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Abstract

The space Td,n of n tropically collinear points in a fixed tropical projective space
TPd−1 is equivalent to the tropicalization of the determinantal variety of matrices
of rank at most 2, which consists of real d× n matrices of tropical or Kapranov
rank at most 2, modulo projective equivalence of columns. We show that it is
equal to the image of the moduli space M0,n(TPd−1, 1) of n-marked tropical
lines in TPd−1 under the evaluation map. Thus we derive a natural simplicial
fan structure for Td,n using a simplicial fan structure ofM0,n(TPd−1, 1) which
coincides with that of the space of phylogenetic trees on d + n taxa. The space
of phylogenetic trees has been shown to be shellable by Trappmann and Ziegler.
Using a similar method, we show that Td,n is shellable with our simplicial fan
structure and compute the homology of the link of the origin. The shellability
of Td,n has been conjectured by Develin in [1].

1. Introduction

Let (R,⊕,¯) be the tropical semiring where the tropical addition ⊕ is taking minimum
and the tropical multiplication ¯ is the usual addition. We will work in the tropical
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projective space TPd−1 = Rd/(1, . . . , 1)R obtained by quotienting out the tropical
scalar multiplication (tropical projective equivalence).

A tropical line in TPd−1 is a one dimensional polyhedral complex in TPd−1 which is
combinatorially a tree with unbounded edges in directions e1, . . . , ed and the balancing
condition at each vertex as follows. At a vertex V , let u1, . . . , uk be the primitive
integer vectors pointing from V to its adjacent vertices (respectively, in direction of the
unbounded edges adjacent to V ). The balancing condition holds at V if u1+· · ·+uk = 0
in TPd−1. A configuration of n points in TPd−1 is called tropically collinear if there
is a tropical line which passes through the n points. Let Td,n be the space of all such
configurations. An element of Td,n is represented by a real d × n matrix whose n
columns are representatives of the n points in TPd−1.

The columns of a matrix are tropically collinear if and only if the matrix lies in the
tropical variety of the determinantal ideal generated by 3× 3 minors of a d×n matrix
of indeterminates, which is a polyhedral subfan of the Gröbner fan consisting of those
cones whose corresponding initial ideal is monomial-free. Since Td,n is equal to this
tropical variety modulo projective equivalence of the columns in the matrix, it is also
a polyhedral fan. However this fan structure is not simplicial, and the topology of the
link of the origin is difficult to analyze. Develin conjectured in [1] that Td,n is shellable
for all d and n, and proved his conjecture for d = 3 (or n = 3). In this paper we prove
his conjecture for all d and n, with a refined fan structure. We give a triangulation of
the fan that lets us treat Td,n as a subcomplex of the space of phylogenetic trees, which
in turns gives us a way to prove strong combinatorial properties such as shellability.
Shellability implies that our space is Cohen-Macaulay and has homology only in the
top dimension. Moreover, a shelling order gives us a way to compute the top homology
of the link of the origin.

In Section 2, we will derive a simplicial fan structure on Td,n, using moduli spaces
of tropical curves and the space of phylogenetic trees Tn+d. Since Td,n is closed under
simultaneous translation of all points, we will mod out by this action and obtain a
pointed simplicial fan that we denote by T ′d,n. We then intersect this fan with the unit
sphere centered at the origin to obtain a simplicial complex which we will call T ′′d,n.
The simplicial complex structures of Td,n, T ′d,n, and T ′′d,n are all the same. In particular,
if one of them is shellable, then so are the other two.

A parametrized tropical line can be thought of as an abstract tropical curve (a
leaf-labeled tree) Γ together with a map

h : Γ → TPd−1,

such that the image h(Γ) is a tropical line as defined above. Our parametrized tropical
lines are equipped with certain marked points xi. In Section 2, we will recall the
definition of moduli spaces of n-marked parametrized tropical lines, and evaluation
maps which send a tuple (Γ, h, xi) to h(xi) ∈ TPd−1. We will show that Td,n is the
image of the moduli space of n-marked parametrized tropical lines under the evaluation
map.

Moduli spaces of tropical curves can be used to derive results in enumerative
tropical geometry. This is why these moduli spaces attracted a lot of attention recently
(see e.g. [6, 4] or [3]). Their simplicial fan structure equals the structure of the space
of trees, Tn+d (see [3]). In fact, we can identify Td,n with a subcomplex of the space
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of trees Tn+d on which the evaluation map is injective, the subcomplex induced on the
vertices corresponding to “bicolored splits” (see Definition 2.9).

In [10], Trappmann and Ziegler showed that the space of trees Tn+d is shellable.
Since we derive our simplicial complex structure for T ′d,n using the space of trees Tn+d,
we will use a similar method to show that the space T ′d,n is shellable, in Section 3. We
compute the homology of T ′′d,n in Section 4. Our main results can be summarized as
follows:

Theorem 1.1

The simplicial complex T ′′d,n is shellable and has the homotopy type of a wedge
of n + d − 4-dimensional spheres. The number of spheres is equal to the number of
simultaneous partitions of an (n − 1)-set and a (d − 1)-set into the same number of
non-empty ordered parts. This number equals

min(n−1,d−1)∑

k=1

(k!)2S(n− 1, k)S(d− 1, k) ,

where S(m, k) =
1
k!

k∑

i=1

(−1)k−i

(
k

i

)
im is the Stirling number of the second kind.

This theorem follows from the Theorems 3.2 and 4.1.
In general, not much is known about the algebraic topology of tropical varieties.

Not all tropical varieties have homology only in the top dimension [9, Example 5.2].
However, there may be many classes of tropical varieties that have only top homology
and are even shellable. For example, it is not known whether the tropical varieties
of generic complete intersections studied in [9] are shellable. Hacking [5] gave some
sufficient conditions for some tropical varieties to have only top homology. He also
gave a moduli space interpretation of Td,n and showed that it has only top homology.

Acknowledgments. We would like to thank Bernd Sturmfels for helpful conversa-
tions. This work began when the authors were at the Institute for Mathematics and
Its Application in Minneapolis. Josephine Yu was supported by a Clay Liftoff Fellow-
ship during summer 2007.

2. The space T ′d,n inside the space of phylogenetic trees

As mentioned in the introduction, we want to derive a simplicial fan structure for Td,n

using moduli spaces of tropical curves. Let us start by defining tropical curves and
their moduli spaces.

2.1 The spaceM0,N of N -marked abstract tropical curves

An abstract tropical curve is a tree Γ whose vertices have valence at least 3. The
internal edges are equipped with a finite positive length. The leaf edges are considered
unbounded. An N -marked abstract tropical curve is a tuple (Γ, x1, . . . , xN ) where Γ
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is an abstract tropical curve and x1, . . . , xN are distinct unbounded edges. (For more
details, see [4, Definition 2.2]). The space M0,N is defined to be the space of all N -
marked abstract tropical curves with exactly N leaves. The following picture shows an
example of a 5-marked abstract tropical curve:

l = 2
1

4

5

2

3

l = 1.5

Let TN be the space of phylogenetic trees on N taxa. A phylogenetic tree (or a
semi-labeled tree or a leaf-labeled tree) on N taxa is a tree with N leaves labeled by
[N ] and vertices of valence at least 3 such that the internal edges have positive lengths
and the leaf edges have non-negative lengths. In other words, a phylogenetic tree on
N taxa is an N -marked abstract tropical curve whose leaf-edges are assigned a non-
negative length. Hence M0,N is the space TN of phylogenetic trees modulo the space
of star trees. A star tree is a phylogenetic tree with no internal edges. The following
figure shows a star tree on 5 taxa.

5

1

2

3

4

Proposition 2.1

The spaces TN and M0,N can be embedded as simplicial fans into real vector

spaces of dimensions
(N

2

)
and

(N
2

)−N respectively.

For a complete proof, see [8, Theorem 4.2] or [3, Theorem 3.4]. In fact, M0,N is

a tropical fan or a balanced fan, see [3, 8, 9]. These two fans are the fans G2,N ∩R(N
2 )

+

and G′′2,N respectively in the tropical Grassmannian [8].
As an idea why Proposition 2.1 is true, note that a phylogenetic tree is completely

determined by the metric d it induces on the set [N ]: the distance dij between two
elements i, j ∈ [N ] is the sum of the edge lengths along the unique path between i

and j in the tree. Hence TN can be embedded in R(N
2 ), and M0,N can be embedded

in R(N
2 ) modulo the N -dimensional vector space of star trees. The simplicial complex

of TN is a cone over the simplicial complex of M0,N .
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Let us now recall the embedding and the fan structure of TN . The rays of TN

correspond to splits, partitions of [N ] into two non-empty parts. Removing an edge in a
phylogenetic tree decomposes the tree into two connected components, inducing a split
on the set of leaf labels. Two splits A|A′ and B|B′ are compatible if at least one of A∩B,
A∩B′, A′ ∩B, and A′ ∩B′ is empty. A set of splits is pairwise compatible if and only
if there is a (unique) tree whose edges induce exactly those splits [7, Theorem 2.35].
We sometimes do not distinguish between a tree and its corresponding set of splits.
For a split A|B, we can write it as A | ([N ] \ A) where [N ] := {1, . . . , N}, so we can
respresent this split by just A. Edges of a tree are labelled with their split or with
the part A of the split not containing 1, which is also called the edge label. A set S
of splits generate a cone in TN if and only if the splits in S are pairwise compatible.
The singleton splits {i}|([N ]\{i}), i ∈ N are compatible with all other splits, so every
maximal cone in TN contains the cone generated by those splits.

2.2 The spaceM0,n(TPd−1, 1) of n-marked tropical lines in TPd−1

Now we will review how the N -marked abstract tropical curves parametrize
tropical lines.

Definition 2.2 Let N = n+d. A (parametrized) n-marked tropical line in TPd−1 is a
tuple (Γ, x1, . . . , xN , h), where (Γ, x1, . . . , xN ) is an abstract N -marked tropical curve
and h : Γ → TPd−1 is a continuous map satisfying:

(a) On each edge of Γ the map h is of the form h(t) = a + t · v for some a ∈ Rr and
v ∈ Zr. The integral vector v occurring in this equation if we parametrize E by
an interval [0, l(E)] (starting at V ∈ ∂E) will be denoted v(E, V ) and called the
direction of E at V . If E is an unbounded edge and V its only boundary point
we will write for simplicity v(E) instead of v(E, V ).

(b) For every vertex V of Γ we have the balancing condition
∑

E|V ∈∂E

v(E, V ) = 0.

(c) v(xi) = 0 for i = 1, . . . , n — i.e. each of the first n ends is contracted by h.
(d) v(xi) = ei−n for i > n — i.e. the remaining N − n ends are mapped to the d

canonical directions of TPd−1.

We will call the contracted ends the “marked ends” and the directed unbounded
ends the “unmarked ends”. Note that this notion of markedness is different from the
marked ends of an abstract tropical curve. The space of all labeled n-marked tropical
lines in TPd−1 will be denoted M0,n(TPd−1, 1).

Remark 2.3 Note that this definition is a special case of [3, Definition 4.1]. As we are
working with lines, the unmarked ends are mapped to different directions. Hence they
are distinguishable by their direction and we do not need to label them as in [3]. In our
case, there is no such difference between Mlab

0,n(Rd,∆) and M0,n(Rd, ∆) as mentioned
in [3, Construction 4.3]. To keep notations simple, we will still label the “unmarked
ends” according to the following rule: the end with direction ei gets the label n + i. ¤
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The following picture shows an example of an element of M0,2(TP2, 1). We will
always draw the marked (contracted) ends with a dotted line and the unmarked (di-
rected) ends solid.
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3

l = 1.5
l = 2

h
h(x1)

h(x2)

TP
2

Notice also that the image of a parametrized 0-marked tropical line is a tropical
line as defined in the introduction. We only need to check that all direction vectors
are primitive integral vectors. But this is true because all direction vectors are sums
of different canonical vectors, v = ei1 + · · · + eir . This observation also shows that
the internal edges cannot be contracted, i.e. the direction vector v of an internal edge
cannot be zero. Hence the space of tropical lines in TPd−1 is M0,0(TPd−1, 1).

Definition 2.4 For each i = 1, . . . , n define the i-th evaluation map evi by

evi : M0,n(TPd−1, 1) −→ TPd−1

(Γ, x1, . . . xN , h) 7−→ h(xi) .

This is well-defined for the contracted ends since for them h(xi) is a point in TPd−1.
The product ev = ev1× . . .×evn : M0,n(TPd−1, 1) → (TPd−1)n is called the evaluation
map.

One can see easily that evaluation maps are linear on each cone of the fan
M0,n(TPd−1, 1) (see e.g. [4, Example 3.3]). In fact, it is even a tropical morphism
(for more details, see [3]).

Lemma 2.5

The following are equivalent for a real d× n matrix M :

(a) the columns of M are tropically collinear in TPd−1,

(b) the rows of M are tropically collinear in TPn−1,

(c) M has Kapranov rank at most 2,

(d) M has tropical rank at most 2,

(e) the columns of M are in the image of the map

ev : M0,n(TPd−1, 1) → (TPd−1)n,

(f) the rows of M are in the image of the map

ev : M0,d(TPn−1, 1) → (TPn−1)d.
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Proof. The equivalence of (a), (b), and (c) is the definition of the Kapranov rank. The
equivalence of (c) and (d) follows from [2, Theorem 6.5]. If the columns of M are in
the image of ev that means that they are n distinguished points (h(x1), . . . , h(xn)) ∈
(TPd−1)n on a tropical line h(Γ). So obviously they are tropically collinear. Given n
tropically collinear points (p1, . . . , pn), there is a tropical line L through the points.
We can find an abstract tropical curve Γ and a map h : Γ → TPd−1 parametrizing L.
Then we attach new marked ends at the preimages of the pi and required those to be
contracted by h. In this way, we construct a preimage of (p1, . . . , pn) under ev. This
proves the equivalence of (a) and (e). The equivalence of (b) and (f) can be shown
analogously. ¤

We will now give a simplicial fan structure forM0,n(TPd−1, 1). Define the forgetful
map Ψ which forgets the map h as

Ψ : M0,n(TPd−1, 1) −→ M0,n+d

(Γ, x1, . . . , xN , h) 7−→ (Γ, x1, . . . , xN ).

The following proposition that we cite from [3] determines a fan structure of
M0,n(TPd−1, 1), using the fact that M0,n+d is a simplicial fan by Proposition 2.1.

Proposition 2.6

The map

ev1×Ψ : M0,n(TPd−1, 1) −→ TPd−1 ×M0,n+d

(Γ, x1, . . . , xN , h) 7−→ (
ev1(Γ, x1, . . . , xN , h), Ψ(Γ, x1, . . . , xN , h)

)

is a bijection.

For a proof, see [3, Proposition 4.7]. The idea why this is true is that we can
deduce the direction vectors of all edges from the direction vectors which are prescribed
for the unmarked ends (see [3, Lemma 4.6]). Once the image h(V ) of one vertex is
given — in our case we choose the vertex of the marked end x1 — the map h is
completely determined by the direction vectors of all edges and their lengths, hence
by the underlying abstract tropical curve.

2.3 The space T ′
d,n as a subcomplex ofM0,n+d

As a consequence of Lemma 2.5, we want to describe the space Td,n of n tropically
collinear points as the image of M0,n(TPd−1, 1) under ev.

As before, we let N = n + d, and think of a tree T with N leaves as an abstract
tropical curve with n marked ends and d unmarked ends, where the unmarked end
with the label n+ i gets the direction ei as in Remark 2.3 above. For the ends, we will
sometimes call the property of being marked or unmarked (contracted or directed) the
“color” of the leaf.

Definition 2.7 Define a map π : TN → (TPd−1)n as follows. First we define it for
splits. Let S = A|B be a non-singleton split with 1 ∈ A. Let u ∈ Rd be the sum of
ei such that i + n ∈ B. Let π(S) be the d × n matrix whose jth-column is 0 if j ∈ A
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and u otherwise. For a singleton split S, we define π(S) = 0. We extend π linearly on
each cone of Td,n.

Note that π is 0 on the star tree because star tree contain only the singleton splits.

Lemma 2.8

The following diagram is commutative:

M0,n(TPd−1, 1)

Ψ

²²

ev // Td,n

²²
M0,n+d

π // T ′d,n

where the vertical arrow on the right is modding out by translation of the point con-
figuration in TPd−1.

Proof. We only have to check that π maps a tree corresponding to a split S = A|B to
a tuple in (TPd−1)n−1 consisting of the positions of the images of the marked points
relative to h(x1). Since both π and ev are linear on a cone, the commutativity of the
diagram above follows. To see this, note that S = A|B corresponds to a tree with
exactly one bounded edge of length 1 such that the ends marked by the numbers in A
are on one side and the ends marked by B on the other. The following picture shows
an example where n = 5, d = 3, A = {1, 3, 6, 7} and B = {2, 4, 5, 8}:

h(x1) = h(x3) = 0

h(x2) = h(x4) = h(x5) = u

h

2
8

5

4

u

1

7

6

3 TP
2

Let us check the positions h(xi) of the marked ends relative to h(x1). For all i ∈ A,
i ≤ n (i.e. for all marked ends in A), h(xi) = h(x1) so the relative evaluation is 0.
Let u denote the direction vector of the bounded edge. By the balancing condition it
is equal to the sum of all ei such that i + n ∈ B. Each marked point xj with j ∈ B is
mapped to h(xj) = h(x1) + u. The relative position to h(x1) is thus u.

This is precisely the definition of π. ¤

As a consequence of this lemma, we can think of π as a “relative” or “reduced”
version of the evaluation map ev. Because of Lemma 2.5, we want to understand Td,n

as the image of M0,n(TPd−1, 1) under ev. But since we mod out by simultaneous
translations of all points in the definition of T ′d,n, we can do without the information
ev1(Γ, x1, . . . , xN , h) = h(x1) and consider the image of Tn+d under π instead. We will
make this more precise in Lemma 2.10.
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Definition 2.9 Let Td,n be the subfan of TN consisting of trees whose non-singleton
splits contain both marked and unmarked elements on each side. We call such splits
bicolored.

The subfan Td,n is an induced subcomplex of TN on the rays corresponding to
those bicolored splits.

Let S = A|B be a split which is not bicolored. Let 1 ∈ A and assume first that A
or B contain only marked ends. Then the vector u =

∑
i:i+n∈B ei = 0 and π(S) = 0. If

B contains no marked ends, u is not necessarily 0, but no column is equal to u. Hence
π(S) = 0 in this case, too. It follows immediatly that π is not injective on a cone
of TN if one of the generating rays corresponds to a non-bicolored split. In fact, the
subfan Td,n generated by rays corresponding to bicolored splits is precisely the union of
all closed maximal cones of M0,n on which the relative evaluation map π is injective.
This is shown in the following lemma.

Lemma 2.10

For any configuration of collinear points p1, . . . , pn ∈ TPd−1, there is a unique
canonical tropical line through them with the property that if we attach a marked
end at each point then we get a tree T ∈ TN with only bicolored splits. Moreover,
π(T ) = (p1, . . . , pn).

Proof. The canonical tropical line can be constructed as in [1, Section 3]. First
take the tropical convex hull of the marked points p1, . . . , pn, which is the union of
tropical line segments between pairs of points. This is a bounded one-dimensional
polyhedral complex which is combinatorially a tree. Then there is a unique way to
attach unbounded rays such that the balancing condition holds [1, Section 3].

An edge in a tropical line is called bounded if each end point is either one of the
marked points or a vertex of the polyhedral complex. We get a tree T with bicolored
splits after attaching marked ends at the marked points if and only if all bounded
edges of the tropical line lie on a path between two marked points. In other words, the
union of bounded edges must be the tropical convex hull of p1, . . . , pn. The canonical
line is unique with this property.

The phylogenetic tree T can be considered as an element of M0,N , and the
canonical line is an embedding of T . Hence T with this embedding is an element
of M0,n(TPd−1, 1). By Lemma 2.8, π(T ) = (p1, . . . , pn). ¤

Corollary 2.11

The map π : Td,n → T ′d,n is an isomorphism of polyhedral fans, i.e. it is linear on
each cone and is bijective.

We sum up the results of this section in the following proposition. We will use
it to define a shelling order of T ′d,n in the next section. Recall that a subcomplex is
induced means that a cell is in the subcomplex if and only if all its vertices are.
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Proposition 2.12

The space T ′d,n has a triangulation that is isomorphic to the induced subcomplex
of the space of phylogenetic trees Td+n on the vertices corresponding to bicolored
splits, i.e. the splits containing both marked and unmarked leaves on each side.

3. Shelling of T ′d,n

In this section we will prove that T ′d,n is shellable, in a similar way as in [10] where it
was shown that the space of trees TN is shellable. We will use the description of T ′d,n as
the induced subcomplex of TN on the vertices of bicolored splits (see Proposition 2.12
and Definition 2.9).

In the following, we denote by x ∈ C a vertex of a facet C of a simplicial complex.

Definition 3.1 A shelling is an ordering of the facets of a pure-dimensional simplicial
complex such that: For any two facets C ′ < C there exist C ′′ and x ∈ C such that

(a) C ′′ < C,
(b) x /∈ C ′ and
(c) C \ x ⊂ C ′′.

In [10] it is shown that these three conditions are equivalent to C ′ ∩C ⊂ C ′′ ∩C,
C ′′ < C and C ′′ differs from C in only one element, C\C ′′ = {x}. The latter conditions
are more common to define shellings.

Let us now recall the shelling of TN given in [10]. First define an order on subsets
of [N ] by:

A < B :⇔ max
(
(A \B) ∪ (B \A)

) ∈ B .

To define the shelling order on the trivalent trees, we first “split the trees along 1”:

M1

1

M0

There is a unique partition of [N ]\{1} into two parts M0,M1 such that the two subtrees
induced on the leaf-labels M0 and M1 are disjoint. Let M0 < M1, i.e. N ∈ M1. Let Ti

be the subtree induced on {1} ∪Mi.
Let T, T ′ be two trivalent trees, {T0, T1}, {T ′0, T ′1} be the pairs of subtrees, and

{M0,M1} and {M ′
0, M

′
1} be the corresponding pairs of leaf labels as above. Then the

order on the trees is defined recursively by:

T ′ < T ⇐⇒





M ′
1 < M1 or

M ′
1 = M1 and T ′1 < T1 or

T ′1 = T1 and T ′0 < T0 .
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We can draw a tree respecting this order as in the figure above: then 1 is the root
of the tree, and the end vertex of 1 is adjacent to two subtrees (with labels M0 resp.
M1) that we order such that the bigger tree is on the right and the smaller on the left.
Inductively, we can continue this process. According to this drawing of a tree, we will
use the words “child of a vertex V ” for a subtree that is below V .

We now come to the main result of the paper.

Theorem 3.2 (Shelling of Td,n)
The complex Td,n is shellable. The shelling order on TN defined above restricts to

a shelling order on T ′d,n.

Proof. Suppose T ′ < T . We have to find T ′′ ∈ Td,n, T ′′ < T such that T ′′ and T differ
only in one split x /∈ T ′. We use the identification of Td,n with the subcomplex induced
on bicolored splits as described in Proposition 2.12.

Without loss of generality we may assume that M ′
1 < M1, for if M1 = M ′

1, then
there must be vertices V of T and V ′ of T ′ with the same leaf-labels below them such
that the trees T and T ′ are equal above and to the right of V and V ′, and the right
child of V in T is bigger than the right child of V ′ in T ′. Then the following argument
works after replacing the end vertex of the marked end 1 with V or V ′ and N with
the largest label below V or V ′.

Note that M1 must have at least two leaves, since otherwise, the unique leaf would
be labeled N , and there is no smaller M ′

1 that also contains N . Hence we can split M1

into two subsets L0 and L1 satisfying L0 < L1, i.e. N ∈ L1.
Let us first consider the case when M0 contains at least two elements. Since the

split M0 is bicolored, M0 contains both marked and unmarked leaves. In this case we
swap subtrees of T in the following way to obtain T ′′.

1

T T
′′

L1

L0

M0

1

M0

L0

L1

We replace the split M1|{1}∪M0 = L0∪L1|{1}∪M0 in T by the split L0∪M0|{1}∪L1

to obtain a new tree T ′′. The split {1} ∪ M0|L0 ∪ L1 is not in the tree T ′ because
M ′

1 < M1. By our assumption we know that L0 ∪ M0 contains both marked and
unmarked ends. As 1 is marked and N is unmarked and in L1, {1}∪L1 contains both
marked and unmarked ends, too. As all other splits of T ′′ are splits of T , too, we
conclude T ′′ ∈ Td,n. Furthermore, T ′′ < T , because M ′′

1 = L1 < L0 ∪ L1 = M1.
Now let us consider the case when M0 contains exactly one element. Then T has

the form:



74 Markwig and Yu

1

m0

m1

K1

K0

ml

m2

where m0 > · · · > ml have the same color, and K0 either contains a leaf of different
color or a single leaf ml+1 < ml of the same color. In the first case, we swap the split
K0 ∪K1 with K0 ∪ {ml}. In the latter case, we swap K0 ∪K1 with K1 ∪ {ml}. This
new tree T ′′ is smaller than T . Note that l may be 0. However, we cannot have the
following configuration because there is no smaller tree T ′ < T that agrees with T
above and to the right of the vertex V :

N

m0

m2

ml

m1

1

V

We want to prove that T ′ cannot contain the edge label K0 ∪K1. Assume it does. As
N ∈ K1, K0∪K1 ⊂ M ′

1. Thus M ′
0 can only consist of a subset of {m0, . . . , ml}. But as

all mi have the same color, M ′
0 can contain at most one to be a bicolored split. Thus

M ′
1 = [N ]\{1,mi} for some i 6= 0. But as mi < m0, M ′

1 = [N ]\{1,mi} > [N ]\{1,m0}
which is a contradiction. Hence K0 ∪K1 /∈ T ′ and we choose x := K0 ∪K1. ¤

In [1], it was shown that T3,n is shellable for all n and a shelling order called
“snake ordering” is given. Our shelling order here is different from that.
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4. Homology of Td,n

In this section, we will use the shelling to compute the homology. We have to count
those trees T ∈ T ′d,n which “close a loop,” i.e. for each x ∈ T there exists T ′ ∈ T ′d,n,
T ′ < T such that T \ {x} ⊂ T ′. In the [10, proof of Corollary 5], it was shown that a
tree with an internal left edge does not satisfy this condition, so all left edges must be
leaves. These types of trees are called combs.

N

1

Any comb such that the neighbour of 1 is an unmarked end and the neighbour of N is
a marked end is in T ′d,n. However, not all of them contribute to the homology because
the existence of a tree T ′ < T with T \ {x} ⊂ T ′ does not guarantee that T ′ ∈ T ′d,n.

Let T be a 3-valent tree and V be an internal vertex, such that the two children
of V are the end m0 and a bounded edge leading to a vertex W which has the end m1

as child. Assume m0 > m1 and m0 and m1 are either both marked ends or unmarked
ends. Denote by T1 the subtree of T that can be reached by the parent of V and by T2

the subtree that can be reached from W via the second child.

T1

V

W

T2

m0

m1

There are two other trees that differ from T exactly at the split corresponding to edge
{V, W}:

T1

T2T2
m0

m1
m1

m0

T1
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The first tree is bigger than T and the second is not in T ′d,n, hence T does not close a
loop and does not count toward the top homology of T ′d,n.

The combs which remain are those which satisfy: if a marked (unmarked) end ml

to the left is followed by a marked (unmarked) end ml+1, then ml < ml+1.
We have to show that for those combs we can find T ′ for each edge label x. There

are two cases: either x is an edge between two marked (unmarked) ends ml and ml+1

with ml < m1+1, or ml is marked and m1+1 unmarked (respectively, the other way
round). In the first case, we just swap ml and ml+1.

ml+1

1

T T
′

N

1

ml

ml+1

N

ml

The new tree T ′ is still in T ′d,n. It contains all edge labels of T besides the edge
label x = {ml+1, . . . , mn+d−1, N}. Instead of x, it has the edge label

{ml,ml+2, . . . , mn+d−1, N}.

Furthermore, it is smaller than T , because at the vertex above x the right subtree
contains ml+1 which is bigger than ml.

In the second case, we bring ml and ml+1 together to one vertex:

V
′

N

1

T T
′

N

1

ml

ml+1

ml

ml+1

V

The edge label x = {ml+1, . . . , mn+d−2, N} is replaced by {ml,ml+1}. All other
edge labels remain. Of course, T ′ ∈ T ′d,n. Also, T ′ < T , because the right child of the
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vertex V ′ is smaller than the right child of the vertex V , and above those vertices, the
trees coincide.

Altogether, this proves the following theorem:

Theorem 4.1 (Homology of T ′′d,n)

The top homology of T ′′d,n is Zh, where h is equal to the number of combs starting
with 1 and ending with N , the neighbour of 1 an unmarked end, the neighbour of N
a marked end, two consecutive ends either have different colors or have the same color
with increasing labels.

Corollary 4.2

The rank of the top homology of T ′′d,n is

min(n−1,d−1)∑

k=1

(
k∑

i=1

(−1)k−i

(
k

i

)
in−1

) 


k∑

j=1

(−1)k−j

(
k

j

)
jd−1


 .

Proof. It follows from the previous lemma that the rank of the top homology is the
number of ways to simultaneously partition an n− 1-element set and a d− 1-element
set into the same number of nonempty ordered parts. The number of partitions of an
m-element set into exactly k nonempty ordered part is

k! · S(m, k) =
k∑

i=1

(−1)k−i

(
k

i

)
im

where S(m, k) are the Stirling numbers of the second kind. ¤

The computations in [1] for the top homology of T ′′3,n, T ′′4,4, and T ′′4,5, which are
2n − 3, 73, and 301 respectively, agree with our formula.
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