−n+α−1
∣∣∣

|d(x1, y)− d(x2, y)| ≤ B2
d(x1, x2)

dn−α+1(x1, y)
.

Now we will estimate sup(Iαf). Let x ∈ X. We will use the lemma to obtain

|Iαf(x)| ≤
∫

d(x,y)<1

|f(y)|
dn−α(x, y)

dµ(y) +
∫
1≤d(x,y)

|f(y)|
dn−α(x, y)

dµ(y)

≤ sup(f)
(
c1 + µ(X)

)
,
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and therefore sup(Iαf) ≤ sup(f)(c1 +µ(X)). We will estimate next |Iαf |(β) . We write

Iαf(x1)− Iαf(x2) =
∫

X

f(y)
dn−α(x1, y)

dµ(y)−
∫

X

f(y)
dn−α(x2, y)

dµ(y)

=
∫

X

f(y)− f(x1)
dn−α(x1, y)

dµ(y) + f(x1)
∫

X

1
dn−α(x1, y)

dµ(y)

−
∫

X

f(y)− f(x1)
dn−α(x2, y)

dµ(y)− f(x1)
∫

X

1
dn−α(x2, y)

dµ(y)

=
∫

X

f(y)− f(x1)
dn−α(x1, y)

dµ(y)−
∫

X

f(y)− f(x1)
dn−α(x2, y)

dµ(y)

+ f(x1) [Iα1(x1)− Iα1(x2)] .

The last term can be bounded using the hypothesis, and we have

|f(x1) [Iα1(x1)− Iα1(x2)]| ≤ c sup(f)dα+β(x1, x2) .

Let now r = d(x1, x2) and B2r(x1) the ball of radius 2r and center x1. We write∣∣∣∣∣
∫

X

f(y)− f(x1)
dn−α(x1, y)

dµ(y)−
∫

X

f(y)− f(x1)
dn−α(x2, y)

dµ(y)

∣∣∣∣∣ ≤
∫

B2r(x1)

∣∣f(y)− f(x1)
∣∣

dn−α(x1, y)
dµ(y)

+
∫

B2r(x1)

|f(y)− f(x1)|
dn−α(x2, y)

dµ(y)

+
∫

Bc
2r(x1)

|f(y)− f(x1)|
∣∣∣∣ 1
dn−α(x1, y)

− 1
dn−α(x2, y)

∣∣∣∣ dµ(y)

= J1 + J2 + J3 .

For the first term using the lemma we have

J1 ≤ |f |(β)

∫
B2r(x1)

dβ(x1, y)
dn−α(x1, y)

dµ(y) ≤ c |f |(β) rα+β = c |f |(β) dα+β(x1, x2).

For the second term we write

J2 ≤ |f |(β)

∫
B3r(x2)

(2r)β

dn−α(x2, y)
dµ(y) ≤ c |f |(β) dα+β(x1, x2).

For the third term we use (L2) and the lemma to get

J3 ≤ |f |(β)

∫
Bc

2r(x1)

B2

dn−α−β(x1, y)
dµ(y) ≤ c |f |(β) dα+β(x1, x2).

Collecting the previous estimates, we have

‖Iαf‖Λβ
≤ C ‖f‖Λβ

.

This concludes the proof of Theorem 1.



Boundedness on inhomogeneous Lipschitz spaces of fractional integrals 107

Proof of Theorem 2. Observe first that 1 ∈ Λβ and therefore condition b) implies
condition a).

Before doing the proof of the theorem and for the sake of completeness, we will
show that Kε satisfies conditions (S1) and (S2) with constants independent of ε.

Condition (S1) is true because η is bounded. To show condition (S2), assume that
2d(x1, x2) ≤ d(x1, y) and consider the following two cases:

Case 1: 1 < d(x1,y)
ε and 1 < d(x2,y)

ε . In this case Kε(x, y) = K(x, y), and therefore (S2)
is true with the same constant.

Case 2: 1 ≥ d(x1,y)
ε or 1 ≥ d(x2,y)

ε . Assume 1 > d(x1,y)
ε .

We write

|Kε(x1, y)−Kε(x2, y)| ≤
∣∣∣∣η(d(x1, y)

ε

)
− η

(d(x2, y)
ε

)∣∣∣∣ |K(x1, y)|

+
∣∣∣∣η(d(x2, y)

ε

)∣∣∣∣ |K(x1, y)−K(x2, y)| .

The first term above is less than or equal to

∥∥η′
∥∥
∞
|d(x1, y)− d(x2, y)|

ε
|K(x1, y)| ≤

∥∥η′
∥∥
∞

d(x1, x2)
ε

|K(x1, y)|

≤ c
(d(x1, x2)

ε

)γ
|K(x1, y)| ≤ c

dγ(x1, x2)
dn+γ(x1, y)

.

On the other hand, the second term is less than or equal to c |K(x1, y)−K(x2, y)| ≤
c dγ(x1,x2)

dn+γ(x1,y) . If 1 ≥ d(x2,y)
ε the proof is similar.

To show that condition a) implies condition b), the first step is to obtain the
cancellation condition (S3) of the kernel, for all x ∈ X.

Observe that for 0 < r1 < r2 < ∞, we have

Tr11(x)− Tr21(x) =
∫

r1/2<d(x,y)≤r1

η
(d(x, y)

r1

)
K(x, y)dµ(y)

+
∫

r1<d(x,y)
K(x, y)dµ(y)

−
∫

r2/2<d(x,y)<r2

η
(d(x, y)

r2

)
K(x, y)dµ(y)

−
∫

r2≤d(x,y)
K(x, y)dµ(y) .

Since the left hand side is uniformly bounded in r and x, and also the first and third
terms are uniformly bounded because of the growth condition (see lemma), it follows
that

(S3)

∣∣∣∣∣
∫

r1<d(x,y)<r2

K(x, y)dµ(y)

∣∣∣∣∣ ≤ C, for all x .
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Now, we will estimate sup |Tεf(x)| . Observe first that

Tεf(x) =
∫

d(x,y)≤1
Kε(x, y)f(y)dµ(y) +

∫
d(x,y)>1

Kε(x, y)f(y)dµ(y)

=
∫

d(x,y)≤1
Kε(x, y)(f(y)− f(x))dµ(y)

+ f(x)
∫

ε/2<d(x,y)≤ε
Kε(x, y)dµ(y)f(x)

∫
ε<d(x,y)≤1

K(x, y)dµ(y)

+
∫

d(x,y)>1
Kε(x, y)f(y)dµ(y) .

Since f ∈ Λβ , by conditions (S1), (S3) and the lemma we can bound the absolute
value of each term above by ‖f‖Λβ

and therefore supx∈X |Tεf(x)| ≤ c ‖f‖Λβ
.

Next, we will estimate supx 6=y
|Tεf(x)−Tεf(y)|

dβ(x,y)
. We consider the difference Tεf(x1)−

Tεf(x2), and the following decomposition:

Tεf(x1)− Tεf(x2) =
∫

Kε(x1, y)f(y)dµ(y)−
∫

Kε(x2, y)f(y)dµ(y)

=
∫

Kε(x1, y) [f(y)− f(x1)] dµ(y) + f(x1)
∫

Kε(x1, y)dµ(y)

−
∫

Kε(x2, y) [f(y)− f(x1)] dµ(y)− f(x1)
∫

Kε(x2, y)dµ(y)

=
∫

Kε(x1, y) [f(y)− f(x1)] dµ(y)

+
∫

Kε(x2, y) [f(y)− f(x1)] dµ(y)

+ f(x1) [Tε1(x1)− Tε1(x2)] .

Observe now that the last term can be estimated using the hypothesis and we
have ∣∣f(x1) [Tε1(x1)− Tε1(x2)]

∣∣ ≤ c sup(f)dβ(x1, x2) .

To estimate the first two terms, let r = d(x1, x2), we rewrite their sum as follows:∫
d(x1,y)<3r

Kε(x1, y) [f(y)− f(x1)] dµ(y)

+
∫

d(x1,y)<3r
Kε(x2, y) [f(y)− f(x1)] dµ(y)

+
∫
3r<d(x1,y)

[f(y)− f(x1)] [Kε(x1, y)−Kε(x2, y)] dµ(y) = H1 + H2 + H3 .

The absolute value of H3 can be estimated using condition (S2) as follows,

|H3| ≤ |f |β dγ(x1, x2)
∫
3r<d(x1,y)

dβ(x1, y)
dn+γ(x1, y)

dµ(y) ≤ c |f |β dβ(x1, x2) .
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For |H1|we have

|H1| ≤ |f |β
∫

d(x1,y)<3r

C1

dn−β(x1, y)
dµ(y) ≤ c |f |β dβ(x1, x2) .

Finally to estimate H2 we write∫
d(x1,y)<3r

Kε(x2, y) [f(y)− f(x1)] dµ(y)

=
∫

d(x1,y)<3r
Kε(x2, y) [f(y)− f(x2)] dµ(y)

+ [f(x2)− f(x1)]
∫

d(x1,y)<3r
Kε(x2, y)dµ(y) = J1 + J2 .

For the first term we have

|J1| ≤
∫

d(x2,y)<4r

c ‖f‖(β)

dn−β(x2, y)
dµ(y) ≤ c |f |β dβ(x1, x2) .

To estimate J2, consider first∫
d(x1,y)<3r

Kε(x2, y)dµ(y) =
∫

d(x2,y)<2r
Kε(x2, y)dµ(y)

+
∫
{y:d(x1,y)<3r}\{y:d(x2,y)<2r}

Kε(x2, y)dµ(y) .

Observe now that condition (S3) implies∣∣∣∣∣
∫

d(x2,y)<2r
Kε(x2, y)dµ(y)

∣∣∣∣∣ ≤ C3

and using part 3 of the lemma we get∣∣∣∣∣
∫
{y:d(x1,y)<3r}\{y:d(x2,y)<2r}

Kε(x2, y)dµ(y)

∣∣∣∣∣ ≤
∫
{y:2r<d(x2,y)<4r}

|Kε(x2, y)| dµ(y) ≤ c

therefore
|J2| ≤ c |f |β dβ(x1, x2)

collecting the estimates we have:

|Kεf(x1)−Kεf(x2)| ≤ c ‖f‖Λβ
dβ(x1, x2)

and finally
‖Kεf‖Λβ

≤ c ‖f‖Λβ
,

with c independent of ε.

Proof of Theorem 3. Observe first that 1 ∈ Lipβ and therefore condition b) implies
condition a). Let f ∈ Lipβ , we will show that

Kf(x) = lim
ε→0

∫
ε<d(x,y)

K(x, y)f(y)dµ(y)
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exists µ− a.e. Assume ε < 1, we can write

Kf(x) = lim
ε→0

∫
ε<d(x,y)<1

K(x, y) [f(y)− f(x)] dµ(y)

+ f(x) lim
ε→0

∫
ε<d(x,y)<1

K(x, y)dµ(y) +
∫
1≤d(x,y)

K(x, y)f(y)dµ(y).

Since f ∈ Lipβ , the first integral converges absolutely, the limit of the second term
exists by condition (S4), and the last integral converges absolutely because the inte-
grand is bounded. Furthermore, we have ‖Kf‖∞ ≤ c ‖f‖Lipβ

.

We will estimate now Kf(x1) − Kf(x2) for x1, x2 two points for which Kf(x)
exists. This part of the proof is very similar to the same part in Theorem 2. We write

Kf(x1)−Kf(x2) = lim
ε→0

∫
ε<d(x1,y)

K(x1, y)f(y)dµ(y)

− lim
ε→0

∫
ε<d(x2,y)

K(x2, y)f(y)dµ(y)

= lim
ε→0

∫
ε<d(x1,y)

K(x1, y) [f(y)− f(x1)] dµ(y)

+ f(x1) lim
ε→0

∫
ε<d(x1,y)

K(x1, y)dµ(y)

− lim
ε→0

∫
ε<d(x2,y)

K(x2, y) [f(y)− f(x1)] dµ(y)

− f(x1) lim
ε→0

∫
ε<d(x2,y)

K(x2, y)dµ(y)

= lim
ε→0

∫
ε<d(x1,y)

K(x1, y) [f(y)− f(x1)] dµ(y)

+ lim
ε→0

∫
ε<d(x2,y)

K(x2, y) [f(y)− f(x1)] dµ(y)

+ f(x1) [K1(x1)−K1(x2)] .

Observe now that the last term can be estimated using the hypothesis and we
have

|f(x1) [K1(x1)−K1(x2)]| ≤ c ‖f‖∞ dβ(x1, x2) .

To estimate the first two terms, let r = d(x1, x2), and ε < r, we rewrite them as
follows:
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lim
ε→0

∫
ε<d(x1,y)

K(x1, y) [f(y)− f(x1)] dµ(y)

+ lim
ε→0

∫
ε<d(x2,y)

K(x2, y) [f(y)− f(x1)] dµ(y)

= lim
ε→0

∫
ε<d(x1,y)<3r

K(x1, y) [f(y)− f(x1)] dµ(y)

+ lim
ε→0

∫
{y:ε<d(x2,y)}∩{y:d(x1,y)<3r}

K(x2, y) [f(y)− f(x1)] dµ(y)

+
∫
3r<d(x1,y)

[f(y)− f(x1)] [K(x1, y)−K(x2, y)] dµ(y) = H1 + H2 + H3 .

The absolute value of H3 can be estimated as follows,

|H3| ≤ |f |β dγ(x1, x2)
∫
3r<d(x1,y)

dβ(x1, y)
dn+γ(x1, y)

dµ(y) ≤ c |f |β dβ(x1, x2) .

For |H1|we have

|H1| ≤ |f |β
∫

d(x1,y)<3r

C1

dn−β(x1, y)
dµ(y) ≤ c |f |β dβ(x1, x2) .

Finally to estimate H2 we write

lim
ε→0

∫
{y:ε<d(x2,y)}∩{y:d(x1,y)<3r}

K(x2, y) [f(y)− f(x1)] dµ(y)

= lim
ε→0

∫
{y:ε<d(x2,y)}∩{y:d(x1,y)<3r}

K(x2, y) [f(y)− f(x2)] dµ(y)

+ [f(x2)− f(x1)] lim
ε→0

∫
{y:ε<d(x2,y)}∩{y:d(x1,y)<3r}

K(x2, y)dµ(y) = J1 + J2 .

For the first term we have

|J1| ≤
∫

d(x2,y)<4r

c ‖f‖(β)

dn−β(x2, y)
dµ(y) ≤ c |f |β dβ(x1, x2) .

To estimate the second J2 consider first

lim
ε→0

∫
{y:ε<d(x2,y)}∩{y:d(x1,y)<3r}

K(x2, y)dµ(y) = lim
ε→0

∫
ε<d(x2,y)<2r

K(x2, y)dµ(y)

+
∫
{y:d(x1,y)<3r}\{y:d(x2,y)<2r}

K(x2, y)dµ(y) .

Observe now that ∣∣∣∣∣limε→0

∫
ε<d(x2,y)<2r

K(x2, y)dµ(y)

∣∣∣∣∣ ≤ C3
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and using part 3 of the lemma we get∣∣∣∣∣
∫
{y:d(x1,y)<3r}\{y:d(x2,y)<2r}

K(x2, y)dµ(y)

∣∣∣∣∣ ≤
∫
{y:2r<d(x2,y)<4r}

|K(x2, y)| dµ(y) ≤ c

therefore
|J2| ≤ c |f |β dβ(x1, x2)

collecting the estimates we have:

|Kf(x1)−Kf(x2)| ≤ c ‖f‖
Lipβ

dβ(x1, x2)

and finally
‖Kf‖Lipβ

≤ c ‖f‖Lipβ
.

This concludes the proof of Theorem 3.

Proof of Theorem 4. We will prove the theorem for Dα(x, y) = 1
dn+α(x,y) , the general

case is identical. Note that the proof is also valid for µ(X) = ∞.
We will estimate first sup(Dαf) for f ∈ Λβ . We write

|Dαf(x)| ≤
∫

d(x,y)≤1

|f(y)− f(x)|
dn+α(x, y)

dµ(y) +
∫

d(x,y)>1

|f(y)− f(x)|
dn+α(x, y)

dµ(y)

≤ |f |β
∫

d(x,y)≤1

1
dn+α−β(x, y)

dµ(y) + 2µ(X̄) sup(f) .

Since 0 < α < β ≤ 1, we use part 1 of the lemma to estimate the integral and we
obtain that Dαf(x) is well defined everywhere and

sup(Dαf) ≤ c ‖f‖Λβ
.

To estimate |Dαf |α, we consider r = d(x1, x2) and write

Dαf(x1)−Dαf(x2) =
∫

d(x1,y)≤2r

f(y)− f(x1)
dn+α(x1, y)

dµ(y)

−
∫

d(x1,y)≤2r

f(y)− f(x2)
dn+α(x2, y)

dµ(y)

+
∫

d(x1,y)>2r
[f(y)− f(x1)]

[
1

dn+α(x1, y)
− 1

dn+α(x2, y)

]
dµ(y)

−
∫

d(x1,y)>2r

f(x1)− f(x2)
dn+α(x2, y)

dµ(y) .

Using part 1 of the lemma and the fact that f is in Λβ we can obtain that each of
the first two terms converges absolutely and is bounded by c |f |β dβ−α(x1, x2). Using
part 2 of the lemma we can also obtain that the fourth term converges absolutely and
is bounded by c |f |β dβ−α(x1, x2).

To estimate the third term observe first that for 2d(x1, x2) ≤ d(x1, y),
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∣∣∣∣ 1
dn+α(x1, y)

− 1
dn+α(x2, y)

∣∣∣∣ ≤ sup
θ

∣∣∣(−n− α)(θd(x1, y) + (1− θ)(d(x2, y))−n−α−1
∣∣∣

× |d(x1, y)− d(x2, y)| ≤ c
d(x1, x2)

dn+α+1(x1, y)
.

Therefore using this estimate, the fact that fεΛβ and the part 2 of lemma
we obtain that the third term converges absolutely and is less than or equal to
c |f |β dβ−α(x1, x2) and consequently |Dαf |(β−α) ≤ c |f |β .

Finally combining the two estimates we get ‖Dαf‖Λβ−α
≤ c ‖f‖Λβ

.

To extend Theorem 1 and Theorem 3 to the case µ(X) = ∞, the fractional
integrals and singular integrals have to be redefined so they converge for d(x, y) > 1.
The operator’s norm in each result will depend on the normalization. We will denote
with ’ the normalizations. Let xo ∈ X be a fixed point for which (S4) is valid and
define:

L
′
αf(x) =

∫
[Lα(x, y)− Lα(xo, y)] f(y)dµ(y)

K ′f(x) = lim
ε→0

∫
ε<d(x,y)

[K(x, y)−K(xo, y)] f(y)dµ(y) .

Applications

In this section we will illustrate some applications of the theorems. I am indebted
to Joaquim Bruna for pointing out to me the Theorem of Mark Krein and to Joan
Verdera for several generous discussions on applications 1 and 2.

1. The purpose of this application is to obtain boundedness in L2 of some sin-
gular integrals in the context of non-doubling measure metric spaces of finite mea-
sure. Following [7], a singular integral associated to µ is said to be bounded in L2

when there is a constant C such that ‖Kεf‖L2 ≤ C ‖f‖L2 , for all ε > 0, where
Kεf(x) =

∫
d(x,y)>ε K(x, y)f(y)dµ(y). We will use Theorem 2 and the following Theo-

rem of Mark Krein (see [1] for its proof and application to the classical case, and [8]
for the case of spaces of homogeneous type):

M. Krein’s Theorem
Let H be a real or complex Hilbert space with inner product (., .) and norm ‖.‖H .

Let D ⊂ H be a Banach space dense in H and such that ‖x‖H ≤ C ‖x‖D for x ∈ D. Let
A and B be two linear operator such that ‖Ax‖D ≤ CA ‖x‖D , ‖Bx‖D ≤ CB ‖x‖D ,
x ∈ D and (Ax, y) = (x,By) for all x, y ∈ D. Then ‖Ax‖H ≤ (CACB)1/2 ‖x‖H ,
‖Bx‖H ≤ (CACB)1/2 ‖x‖H , x ∈ D, and both extend to bounded operator on H.

In our application, we will consider H = L2 and D = Λβ. Since X has finite
measure we clearly have ‖f‖L2 ≤ µ(X)1/2 ‖f‖Λβ

, but we need the extra assump-
tion Λβ dense in L2. Let now K(x, y) be a standard singular integral kernel and
K∗(x, y) = K(y, x). Assume that K∗(x, y) also satisfies (S2). Let A = Tε and B = T ∗

ε

the corresponding smooth truncations. If ‖Tε1‖Λβ
≤ C ′ and ‖T ∗

ε 1‖Λβ
≤ C ′′ for all
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ε > 0, then by Theorem 2 both Tε and T ∗
ε are uniformly bounded on Λβ , by Krein’s

Theorem there is C such that ‖Tεf‖L2 ≤ C ‖f‖L2 , f ∈ Λβ, for all ε > 0. Consequently
‖Kεf‖L2 ≤ C ‖f‖L2 , f ∈ Λβ for all ε > 0, and it extends to a bounded operator in
L2,same conclusion for K∗. In addition, Nazarov, Treil, and Volberg have extended
the classical result of Calderon-Zygmund on the boundedness in Lp, 1 < p < ∞, of
singular integrals bounded in L2, to non-doubling separable measure metric spaces,
see [6].

2. The second application has appeared in [5] and it is an example for Theorem 3.
In this paper the authors need to study the boundedness properties of the Restricted
Beurling Transform, BΩf = B(fχΩ), on Lipε(Ω) where Ω is a bounded domain in
Rn with boundary of class C1+ε, 0 < ε < 1. Mateu, Orobitg and Verdera prove
the following more general result: “Let Ω be a bounded domain with boundary of
class C1+ε,0 < ε < 1, and let T be an even smooth homogeneous Calderon-Zygmund
operator. Then TΩ maps Lipε (Ω) into Lipε(Ω) and also Lipε (Ω) into Lipε(Ωc)”. Their
proof, which is non-trivial, consists in showing that condition (S3) and part a) of
Theorem 3 above are met. Condition (S4) is known to be true in this case.

3. The third application is related to M. Riesz Fractional Calculus associated
to non-doubling measures. Applying Theorem 1 and Theorem 4 we can obtain that
the composition of a Riesz fractional integral Iαf(x) =

∫ 1
dn−α(x,y)f(y)dµ(y) and a

fractional derivative Dαf(x) =
∫ [f(y)−f(x)]

dn+α(x,y) dµ(y) of the same order DαIα, as well as its
transpose IαDα, are bounded on Λβ, when Iα1 ∈ Λα+β , α + β < 1. In addition, it was
shown in [4] that these compositions are singular integral operators associated to µ.
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