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Abstract

The notion of ball proximinality and the strong ball proximinality were recently
introduced in [2]. We prove that an equable subspace Y of a Banach spaceX is
strongly ball proximinal and the metric projection from X , onto the closed unit
ball of Y , is Hausdorff metric continuous.

1. Introduction and notation

Let X be a normed linear space and A, any closed subset of X. We say A is proximinal
in X if for every x in X, the set

PA(x) =
{
y ∈ A : ‖x− y‖ = d(x,A)

}
(1.1)

is a non-empty set.
The notion of ball proximinality of a closed subspace was introduced in [2], moti-

vated by the example given in [10].

Definition 1.1 A subspace Y of a normed linear space X is ball proximinal in X
if Y1, the closed unit ball of Y , is proximinal in X.

It is easily verified (see [10, 2]) that Y is ball proximinal inX, then Y is proximinal
in X. That the converse is not true, was shown in [10] by a counter example. Thus,
ball proximinality implies proximinality, while the converse is not true.

One of the well known and often used method, to prove proximinality of a closed
set or a subspace C in X, is to construct a Cauchy minimizing sequence from C, for
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each element of X to be approximated. In particular for subspaces, such constructions
are usually made using a suitable intersection property of balls that may be available.
For example, the proximinality of M-ideals is proved by using the 3-ball intersection
property of the M-ideals.

The other intersection property of balls, which facilitates construction of Cauchy
minimizing sequences, is a property that has found frequent mention in the years
from 1968–1980, in articles [8, 7, 11, 6], of Olech, Mach, Yost and Lau respectively.
This property (or a mild variation of it) is called by different names in the above
mentioned references and we follow the nomenclature, viz equability, used by Yost
in [11]. This notion of equability easily renders itself to be a sufficient condition for ball
proximinality and in fact, results in a stronger notion of ball proximinality, namely,
strong ball proximinality. Further, the Hausdorff metric continuity of the metric pro-
jection onto the closed unit ball of an “equable” subspace follows as a consequence of
the equability criteria.

We use the following notation and definitions in this paper. If X is a normed
linear space, let X1 = {x ∈ X : ‖x‖ ≤ 1}, the closed unit ball of X. For x in X and
r > 0, we set

B(x, r) =
{
y ∈ X : ‖x− y‖ ≤ r

}
, D(x, r) =

{
y ∈ X : ‖x− y‖ < r

}
and if A is a subset of X then the distance of x from the set A is denoted by d(x,A).
That is,

d(x,A) = inf
{
‖x− z‖ : z ∈ A

}
.

If A and B are bounded, nonempty subsets of a Banach space, we denote by dH(A,B)
the Hausdorff metric distance between A and B, given by

dH(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}
. (1.2)

For any δ > 0 we set

PA(x, δ) =
{
z ∈ A : ‖x− z‖ < d(x,A) + δ

}
.

Following [3], we say a proximinal set A of a normed linear space X is strongly prox-
iminal if for each x in X and ε > 0, there exists δ > 0 such that

s(x, δ) = sup{d(z, PA(x)) : z ∈ PA(x, δ)} < ε .

Definition 1.2 A ball proximinal subspace Y of X is called strongly ball proximinal,
if Y1 is strongly proximinal in X.

In Section 2 of this paper, we prove that equable subspaces (Definition 2.1 be-
low) are strongly ball proximinal and the corresponding metric projection is Hausdorff
metric continuous. In Section 3 we apply these results and derive, as corollaries, the
main results of [5]. It is to be mentioned here that our proofs of these results are brief
and simpler than that of [5]. Also, we produce many new examples of ball proximinal
spaces, using one of our main results (Theorem 2.6). In Section 4, we show that equa-
bility is stable under the infinite c0- direct sums and present an example of a Banach
space X that is not strongly ball proximinal in itself.
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2. Main results

We need the following notation and definitions in the sequel.
For any normed linear space X, let C(X) denotes the class of all closed bounded

subsets of X. We equip C(X) with the Hausdorff metric dH given by (1.1). Let D be
subset of C(X) and let F be a map from D into C(X). We say F is continuous if F is
continuous as map from (D, dH) into (C(X), dH).

Let A be a proximinal subset of a normed linear space X. Then the map PA :
X → C(A) given by (1.1), is called the metric projection from X onto A. We say the
set valued map PA is Hausdorff metric continuous (H.m.c) if PA is continuous as a
map from the normed linear space X into the metric space (C(A), dH).

Let X and Y be Banach spaces. By C(Q,X), we denote the space of continuous
functions from the compact Hausdorff space Q into X, l∞(Γ, X) denotes the space
of bounded functions from the set Γ into X, K(X,Y ) denotes the space of compact
operators from X into Y and L(X,Y ) denotes the space of bounded linear operators
from X into Y .

In the rest of this section, we use the following notation. If S is a compact Haus-
dorff space and Γ is a non-empty set, φ : Γ → S would denote a surjection. If Q and S
are compact, Hausdorff spaces, then φ : Q→ S would denote a continuous surjection.
Further, Tφ : C(S,X) → l∞(Γ, X) (C(Q,X)) would denote the map Tφ(f) = f ◦ φ for
f ∈ C(S,X).

Below, we list the definitions, and modifications of definitions from [7, 11], that
are needed in the sequel.

Let X be a Banach space and Y be a subspace of X. Let F be a bounded subset
of X. For x and y in X, let [x, y] denote the line segment between x and y. That is
[x, y] = {λx+ (1− λ)y : 0 ≤ λ ≤ 1}. Define

rF = inf
{
r > 0 : F ⊂ B(y, r) for some y in Y1

}
.

We define the map HY1 from C(X) into C(Y1) by

HY1(F ) =
{
y ∈ Y1 : F ⊂ B(y, rF )

}
and for η > 0

HY1(F, η) =
{
y ∈ Y1 : F ⊂ B(y, rF (1 + η))

}
. (2.1)

The following definition is central to our discussion. As mentioned earlier, varia-
tions of this definition had appeared in [8, 7, 11, 6]. we use the terminology of Yost
in [11].

Definition 2.1 Let X be a Banach space and Y be subspace of X. We say Y is an
equable subspace of X if for every ε > 0, there is a δ > 0 and a map ψε : Y → [0, 1]
such that for every y in Y, ‖y − ψε(y)y‖ ≤ ε and B(0, 1) ∩B(y, 1 + δ) ⊂ B(ψε(y)y, 1).

It has been shown in Yost [11] that δ(ε) tends to zero as ε tends to zero and so
we assume that δ(ε) ≤ 1, for every ε > 0.

A subspace Y of X is called a very equable subspace of X, if Y is an equable
subspace of X and for each ε > 0 the map ψε is continuous. If X is an (a very) equable
subspace of X, we simply say that X is an (a very) equable space.



82 Lalithambigai

Remark 2.2 Definition 2.1 is a modification of the definition of equable spaces, as
given in Yost [11]. The requirement that the element Ψε(y) is in [0, y] is essential for
our purpose and we have incorporated this in our definition. However, every one of
the spaces that are equable according to Yost and cited in [11], satisfy this additional
requirement and thus satisfy our definition of equability.

Proposition A [11]

X is uniformly convex if and only if X is equable and strictly convex.

We list below the examples of equable subspaces given in [11].

Theorem B [11]

Let X be a Banach space.

1. If X is an equable Banach space with an equability map ψε and Y is a subspace
of l∞(Γ, X) which is invariant under each ψε, then Y is an equable subspace of
l∞(Γ, X).

2. If X is very equable and S is compact Hausdorff space, then Tφ(C(S,X)) is a very
equable subspace of l∞(Γ, X).

3. If Q and S are compact Hausdorff spaces and X is very equable Banach space,
then Tφ(C(S,X)) is an equable subspace of C(Q,X).

Theorem C [11]

In each of the following cases, K(X,Y ) is an equable subspace of L(X,Y ).

1. For any Banach space X with X∗ is very equable and Y = C(Q), Q is compact
Hausdorff space.

2. X is uniformly smooth and Y = C(Q).
3. X = L1(µ) and Y = C(Q).
4. X = L1(µ) and Y is very equable.

5. X = L1(µ) and Y is uniformly convex.

In the rest of the paper, we use the following notation. For ε > 0 and
y in Y , Ψε(y) will denote the element ψε(y)y in Y . Note that Ψε(y) is in [0, y]
and ‖y −Ψε(y)‖ ≤ ε.

We make frequent use of the following remark, regarding application of the equa-
bility criteria, in the sequel.

Remark 2.3 Let Y be an equable subspace of a Banach space X. Then for any real
scalar s and elements y, z and w in Y , using the equability of Y (Definition 2.1) we
have

B
(y
s
, 1

)
∩B

(z
s
, (1 + δ)

)
⊂ B

(w
s
, 1

)
,

where w = s{Ψε( z−y
s ) + y

s} and δ corresponds to ε in the definition of equability of Y .
Note that ∥∥∥z − w

s

∥∥∥ =
∥∥∥Ψε

(z − y

s

)
− z − y

s

∥∥∥ ≤ ε,
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and if y and z are in Y1, then Ψε( z−y
s ) + y

s is in [y
s ,

z
s ] and hence

w = s{Ψε( z−y
s ) + y

s} is in Y1 .

We now prove our main results. The proof of the following theorem is similar to
that of [11, Proposition 1.7.1].

Theorem 2.4

Let X be a Banach space, Y an equable subspace of X. Then HY1(F ) is a non-
empty set, for every bounded subset F ⊂ X.

Proof. Let F be a bounded subset of X. It is enough to show that there exists y
in Y1 such that ‖x − y‖ ≤ rF , for all x is in F . Let ε > 0 be given. Put r = rF

and εn = ε
r2n+1 , n ∈ N and let δn = δ(εn) corresponds to εn, in the Definition 2.1 of

equability. With out loss of generality, we assume that the sequence {δn} decreases to
zero. We now inductively construct a sequence {yn} ⊆ Y1 with ‖yn − yn+1‖ ≤ ε

2n and
F ⊂ B(yn, (1 + δn)rF ), for all n ≥ 1.

For r = rF and ε1, using the definition of rF , we can get y and y1 in Y1 with
F ⊂ B(y, (1 + δ2)r) ∩B(y1, (1 + δ1)r). Hence

F

(1 + δ2)r
⊂ B

( y

(1 + δ2)r
, 1

)
∩B

( y1

(1 + δ2)r
,
1 + δ1
1 + δ2

)
.

Note that 1+δ1
1+δ2

≤ 1 + δ1. If

y2

(1 + δ2)r
= Ψε1

( y1 − y

(1 + δ2)r

)
+

y

(1 + δ2)r
,

then by Remark 2.2, y2 is in Y1,

B
( y

(1 + δ2)r
, 1

)
∩B

( y1

(1 + δ2)r
,
1 + δ1
1 + δ2

)
⊂ B

( y2

(1 + δ2)r
, 1

)
,

and ∥∥∥∥∥ y1

(1 + δ2)r
− y2

(1 + δ2)r

∥∥∥∥∥ =

∥∥∥∥∥ y1 − y

(1 + δ2)r
−Ψε1

( y1 − y

(1 + δ2)r

)∥∥∥∥∥ ≤ ε1 .

Hence

‖y1 − y2‖ ≤
ε(1 + δ2)

4
≤ ε

2
and

F ⊂ B
(
y, (1 + δ2)r

)
∩B

(
y1, (1 + δ1)r

)
⊂ B

(
y2, (1 + δ2)r

)
.

Assume now that for n ∈ N, the elements y1, y2, ..., yn ∈ Y1 with F ⊂ B(yi, (1 +
δi)r), for i = 1, 2, ..., n and ‖yi − yi+1‖ ≤ ε

2i , for i = 1, ..., n − 1, have already been
constructed. Now for r = rF and εn, using the definition of rF , get z in Y1 with
F ⊂ B(z, (1 + δn+1)r). Observe that 1+δn

1+δn+1
≤ 1 + δn. By Remark 2.2, there exists

yn+1 in Y1 with

F ⊂ B
(
yn, (1 + δn)r

)
∩B

(
z, (1 + δn+1)r

)
⊂ B

(
yn+1, (1 + δn+1)r

)
,
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where

yn+1 = r(1 + δn+1)

{
Ψεn

( yn − z

(1 + δn+1)r

)
+

z

(1 + δn+1)r

}
and yn+1 is in Y1 and

‖yn − yn+1‖ ≤
ε

2n
.

It is clear that {yn} ⊆ Y1 is Cauchy and let {yn} converges to, say, y0. Clearly y0

belongs to Y1 and ‖y0 − x‖ ≤ rF , for all x in F . Hence HY1(F ) is a non-empty set. �

Theorem 2.5

If Y is an equable subspace of X, then given ε > 0, there exists η > 0 such that
sup{d(y,HY1(F )) : y ∈ HY1(F, η)} < ε, where HY1(F, η) is given by (2.1). Also the
map HY1 : C(X) → C(Y1) is continuous.

Proof. Let F be a bounded subset of X and ε > 0. Select η = δ(ε) > 0 as in
Definition 2.1. By Theorem 2.4, HY1(F ) is non-empty. Pick any y in HY1(F, η) and
y1 in HY1(F ). Clearly F ⊂ B(y1, rF ) ∩ B(y, rF (1 + η)). Using Remark 2.2, we have
F ⊂ B(y2, rF ), where y2 = rF {Ψε(y−y1

rF
) + y1

rF
} and further, y2 is in Y1. Thus y2 is in

HY1(F ) and also, ‖y − y2‖ ≤ ε. It now follows that

sup
{
d(y,HY1(F )) : y ∈ HY1(F, η)

}
< ε . (2.2)

To show HY1 is continuous, let ε > 0 be given and F and G be in C(X) with
dH(G,F ) ≤ η rF . Then rG ≤ rF (1+η) and hence HY1(G) ⊆ HY1(F, η). Then by (2.2),
sup {d(y,HY1(F )) : y ∈ HY1(G)} < ε. Similar argument shows that sup{d(y,HY1(G)) :
y ∈ HY1(F )} < ε. Thus dH(HY1(F ),HY1(G)) ≤ ε and hence HY1 is continuous. �

The theorem below is an immediate consequence of Theorems 2.4 and 2.5, in the
special case when the set F is a singleton set.

Theorem 2.6

Let Y be an equable subspace of X. Then Y is strongly ball proximinal in X and
the metric projection from X onto the closed unit ball Y1 is H.m.c.

It is easy to see that the two theorems below follow immediately from Theorem B
and Theorem 2.6.

Theorem 2.7

Let X be an equable Banach space with an equability map ψε. If Y is a subspace
of l∞(Γ, X) which is invariant under each ψε. Then Y is strongly ball proximinal
in l∞(Γ, X) and the metric projection from l∞(Γ, X) onto Y1 is H.m.c. If X is very
equable and S is compact Hausdorff space, then Z = Tφ(C(S,X)) is strongly ball
proximinal in l∞(Γ, X) and the metric projection from l∞(Γ, X) onto Z1 is H.m.c.

Theorem 2.8

If Q and S are compact Hausdorff spaces and X is very equable Banach space,
then Z = Tφ(C(S,X)) is strongly ball proximinal in C(Q,X) and the metric projection
from C(Q,X) onto Z1 is H.m.c.
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The theorem below easily follows from Theorem C and Theorem 2.6.

Theorem 2.9

The space K(X,Y ) is strongly ball proximinal in L(X,Y ) and the metric projec-
tion from L(X,Y ) onto K(X,Y )1 is H.m.c, where the pairs (X,Y ) are given by 1 to 5
of Theorem C.

Property (P1) and Property (P2) are defined in Mach [7] and Yost [11] has shown
that these two properties imply equability and very equability respectively. We quote
below one of Mach’s results about Properties P1 and P2 and it is easily seen that
Corollaries 2.10 and 2.11 given below follow as a consequence.

Theorem D [7]

Let X be a Banach space.

1. If X is a uniformly convex Banach space, Y a closed convex subset of X. Then
the pair (X,Y ) has the property (P2).

2. Let S be a compact Hausdorff space and the pair (X,Y ) has the property (P2).
Then the pair (l∞(S,X), C(S, Y )), has the property (P1).

Corollary 2.10

Let S be a compact Hausdorff space and the pair (X,Y ) has the property (P2).
Then C(S, Y ) is strongly ball proximinal in l∞(S,X) and the metric projection from
l∞(S,X) onto the closed unit ball C(S, Y )1 is H.m.c.

Corollary 2.11

If X is uniformly convex Banach space, Y a closed convex subset of X and S a
Hausdorff space then C(S, Y ) is strongly ball proximinal in l∞(S,X) and the metric
projection from l∞(S,X) onto the closed unit ball C(S, Y )1 is H.m.c.

Let Q be compact Hausdorff space. Yost [11] has shown that a closed * subalgebra
of C(Q) is a very equable subspace of C(Q) and hence the following theorem, from [5],
is an immediate consequence of Theorem 2.6.

Theorem E [5]

Every closed * subalgebra A of C(Q), where Q is a compact Hausdorff space, is
strongly ball proximinal and the metric projection from C(Q) onto A1 is H.m.c.

Let Q be compact Hausdorff space and X be uniformly convex space. Let M
be any C(Q) module in C(Q,X). Since X is uniformly convex space, there exists
a continuous onto map φ : Q

′ → Q, where Q
′

is the stone space of C(Q)∗∗, such
that the canonical embedding of C(Q,X) in C(Q,X)∗∗ is given by f → f ◦ φ. In [9],
T.S.S.R.K.Rao has shown thatM is proximinal in C(Q,X)∗∗. However we observe that
by 3) of Theorem B, M is an equable subspace of C(Q,X)∗∗ and so is ball proximinal
in C(Q,X)∗∗. The following theorem is now an easy consequence of the Theorem 2.6.
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Corollary 2.12

Let Q be a compact Hausdorff space and X be uniformly convex space. Then any
C(Q) module M in C(Q,X) is strongly ball proximinal in C(Q,X)∗∗ and the metric
projection from C(Q,X)∗∗ onto the closed unit ball of M is H.m.c.

The following two results immediately follows from Corollary 2.12.

Theorem F [9]

Let Q be compact Hausdorff space and X be uniformly convex space. If M is any
C(Q) module in C(Q,X), then M is proximinal in C(Q,X)∗∗.

Corollary 2.13

Let Q be a compact Hausdorff space and X be uniformly convex space. Then
C(Q,X) is strongly ball proximinal in C(Q,X)∗∗ and the metric projection from
C(Q,X)∗∗ onto the closed unit ball of C(Q,X) is H.m.c.

3. Stability

Theorem 3.1

Let X1 and X2 be Banach spaces and Y 1 and Y 2 be equable subspaces of X1 and
X2 respectively. Consider the following direct sumsX = X1⊕∞X2 and Y = Y 1⊕∞Y 2.
Then Y is an equable subspace of X.

Proof. Let ε > 0 be given. Since Y i is an equable subspace of Xi, i = 1, 2, there
is a δi > 0 and a function ψi

ε : Y i → [0, 1], i = 1, 2. such that for every yi in
Y i, ‖yi − Ψi

ε(yi)‖ ≤ ε and B(0, 1) ∩ B(yi, 1 + δi) ⊂ B(Ψi
ε(yi), 1), i = 1, 2. Choose

δ = min{δ1, δ2}, y = y1 + y2 and Ψε(y) = Ψ1
ε (y1) + Ψ2

ε (y2). Then it is easily verified
that Y is an equable subspace of X with equability map ψε. �

Theorem 3.2

Let {Xi : i ∈ N} be a family of Banach spaces and Y i be equable subspace inXi for
each i ∈ N. Consider the following direct sums X = (⊕c0X

i)i∈N and Y = (⊕c0Y
i)i∈N.

Then Y is an equable subspace of X.

Proof. Let ε > 0 be given and let y = (y1, y2, ...) be in Y . Then there is n0 ∈ N such that
‖yi‖ ≤ ε, for all i > n0. Choose δ = min{δi, 1 ≤ i ≤ n0, ε, i > n0}, where δi, 1 ≤ i ≤ n0

are in the proof of Theorem 4.1. Let z = y1 +y2 + ... and Ψε(z) = Ψ1
ε (y1)+Ψ2

ε (y2)+ ....
Then it easily follows from Theorem 4.1 that Y is an equable subspace of X. �

Example

The author would like to express her thanks to Prof. G. Godefroy for indicating the
construction of the following example.



Ball proximinality of equable spaces 87

Construction of a Banach space which is not strongly ball proximinal in
itself

It is an easy observation that normed linear spaces are ball proximinal in them-
selves. However the same does not hold for strongly ball proximinality, as shown in
the example given below. Let X be the sequence space c0. Define

‖|x‖| = ‖x‖∞ +
( ∞∑

n=1

(2−nxn)2
)1/2

,

where x = (x1, x2, ...) is in X and ‖x‖∞ = supi∈N |xi|. Then (X, ‖|.‖|) is strictly
convex Banach space. Consider the element z = (2, 0, 0, ....) in X. Then ‖|z‖| = 3 and

z
‖|z‖| = (2

3 , 0, 0, .....). Clearly PX1(z) = { z
‖|z‖|} and

d(z,X1) = 2 =
∥∥∥∣∣∣z − z

‖|z‖|

∥∥∥∣∣∣.

Let ηn be sequence of positive numbers such that 1
2n+1 < ηn < 1

2n . Let zn =

(y1, y2, .....), where yi =

{
2
3 − ηi if i = {1,n}
0 if i 6∈ {1,n}

.

Then

‖|zn‖| =
2
3
− ηn +

{[(2
3
− ηn

)(1
2

)]2
+

[(2
3
− ηn

)( 1
2n

)]2
}1/2

≤ 2
3
− ηn +

1
2

(2
3
− ηn

)
+

1
2n

(2
3
− ηn

)
≤ 1− ηn

(3
2

+
1
2n

)
+

1
2n

≤ 1 .

Also

‖|z − zn‖| =
∥∥∥∣∣∣(4

3
+ ηn, 0, 0, ....0,−

(2
3
− ηn

)
, 0, ...

)∥∥∥∣∣∣
=

4
3

+ ηn +

{[(4
3

+ ηn

)(1
2

)]2
+

[(2
3
− ηn

)( 1
2n

)]2
}1/2

≤ 4
3 + ηn +

(4
3

+ ηn

)(1
2

)
+

(2
3
− ηn

)( 1
2n

)
≤ 2 + ηn

(3
2
− 1

2n

)
+

1
2n
.

Hence limn→∞ ‖zn − z‖ = 2 = d(z,X1). Now for any n > 1, we have
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‖| z
‖|z‖| − zn‖| =

∥∥∥∣∣∣(ηn, 0, 0, ....0,−
(2
3
− ηn

)
, 0, ...

)∥∥∥∣∣∣
=

2
3
− ηn +

{(ηn

2

)2
+

[(2
3
− ηn

)( 1
2n

)]2
}1/2

≥ 2
3
− ηn +

ηn

2
−

(2
3
− ηn

)( 1
2n

)
≥ 1

3
− ηn

2
+
ηn

2

=
1
3
.

It is now clear that X1 is not strongly proximinal at z and hence X is not strongly
ball proximinal in itself.
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