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Abstract

In this paper, written for non specialists, we discuss several points in the elemen-
tary theory of almost complex manifolds, with a focus on the question of choice
of special coordinates and on the obstruction given by the Nijenhuis tensor.

1. Introduction

1.1. My motivation for writing these notes came first from my own desire of getting
a better (more geometric) understanding of the Diederich-Sukhov-Tumanov norma-
lization (see 1.2.) of an almost complex structure along a J-holomorphic disc. In
particular, I wanted to have more direct discussions in terms of the tensor J itself,
although this failed to simplify the crucial proofs.

The proofs given here for the normalizations, somewhat differ from the original
ones. I completely avoided what I consider to be notationally tedious formulas for
coordinate changes by applying Proposition 2, i.e. by basing the proof on a formula
for the Laplacian of J-holomorphic discs. The Diederich-Sukhov normalization is a
normalization just at a point, and that is a simple matter, at the level of Taylor ex-
pansion. The Sukhov-Tumanov normalization is along a disc and this is more subtle,
since it seems to require some non-local work. I made a special effort for clarification of
the proof by completely separating two steps in the Sukhov-Tumanov normalization: a
first step in which a differential equation has to be solved and a second elementary step
completely analogous to the Diederich-Sukhov case. I am very grateful to A. Tumanov
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for explaining to me how the normalization [11, Lemma 2.2] is not only for almost com-
plex structures close to the standard one (which was not clear to me), using the result
explained in the appendix. In this paper, an effort has been made to make smoothness
requirements clear and somewhat minimal. In particular, smoothness requirements are
carefully stated in Theorem 2, but they were left as they came naturally in the proof
without searching for improvement.

The Diederich-Sukhov-Tumanov normalization has been used very efficiently
in [10, 11] and it is my feeling that it may be helpful in questions related to pluri-
polarity (but this is only related to work in progress).

The heart of these notes is Section 3, but I took the opportunity provided by
writing these notes to gather facts in the very elementary theory of almost complex
structures. Although most of these facts have been well known for a long time, they
seem to be usually skipped in expositions. Some other facts are less known but may
be too quickly treated in papers. So, I felt that there was still some lack of an easy
reference. These notes are written having in mind a reader who is absolutely not a
specialist in almost complex analysis. They are at the opposite of notes where ‘details
are left to the reader’ (especially when the details are tedious). This explains their
length. Repetitions have been intentionally made in order to avoid (existing) risks
of misreading definitions. The short appendix is in the spirit of an elementary self
contained paper.

Acknowledgments. I thank the Departments of Mathematics at the University
of Barcelona and at Ljubljana for their warm hospitality when I was writing these
notes.

1.2. Let us just have a short preliminary discussion of the Diederich-Sukhov-Tumanov
normalization (with explanations given later). It is standard that if J is an almost
complex structure defined near 0 in R2n, after a change of variable one can assume
that J(0) is the standard complex structure Jst given by identifying R2n and Cn, with
the complex structure corresponding to multiplication by i. This is just the elementary
algebraic fact that any endomorphism T of R2n, that satisfies T 2 = −1, corresponds
to multiplication by i in appropriate complex coordinates. J-holomorphic curves i.e.
maps from an open set in C into (R2n, J) are defined by the equation

∂u

∂y
= J(u)

∂u

∂x
.

It happens that (if J is close enough to Jst) this equation can be re-written as:

∂u

∂ζ
= Q(u)

∂u

∂ζ
,

where Q is C-linear, not only R-linear (so given by an (n×n) complex matrix). J = Jst
corresponds to Q = 0, Diederich and Sukhov showed that one can chose coordinates
so that J(0) = Jst, i.e. Q(0) = 0, and Qz(0) = 0, and they pointed out that Qz(0) = 0
cannot be achieved in general. Sukhov and Tumanov did the same normalization along
a J-holomorphic disc.
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2. Basic notions and notations. The Diederich-Sukhov normalization

2.1) The operators J and Q

In R2n, coordinates will be denoted by (x1, y1, . . . , xn, yn) and R2n is identified
with Cn, in which the variable will be denoted by z = (z1, . . . , zn), zj = xj + yj . An
almost complex structure J on some open set Ω ⊂ R2n is the data at each point z ∈ Ω
of an endomorphism J(z) of the tangent space to R2n at p satisfying J(p)2 = −1. The
standard complex structure given by multiplication by i corresponds in real notations
to the (2n× 2n) matrix made of blocks(

0 −1
1 0

)
along the diagonal. If p 7→ J(p) is of class Cα, J is said to be of class Cα.

Let D be the unit disc in C, in which the variable will always be denoted by ζ.
However we will write ζ = x + iy (rather than ξ + iη that would be logical). So, in
what follows, we will always have z in Cn, but x and y in R. A J-holomorphic disc,
in Ω, is a map u from D into Ω such that

∂u

∂y
= J(u)

∂u

∂x
, (∗)

which means that du is jst − J linear, jst denoting the standard complex structure
on C, for which jst

∂
∂x = ∂

∂y . Long before Gromov made these discs an essential tool,
Nijenhuis and Woolf established the basic theory. The main reference is [8], but more
recent expositions can be found in several places including [9] that is very helpful, [4, 5]
and [3] (where a special care was taken to give short and very elementary proofs). Here
we shall not discuss basic facts such as: If the structure J is of class Cα (α > 0), for
any point p ∈ Ω and any tangent vector V at p, there exists a J-holomorphic disc u
with u(0) = p and ∂u

∂x(0) = λV , for some λ > 0, and all J-holomorphic disc are of class
Cα+1 if α /∈ N.

As it is classical, we set ∂u
∂ζ = 1

2(∂u∂x − Jst
∂u
∂y ), i.e. with complex (Cn) notations:

∂u
∂ζ = 1

2(∂u∂x − i
∂u
∂y ). Similarly ∂u

∂ζ
= 1

2(∂u∂x + Jst
∂u
∂y ). One therefore has ∂u

∂x = ∂u
∂ζ + ∂u

∂ζ
and

Jst
∂u
∂y = −∂u

∂ζ + ∂u
∂ζ

. Since J2
st = −1, the equation (∗) for J-holomorphicity becomes:

Jst
∂u

∂ζ
− Jst

∂u

∂ζ
= J

(∂u
∂ζ

)
+ J

(∂u
∂ζ

)
,

where J = J
(
u(ζ)

)
. So

[J + Jst]
∂u

∂ζ
= [Jst − J ]

∂u

∂ζ
.

If we restrict the case when [J + Jst] is an invertible endomorphism of R2n (which
happens in particular if the operator norm of J − Jst is < 1), one has the following
equation from J-holomorphic discs:

∂u

∂ζ
= Q(u)

∂u

∂ζ
,

with Q = [J + Jst]−1[Jst − J ].
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Now, (explaining the choice of notation,) it happens that J2 = −1 has the con-
sequence that the operator Q is not an arbitrary endomorphism of R2n. Indeed Q
is conjugate linear in the identification of R2n and Cn, i.e. in complex notations
Q(iz) = −iQ(z), in real notations Q ◦ Jst = −Jst ◦Q.

There is a completely obvious reason why Q has to be conjugate linear, namely
that if ζ 7→ u(ζ) is J-holomorphic, so is ζ 7→ u(λζ), for any fixed complex number λ.
The latter fact is of course completely linked to the property J2 = −1.

We however write an elementary algebraic checking.
Since J2 = J2

st = −1 , [Jst+J ]Jst = J [Jst+J ] (= [−1+JJst]). Taking inverses:
−Jst[Jst+J ]−1 = −[Jst+J ]−1J . We also have J [Jst−J ] = −[Jst−J ]Jst (= [1+JJst]).
Therefore:

Jst ◦Q = Jst[J + Jst]−1[Jst − J ] = [J + Jst]−1J [Jst − J ]

= −[J + Jst]−1[Jst − J ]Jst = −QJst ,

as claimed.
One has [J + Jst]Q = [Jst − J ]. One can solve for J , given Q. Then, given a

conjugate linear operator Q, there corresponds an almost complex structure defined
by J where J is given by

J = Jst[1−Q][1 +Q]−1.

This makes sense in particular when the operator norm of Q is < 1 (corresponding to
J close to Jst). It is again an elementary algebraic fact that conjugate linearity of Q
(which below is used in [1 − Q]Jst = Jst[1 + Q]), and J2

st = −1, is enough to imply
J2 = −1, as we now check.

J2 =Jst[1−Q][1 +Q]−1Jst[1−Q][1 +Q]−1

= [1 +Q]Jst[1 +Q]−1][1 +Q]Jst[1 +Q]−1 = −1 .

The conclusion is that almost complex structures that are close to the standard one
can equivalently be given either by the endomorphism J with J2 = −1, or by the
conjugate linear operator Q, that came in the equation of J-holomorphic discs.

Notes:

(i) This is not the only occurrence of conjugate linear operators in the theory. Indeed,
consider an almost complex structure J = Jst + ε, close to Jst. Then J2 = −1
yields Jst ◦ ε+ ε ◦ Jst +O(|ε|2) = 0. So, at the infinitesimal level (i.e. for the Lie
algebra) Jst ◦ ε = −ε ◦ Jst.

(ii) L. Lempert pointed out to me that the operator Q has a long history, in particular
for integrable complex structures, being called the deformation tensor (see works
by Kodaira and Morrow-Kodaira).

2.2) The operator Q and z, z derivatives

For any R endomorphism of Cn, the conjugate operator R is defined by
R(t) = R(t) (t ∈ Cn). For z in say Ω ⊂ Cn, we have defined the conjugate linear
operator Q = Q(z). This is the conjugate of the C-linear operator Q = Q(z) defined
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by [Q(z)](t) = [Q(z)](t). So we shall consider Q given, at each point z, by an (n× n)
matrix with complex coefficients (instead of a (2n × 2n) real matrix). The equation
for J-holomorphic disc can now be written entirely in complex notations

∂u

∂ζ
= Q(u)

∂u

∂ζ
. (∗∗)

In all that follows, when thinking in terms of matrix multilplication, one should of
course treat ∂u

∂ζ as a column vector although we will usually write ∂u
∂ζ as a row vector

with entries ∂uj

∂ζ .

The meaning of the partial derivatives ∂Q
∂zj

and ∂Q
∂zj

is obvious, one differentiates
the (n×n) matrix representing Q coefficient-wise. This is why several results below are
written in terms of Q. It is however better to take a more general approach that allows
one in particular to differentiate J , and that is not simply differentiation coefficient-
wise of a complex matrix. The space of R-linear endomorphisms of Cn has of course a
structure of complex vector space. For any R-endomorphism R and any λ = a+ib ∈ C,
one defines λR = aR + Jst ◦ (bR). (For a C-linear endomorphism, represented by
a (n × n) complex matrix instead of a (2n × 2n) real matrix, this is of course just
multiplication of each coefficient of the complex matrix by λ.) Let z 7→ R(z) be a C1

map from an open set in Cn into the space of R-endomorphisms of Cn. Then one sets

∂R

∂zj
=

1
2

( ∂R
∂xj

− Jst ◦
∂R

∂yj

)
,

i.e. for fixed t,
∂R

∂zj
(t) =

1
2

( ∂

∂xj

(
[R(z)](t)

)
− i

∂

∂yj

(
[R(z)](t)

))
.

In terms of coefficients of matrices, if R(z) is represented, in the standard basis of R2n,
by a real (2n× 2n) matrix (rj,k(z)), then the endomorphism ∂R

∂zj
is represented by the

real (2n× 2n) matrix ρj,k(z) defined by the relations

ρ2p−1,k + iρ2p,k =
∂

∂zj
(r2p−1,k + ir2p,k) (1 ≤ p ≤ n , 1 ≤ k ≤ 2n) .

If one mixes real and complex notations, in a way that it may be better to avoid (as the
lines below may show), R(z) an R linear map from R2n into Cn, can be represented by
a rectangular (n× 2n) matrix with complex coefficients. Partial differentiation ∂

∂zj
is

then again simply differentiation of each coefficient in the matrix. Some care is needed
due to the lack of commutativity with Jst, although one has

∂

∂xj
(R1 ◦R2) =

∂R1

∂xj
◦R2 +R1 ◦

∂R2

∂xj
,

and similarly for ∂
∂yj

, there is no such formula for ∂
∂zj

(see 2.4.3).

Similarly
∂R

∂zj
=

1
2

( ∂R
∂xj

+ Jst ◦
∂R

∂yj

)
.



48 Rosay

With the same notations, ∂R
∂zj

= 0 on some open set for every j ∈ {1, . . . , n}, therefore
means that for every p ∈ {1, . . . , n} and k ∈ {1, . . . , 2n} the function z 7→ r2p−1,k(z) +
ir2p,k(z) is holomorphic on that open set.It is straightforward to check that

∂R

∂zj
=
∂R

∂zj
, and

∂R

∂zj
=
∂R

∂zj
.

Finally Rz (resp. Rz) denotes the Frechet derivative that to each (tangent vector)
t ∈ Cn associates the R-endomorphism of Cn defined by

Rz.t =
∑
j

tj
∂R

∂zj

(
resp. Rz.t =

∑
j

tj
∂R

∂zj

)
.

Note the C-linearity in t. For X ∈ Cn, [Rz.t](X) therefore denotes the vector in Cn

that is the image of X under the endomorphism Rz.t (multiplication of the matrix
representing Rz.t and X written as a column vector). One has the first order Taylor
expansion

R(z + ∆z) = R(z) +Rz.∆z +Rz.∆z + o(|∆z|) ,

Rz = 0 (resp. Rz = 0), at a given point z, is equivalent to having all the zj (resp. zj)
derivatives of R vanishing at that point.

Proposition 1

Let J be a C1 almost complex structure defined near p in Cn. Assume that
J(p) = Jst (so Q(p) = 0).

(i) The following are equivalent: Qz(p) = 0, Qz(p) = 0, Jz(p) = 0.

(ii) The following are equivalent Qz(p) = 0, Qz(p) = 0, Jz(p) = 0.

The first equivalence in (i) and (ii) is given by the lines above. Since J = Jst ◦
[1−Q][1 +Q]−1 one has near p, J = Jst[1− 2Q] + o(|Q|). Partial differentiation with
respect to zj and composition with Jst commute. More generally, for any fixed linear
map A from Cn into Cn that is C-linear ∂A◦R

∂zj
= A ◦ ∂R

∂zj
, as it follows immediately

from the definition of ∂
∂zj

and of the commutation of A and Jst. So, if Q(p) = 0, one

has ∂J
∂zj

(p) = −2Jst ◦ ∂Q
∂zj

(p) and similarly for the zj derivatives. When Q(p) 6= 0, there
is no simple relation between the zj derivatives of J and of Q (see 2.4.3).

2.3) More on the operator Q and J-holomorphic discs. The Diederich-Sukhov norma-
lization

Differentiation of (∗∗), with respect to ζ, gives the following formula for the Lapla-
cian of u:

1
4
∆u =

∂2u

∂ζ∂ζ
=
[
Qz(u).

∂u

∂ζ

](∂u
∂ζ

)
+
[
Qz(u).

∂u

∂ζ

](∂u
∂ζ

)
+Q(u)

∂2u

∂ζ∂ζ
.
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Proposition 2

Let p ∈ Cn. Assume that J is a Cα almost complex structure defined near p,
α > 1, and that J(p) = Jst. Then every J-holomorphic disc u with u(0) = p satisfies
∂u
∂ζ

(0) = 0, and the following are equivalent:

(i) Every J-holomorphic disc u with u(0) = p, satisfies ∂2u
∂ζ∂ζ

(0) = 0,
(ii) Qz(p) = 0.

Proof. Since α > 1, the J holomorphic discs are of class C2. Since J(p) = Jst, Q(p) = 0.
If u(0) = p, ∂u

∂ζ
(0) = ∂u

∂ζ (0) = 0 by (∗∗). The formula above for the Laplacian of u

reduces to ∂2u
∂ζ∂ζ

(0) = [Qz(p).T ](T ) = 0, for T = ∂u
∂ζ (0) (= ∂u

∂x(0) since J(p) = Jst).
Clearly, (ii) implies (i). Next, if θ is a C-bilinear form on Cn, no symmetry assumed,
it is equivalent to have θ(S, T ) = 0 for all S and T ∈ Cn and to have θ(T , T ) = 0 for
all T ∈ Cn. This elementary remark (and the fact that for any T ∈ Cn there exists a
J-holomorphic disc u with u(0) = p and ∂u

∂x(0) = λT , for some λ > 0,) allows one to
conclude that (i) implies (ii). Proposition 2 is in the same spirit as [10, Lemma 2.5].

Theorem 1 (Diederich-Sukhov) ([1, Lemma 3.2])

Let J be an almost complex structure of class Cα, α > 1, defined near p in Cn.
Then, one can make a quadratic change of coordinates, so that in the new coordinates:
p = 0, J(0) = Jst and Qz(0) = 0.

Our proof is not the proof given by Diederich and Sukhov, it is instead an im-
mediate application of Proposition 2. Of course we can assume that p = 0 and that
already J(0) = Jst. Then, take new variables Z defined by

Z = z − [Qz(0).z](z) i.e. more conveniently for us

Z = z + [Qz(0).z](z) .

If u is a J-holomorphic disc with u(0) = 0, we have

∂u

∂ζ
(0) = 0 , and

∂2u

∂ζ∂ζ
=
[
Qz(0).

∂u

∂ζ

](∂u
∂ζ

)
.

To u corresponds in the new coordinates a disc U with

U = u− [Qz(0).u](u) ,

which, due to u(0) = 0 and ∂u
∂ζ

(0) = 0, is immediately seen to satisfy ∂U
∂ζ

(0) = 0, and

additionally ∂2U
∂ζ∂ζ

(0) = 0, equivalently ∂2U
∂ζ∂ζ

(0) = 0. �

Comment. Although the theorem is elementary, it may be worth making a non ele-
mentary comment. It is clear that the condition Qz(p) = 0 would be satisfied if all
the standard complex lines through p were J-holomorphic. A non-elementary change
of variables has been made by Duval [2] for reaching that situation, for blow up. Un-
fortunately smoothness of J is not preserved. The problem here was much simpler, at
the level of second order Taylor expansion.
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2.4) Jz = 0, Qz = 0 and vanishing of the Nijenhuis tensor

2.4.1. Preliminaries

The non vanishing of the Nijenhuis tensor is the obstruction for an almost complex
structure to be a complex structure. The easiest way to get this tensor is by working
with the complexified tangent bundle to Cn = R2n (see Proposition 4 below). All
vector fields under consideration in this section will be at least of class C1 (except their
Lie brackets that will be at least continuous) and the almost complex structure J will
also be at least of class C1. A complexified vector field θ is said to be of type (0, 1) at
p if θ(p) = X + iJ(p)X), for some (real) tangent vector X, the vector field is said to
be of type (0, 1) if it is of type (0, 1) at each point (we shall use notation such as L for
such vector fields). An almost complex structure is a complex structure if and only
if there exist local coordinates Z = (Z1, . . . , Zn) such that L(Zj) = 0 for any (0, 1)
vector field L. If the structure is smooth enough, for this to happen, it is necessary and
sufficient that the Lie Bracket of any two vector fields of type (0, 1) be of type (0, 1).
Necessity is obvious. Sufficiency follows immediately from the Frobenius theorem in
case of real analytic data (see e.g. [7, p.125-6]), and in the smooth case this is the
Newlander-Nirenberg Theorem.

Recall the definition of the Nijenhuis tensor, that does not require any complex-
ification of the tangent bundle: Let X and Y be two (real) vector fields defined near
p ∈ Cn, set

N(X,Y ) = [X,Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ] .

Note: The value of N(X,Y ) at a point depends only on the value of X and
Y at that point (the Nijenhuis tensor is indeed a tensor). Equivalently (since
N(Y,X) = −N(X,Y )), N(X,Y ) vanishes at any point where Y vanishes. When
working with the complexified tangent bundle as in Proposition 4 below, this fact es-
sentially reduces to the fact that if L and M are sections of a sub-bundle of the (real
or complexified) tangent bundle, then their Lie Bracket lies in that sub-bundle at each
point where either L or M vanishes. Here we do a direct checking that N(X,Y ) = 0
at any point where Y = 0. Note that J

(
(JX)Y − Y (JX)

)
makes sense, since by can-

cellation of second order terms [JX, Y ] is a vector field, but that neither J
(
(JX)Y

)
nor J

(
X(JY )

)
make sense. Instead, there is a basic fact, stated in a more general

setting, that one can use (a fact that is essentially not more than (uv)′(0) = u(0)v′(0),
if v(0) = 0):

Let X and Y be now vector fields defined near 0 on Rd, with variable denoted by
t = (t1, . . . , td).

X(t) =
∑
j

aj(t)
∂

∂tj
, Y (t) =

∑
j

bj(t)
∂

∂tj
,

where aj and bj are C1 functions. And let C be a (d × d) matrix valued function,
C = (Cj,k)1≤j,k≤d. So, C acts on vector fields, e.g. CX =

∑
j(
∑
k cj,kak)

∂
∂tj

. We claim
that if Y (0) = 0, then [X,CY ](0) = C[X,Y ](0). It is enough to check the claim with
X = ∂

∂t1
, Y = b ∂

∂tr
for some r and some function b with b(0) = 0. In that case,
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[X,Y ](0) = ∂b
∂t1

∂
∂tr

. So, using b(0) = 0 for the second equality:

C[X,Y ](0) =
∑
j

cj,r
∂b

∂t1
(0)

∂

∂tj
=
∑
j

∂cj,rb

∂t1
(0)

∂

∂tj
= [X,CY ](0) .

We are now ready for proving that N(X,Y )(0) = 0 if Y (0) = 0 (going back to the
previous setting of R2n). If Y (0) = 0, then using the above, we get: J [X, JY ](0) =
[X, J2Y ](0) = −[X,Y ](0), and J [JX, Y ](0) = [JX, JY ](0). So N(X,Y )(0) = 0.

Proposition 3

The following are equivalent:

(a) J(p) = Jst.

(b) L(zj) (p) = 0 for all j ∈ {1, . . . , n} and every (0, 1) vector field L.

Then, for a vector field θ to be of type (0, 1) at p, it is necessary and sufficient
that θ(zj) (p) = 0.

These are simple algebraic facts.

Proposition 4

For p fixed, the following are equivalent:

(i) N(X,Y )(p) = 0 , for all (real) tangent vectors X and Y .

(ii) For every (0, 1) vector field L and M , their Lie Bracket [L,M ] (= LM −ML) is
of type (0, 1) at the point p.

(iii) There exist a (quadratic) local change of coordinates z → Z(z) = (Z1, . . . , Zn)
near p such that Z(p) = 0, and L(Zj)(z) = o(|z − p|) (as z → p), for all (0, 1)
vector fields L.

Note: The last condition can be written as ∂JZj = o(|z|) where for a function ψ, ∂Jψ
is the 1-form defined by

∂Jψ(X) =
1
2
(
dψ(X) + idψ(JX)

)
,

for any tangent vector X. If J = Jst we simply write ∂, and this is in agreement with
the usual definition ∂ψ =

∑
j
∂ψ
∂zj

dzj .

Proof. (ii) is equivalent to (i). Indeed [X + iJX, Y + iJY ] = [X,Y ] − [JX, JY ] +
i
(
[X, JY ] + [JX, Y ]

)
. So, [X + iJX, Y + iJY ] is of type (0, 1) at p if and only if

[X, JY ](p)+ [JX, Y ](p) = J(p)
(
[X,Y ](p)− [JX, JY ](p)

)
. Multiply both sides by J(p)

and use J2 = −1 to get the desired conclusion.

Assume that there is a C1 change of coordinates as in (iii). then L(Zj) and
M(Zj) = o(|z−p|), for all (0, 1) vector fields L and M . Consequently

(
LM(Zj)

)
(p) = 0

and
(
ML(Zj)

)
(p) = 0. Hence [L,M ](p)(Zj) = 0. (ii) then follows from Proposition 3.

Finally we check that (ii) implies (iii). We can assume that p = 0 and that
J(0) = Jst. Then by simple linear algebra, there is a basis of (0, 1) vector fields Lj
such that

Lj =
∂

∂zj
+
∑
q

αj,q
∂

∂zq
,
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where the αj,k are functions that vanish at 0. Then (ii) has the following simple form:
[Lj , Lk](0) = 0. That gives us

∂αj,q
∂zk

(0) =
∂αk,q
∂zj

(0) .

We now look for a change of variables z 7→ Z(z) such that Lj(Zr) = o(|z|). We take a
simple quadratic change of variables:

Zr(z) = zr +
∑
k,l

ark,lzkzl +
∑
k,l

brk,lzkzl .

We then have:

Lj(Zr) =
∑
k

ark,jzk +
∑
k

(brk,j + brj,k)zk + αj,r + o(|z|) .

We then take the constants ark,j = −∂αj,r

∂zk
(0) and brk,j such that brk,j + brj,k = −∂αj,r

∂zk
(0).

This last choice is possible (by symmetry) if and only if one has the compatibility
condition ∂αj,r

∂zk
(0) = ∂αk,r

∂zj
(0), which is indeed satisfied.

2.4.2. End of the discussion of the Diederich-Sukhov normalization

We start with an easy remark on the case when J matches with Jst to order 1.

Proposition 5 (With hypotheses as in 2.4.1)

The following are equivalent:

(i) N(p) = 0.

(ii) In appropriate coordinates p = 0, J(0) = Jst, ∇J (0) = 0.

Proof. (ii) implies (i) trivially since evaluating the Nijenhuis tensor N requires only
one derivative of J . If (i) is satisfied, in coordinates given by Proposition 4, (ii) is
satisfied. Recall that ∇J = 0 is equivalent to ∇Q = 0 at a point where J = Jst.

Next we want to end the discussion of the Diederich and Sukhov normalization by
writing down the proof of a result that they stated, and that illustrates how different
are the requirements Qz = 0 and Qz = 0. The first one can be achieved at a point
where J = Jst only if the Nijenhuis tensor vanishes at that point.

Proposition 6

If J(p) = Jst and Jz(p) = 0 (equivalently Qz(p) = 0), then N(p) = 0.

For the converse see Proposition 5. However note that the conditions J(p) =
Jst and N(p) = 0 do not imply that, in arbitrary coordinates, Jz(p) = 0, even if
one additionally assumes that Jz(p) = 0. Indeed even in complex dimension 1 (so
N = 0 automatically), consider the structure given by Q(z) = z. It is instructive to
discuss this elementary example, that is so simple to describe in terms of Q and not so
immediate in terms of J . This is done in 2.4.3 at the end of Section 2. Proposition 6
follows from Proposition 4 and the following Lemma:
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Lemma

If J(0) = Jst, and Jz(0) = 0, then there exist local coordinates Z = Z(z), with
Z(0) = 0, such that ∂JZ = o(|z|).

Proof. Since Jz(0) = 0, J(z) = Jst +
∑
k zkεk + o(|z|), where εk = ∂J

∂zk
(0). For any

function ψ and any tangent vector X = (X1, . . . Xn) (∈ Cn),

∂Jψ(X) = ∂ψ(X) + i dψ
(∑

zkεk(X)
)

+ o(|z|) .

Taking ψ = zj , whose differential is C-linear, one gets

∂Jzj (X) =
∑
k

zk dzj(εk(X)) + o(|z|) .

As pointed out earlier, in Note (i) at the end of 2.1, as an immediate consequence of
J2 = −1 and J(0) = 0, each εk is a conjugate linear map from Cn to Cn. So, by
C-linearity of dzj , dzj ◦ εk is a conjugate linear map from Cn to C, i.e. one can write
dzjεk(X) =

∑
l µ

l
j,kX l (with no Xl terms). Set Zj = zj +

∑
k zkAj,k(z), where the

functions Aj,k are linear functions (vanishing at 0) to be found. Since at the origin ∂J
coincides with ∂, and since terms of order > 1 are discarded, the functions Aj,k simply
have to satisfy: ∂Aj,k(X) = −dzjεk(X), which is possible since the right hand side is
conjugate linear in X. This ends the proof of the Lemma and Proposition 6.

Remark 1 Trying to do the proof of the Lemma with Jz = 0 instead of Jz = 0 in the
hypothesis leads to study the case J = Jst +

∑
k zkηk. Instead of zkAj,k, whose ∂ was

simply zk∂Aj,k, we could start by considering expressions such as zkAj,k, whose ∂ leads
to immediate difficulties. Compatibility conditions, as in the proof of (ii) implies (iii)
in Proposition 4, arise.

2.4.3. Here we discuss the elementary example mentioned after the statement of Propo-
sition 6

This is to illustrate how the theoretically trivial switch from the C-linear ope-
rator Q to the operator J which is only R-linear, is in fact not so pleasant com-
putationally, and to see what actual computations may be. Here is a sketch of the
un-enlightening computations.

We start with the almost complex structure defined near 0 on C (with variable
z1 = x1 + iy1) by Q(z1) = z1. So the equation for J-holomorphic discs (u = u(ζ), with
ζ = x+ iy in order to keep our previous notations), is

∂u

∂ζ
= u

∂u

∂ζ
i.e.

∂u

∂ζ
= u

∂u

∂ζ
.

A way to get J is by separating real parts and imaginary parts in the equations above
and to write that (

Re ∂u
∂y

Im ∂u
∂y

)
= J(u)

(
Re ∂u

∂x

Im ∂u
∂x

)
.

Another possibility is to use the formula J = Jst ◦ [1−Q][1 +Q]−1. We took Q to be
the C linear map from C to C defined by: Q(t) = z1t. So Q is the conjugate linear
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map: t 7→ z1t, and thus, in R2 notations Q is represented by the matrix

(
x1 y1

y1 −x1

)
.

At any rate the conclusion is that the matrix J defining the almost complex structure
is given by

J(z1) =
1

1− |z1|2

(
2y1 −1− |z1|2 − 2x1

1 + |z1|2 − 2x1 −2y1

)
.

Of course one has J2 = −1. Our choice of Q was such that ∂
∂z1

Q = 0 (everywhere).
This has no clear interpretation in terms of J , except at the points where J = Jst, i.e.
for z1 = 0, for which computations are immediate.

∂

∂y1
J (0) =

(
2 0
0 −2

)
=

(
0 −1
1 0

)(
0 −2
−2 0

)
= Jst ◦

∂

∂x1
J (0)

which is the definition of ∂J
∂z1

(0) = 0.
But at arbitrary point z1, ∂J

∂z1
does not vanish. It has already been pointed out

in 2.2 that the formula J = Jst[1 − Q][1 + Q]−1 (= Jst ◦ [1 + 2
∑
k≥1(−1)kQk], if Q

has operator norm < 1) does not yield any simple relation betwen the derivatives of
Q and J at points where Q 6= 0. The following simple fact is enough explanation. We
have Q(t) = z1t, so Q2(t) = z1z1t. Hence Qz1 = 0 while (Q2)z1 6= 0.

3. The Sukhov-Tumanov normalization

See [10, 11, Sections 2.2]. A proof is written in detail in [10] for complex dimension 2.
The case of arbitrary dimension is not completely clearly stated since the statement of
[11, Lemma 2.2] is preceded by a comment on the fact that (in the present notations)
one can assume that Q is close to 0 in some Ck norm. That restriction is however not
needed in the Lemma.

Let u be a map from D, the closed unit disc in C into an almost complex man-
ifold, that is a J-holomorphic embedding of class Cα. Then, one can find complex
coordinates, of class Cα on a neighborhood of the disc such that in these coordinates
u(D) is the closed unit disc on the z1 axis, and the almost complex structure coincides
with the standard one along that disc. First, one applies the implicit function theorem
and the triviality of the normal bundle, and then simple linear algebra to get J = Jst.
Then if one accepts to change the almost complex structure in the region |z1| ≥ 1,
one can assume that J = Jst along the whole z1 axis, just in order to simplify the
statements.

Without any further discussion of these facts, we now focus on the essential and
that will be stated in Theorem 2.

We shall denote by e1 the first vector in the standard basis of Cn, e1 =
(1, 0, . . . , 0) ; Dr will denote the closed disc of radius r in C and for r = 1 we shall
drop the index.

Before stating Theorem 2, some words about smoothness: In Theorem 2, J = Jst
along the z1 axis, so, along the z1 axis Jz = −2Jst ◦ Qz = −2Jst ◦ Qz. Therefore the
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smoothness hypotheses given can equivalently be given in terms of Jz or in terms of
Qz. We felt that it is worth making a distinction between the smoothness of the almost
complex structure J (equivalently of Q) and the smoothness of Jz (equivalently Qz).
Of course, if J is of class Cα, Jz is at least of class Cα−1, but it can be smoother (and
in case Jz = 0 on the z1 axis, no change of variable is required!). In [10, Remark 2],
Sukhov and Tumanov mention the question of smoothness, without making clear the
assumption of smoothness of J , rather focusing on the smoothness of the disc, which,
going a step ahead, we immediately took to be the unit disc in the z1 axis. Our effort
has been on the clarity of the proof, and breaking the proof in two steps is likely
the origin of a loss (since in case β = α − 1 Sukhov and Tumanov seem to claim a
better result). Recall that if J is an almost complex structure of class Cα and χ is
a Cβ change of variables, the resulting almost complex structure is of class Cγ with
γ = min(α, β − 1).

Theorem 2

Let J be an almost complex structure of class Cα, α > 1, defined on a neighbor-
hood of D × {0} in Cn = C × Cn−1. Assume that J = Jst along the z1 axis (that
is thus a J-holomorphic curve), and that the map z1 7→ Jz(z1, 0, . . . , 0) is of class Cβ ,
with β > 3, β not an integer.

Then, there is r > 0, and a Cβ−1 diffeomorphism z 7→ Z(z) from D ×Dn−1
r into

Cn, with Z(z1, 0, . . . , 0) = (z1, 0, . . . , 0), such that in the coordinates provided by Z,
J = Jst and JZ = 0 (equivalently QZ = 0) along D× {0} .

Proof. The proof can be clearly broken in two steps, that we now quickly describe.

Step 1: Let e1 = (1, 0, . . . , 0) be the first vector in the standard basis of Cn. We want
to get Jz = 0 along the z1 axis, equivalently Qz = 0. The first step consists in getting
only Qz(e1) = 0 (i.e. ∂

∂zk

(
Q(z)e1

)
= 0, k = 1, . . . , n) along the z1 axis, more precisely

on a a neighborhood of the closed unit disc on the z1 axis. That is to say that we do
the job only for the first column of the (n × n) complex matrix Q. This will be done
by a Cβ change of variables.
Step 2: That is elementary, is the end of the proof, assuming that we already have
Qz(e1) = 0 along the z1 axis.

Note that along the z1 axis, since Q = 0 we already have ∂Q
∂z1

= 0.

Notation =o . In the proof, many equations, for J-holomorphic discs u, will be
written that are valid only if u(0) belongs to the unit disc in the z1 axis. We wish to
emphasize that and we shall use =o instead of =, for equalities that hold at ζ = 0 under
the hypothesis that u2(0) = . . . , un(0) = 0, e.g. we have ∂(u1u2)

∂ζ =o u1
∂u2
∂ζ . Another

example, much used below, is [Qz.∂u∂ζ ] =o ∑
j≥2

∂uj

∂ζ
∂Q
∂zj

(u), where the term with j = 1

need not to be written in the right hand side, since ∂Q
∂z1

= 0 along the z1 axis.
Since Step 2 is a mere repetition of the proof of Theorem 1 (to be read first), with

z1 as a parameter, we begin with Step 2.

Proof of Step 2. Our goal being to have ∂Q = 0 along the z1 axis, we assume that
we already have along the z1 axis ∂(Q(z)e1) = 0. We shall reach this situation with
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Step 1, using a Cβ change of variables with vanishing ∂ along the z1 axis. By immediate
application of chain rule, one see that in these new coordinates z1 7→ Jz(z1, 0, . . . , 0) is
of class Cβ−1, and J is of class Cmin (α,β−1).

Recall that Q is given by an (n×n) complex matrix, that then Qz can be simply
understood by coefficient-wise differentiation of the matrix, and that Q comes in the
equations satisfied by J-holomorphic discs.

∂u

∂ζ
= Q(u)

∂u

∂ζ
,

and

∂2u

∂ζ∂ζ
=
[
Qz.

∂u

∂ζ

](∂u
∂ζ

)
. (E)

Since Q = 0 on the z1 axis, ∂u
∂ζ

(0) =o 0. We have already pointed out that ∂Q
∂z1

= 0
along the z1 axis. Hence

Qz(z1, 0, . . . , 0).(t1, t2, . . . , tn) =
∑
j

tj
∂Q

∂zj
= Qz(z1, 0, . . . , 0).(0, t2, . . . , tn) .

Now we shall use the hypothesis that, for j = 1, . . . , n,

∂

∂zj

(
Q(z)e1) = 0 along the z1 axis ,

i.e. the first column of Q is already in the kernel of ∂. Then (E) gives us

∂2u

∂ζ∂ζ
(0) =o

[
Qz(z1, 0, . . . , 0).

(
0,
∂u2

∂ζ
(0), . . . ,

∂un
∂ζ

(0)
)](

0,
∂u2

∂ζ
(0), . . . ,

∂un
∂ζ

(0)
)
. (E′)

(In matrix multiplication, remember to treat (0, ∂u2
∂ζ (0), . . . , ∂un

∂ζ (0)) as a column vec-
tor.)

Treating somewhat z1 as a parameter, we can now do the same simple Cβ−1 change
of variables as in the proof of Theorem 1 (easier to write for the conjugates), setting:

(Z1, . . . , Zn) = (z1, z2, . . . , zn) +
[
Qz(z1, 0, . . . 0).(0, z2, . . . , zn)

]
(0, z2, . . . , zn) .

This last change of variables leads to an almost complex structure of class Cγ with
γ = min(α, β − 2) > 1, since α > 1, β > 3, so one can apply Proposition 2. To
any J-holomorphic disc u = (u1, . . . , un), with u(0) = (z1, 0, . . . , 0), corresponds a disc
U = (U1, . . . , Un) with

U = u+
[
Qz(z1, 0, . . . , 0).(0, u2, . . . , un)

]
(0, u2, . . . , un) .

Exactly as in the proof of Theorem 1, U obviously satisfies U(0) = (z1, 0, . . . , 0),
∂U
∂ζ

(0) = 0 and finally, following from (E′),

∂2U

∂ζ∂ζ
(0) =

∂2U

∂ζ∂ζ
(0) = 0 .
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By Proposition 2, this shows that in the new coordinates along C× {0}, J = Jst, and
Qz = 0.

Step 1, case of dimension 2. For convenience of the reader we start with the case
of dimension 2. This case is not really different but computations may be easier to
follow, and full detail is easier to provide.

Write u = (u1, u2). Recall that ∂Q
∂z1

(z1, 0) = 0. So (E) reduces to:

∂2u1

∂ζ∂ζ
(0) =o ∂u2

∂ζ

(
a1,1(u1)

∂u1

∂ζ
+ a1,2(u1)

∂u2

∂ζ

)

∂2u2

∂ζ∂ζ
(0) =o ∂u2

∂ζ

(
a2,1(u1)

∂u1

∂ζ
+ a2,2(u1)

∂u2

∂ζ

)
where the right hand side is evaluated at ζ = 0, and with

ap,k(z1) =
∂qp,k
∂z2

(z1, 0) .

The goal is to have a1,1 = a2,1 = 0, and keep Q = 0 on the z1 axis For this, one makes
a change of variables, leaving the z1 axis invariant and preserving Jst along the z1 axis,
given by:

Z1 = z1 + z2f(z1) , Z2 = z2e
g(z1) ,

where f and g are functions to chose appropriately. To any (germ of) J-holomorphic
disc u = (u1, u2) corresponds a J-holomorphic disc U = (U1, U2) with

U1 = u1+u2f(u1) , U2 = u2e
g(u1) . (F )

We have ∂uj

∂ζ
=o 0 and ∂Uj

∂ζ
=o 0, and we get

∂U1

∂ζ
=o ∂u1

∂ζ
+
∂u2

∂ζ
f(u1)

∂U2

∂ζ
=o ∂u2

∂ζ
eg(u1) .

Therefore

∂u1

∂ζ
=o ∂U1

∂ζ
− ∂U2

∂ζ
f(u1)e−g(u1)

∂u2

∂ζ
=o ∂U2

∂ζ
e−g(u1) .

Taking the Laplacian of each side in the (conjugate of the) equation (F ) leads to

∂2U1

∂ζ∂ζ
=o ∂

2u1

∂ζ∂ζ
+
∂2u2

∂ζ∂ζ
f(u1) +

∂u2

∂ζ

∂f

∂z1
(u1)

∂u1

∂ζ
.
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So,

∂2U1

∂ζ∂ζ
=o ∂u2

∂ζ

(
a1,1(u1)

∂u1

∂ζ
+ a1,2(u1)

∂u2

∂ζ

)
+
∂u2

∂ζ

(
a2,1(u1)

∂u1

∂ζ
+ a2,2(u1)

∂u2

∂ζ

)
f(u1) +

∂u2

∂ζ

∂f

∂z1
(u1)

∂u1

∂ζ

and
∂2U2

∂ζ∂ζ
=o ∂u2

∂ζ

(
a2,1(u1)

∂u1

∂ζ
+ a2,2(u1)

∂u2

∂ζ

)
eg(u1) +

∂u2

∂ζ

∂g

∂z1
eg(u1)∂u1

∂ζ
.

Then, one would have to express the ∂uj

∂ζ ’s in terms of the ∂Uj

∂ζ ’s. Doing this work
is however not needed. Simply observe that having no term with a ∂U1

∂ζ after this
substitution is equivalent to have cancellation of the ∂u1

∂ζ factors in the right hand side
of the above equations. So, we are led to the conditions that f and g must satisfy (all
functions being functions of z1):

a1,1 + a2,1f +
∂f

∂z1
= 0

a2,1 +
∂g

∂z1
= 0 .

These equations are easily solved. The second one is just the standard ∂ problem. By
setting f = eαF with ∂α

∂z1
= −a2.1, the first equation reduces to ∂F

∂z1
+ e−αa1,1 = 0.

The coefficients in the equations are of class Cβ−1, the solutions are of class Cβ.

Step 1, arbitrary dimension. Write u = (u1, u
′) with u′ = (u2, . . . , un). Recall that

∂Q
∂z1

(z1, 0) = 0. So (E) gives us:

∂2u1

∂ζ∂ζ
(0) =o

∑
j≥2

∂uj
∂ζ

∑
k≥1

aj,k
∂uk
∂ζ

, (E′′)

and (with a different arrangements of terms)

∂2u′

∂ζ∂ζ
(0) =o

∑
k≥1

∂uk
∂ζ

Mk(u1)
∂u′

∂ζ
(E′′′)

where the right hand side is evaluated at ζ = 0, and with

aj,k(z1) =
∂q1,k
∂zj

(z1, 0, . . . , 0) ,

and where finally Mk(z1) is an (n− 1)× (n− 1) matrix of class Cβ−1, with entries that
are entries of the matrices ∂Q

∂zj
(z1, 0, . . . 0). The goal is to have the coefficients aj,1 = 0

and the matrix M1 = 0, and keep Q = 0 on the z1 axis For this, one makes a change of
variables, leaving the z1 axis invariant and preserving Jst along the z1 axis, given by:

Z1 = z1 +
∑
j≥2

zjfj(z1) , Z ′ = A(z1)z′ ,
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where fj ’s are functions and A is an invertible matrix valued function to chose appropri-
ately. To any (germ of) J-holomorphic disc u = (u1, u

′) corresponds a J-holomorphic
disc U = (U1, U

′) = (U1, U2, . . . , Un) with

U1 = u1 +
∑
j≥2

ujfj(u1) , U ′ = A(u1)u′ . (F )

We have ∂uj

∂ζ
=o 0 and ∂Uj

∂ζ
=o 0, and we get

∂U1

∂ζ
=o ∂u1

∂ζ
+
∑
j≥2

∂uj
∂ζ

fj(u1)

∂U ′

∂ζ
=o A(u1)

∂u′

∂ζ
.

One can solve for ∂u
∂ζ , in terms of ∂U

∂ζ . then for approriate functions bj(z1), one gets

∂u1

∂ζ
=o ∂U1

∂ζ
+
∑
j≥2

bj(u1)
∂U ′

j

∂ζ

∂u′

∂ζ
=o A−1(u1)

(∂U ′

∂ζ

)
.

Taking the Laplacian of each side in the (conjugate of the) equations (F ) leads to

∂2U1

∂ζ∂ζ
=o ∂

2u1

∂ζ∂ζ
+
∑
j≥2

∂2uj

∂ζ∂ζ
f j(u1) +

∑
j≥2

∂uj
∂ζ

∂f

∂z1
(u1)

∂u1

∂ζ
.

Finally using the expressions given by (E′′) and (E′′′) for the second derivatives, one
has, with crj,k(z1) = ∂qj,k

∂zr
:

∂2U1

∂ζ∂ζ
=o

∑
j≥2

∂uj
∂ζ

∑
k≥1

aj,k(u1)
∂uk
∂ζ

+
∑
j≥2

∑
r≥2

∂ur
∂ζ

∑
k≥1

crj,k(u1)
∂uk
∂ζ

f j(u1) +
∑
j≥2

∂uj
∂ζ

∂f j
∂z1

(u1)
∂u1

∂ζ
,

and
∂2U

′

∂ζ∂ζ
=o A(u1)

(∑
k≥1

∂uk
∂ζ

Mk(u1)
∂u′

∂ζ

)
+
∂u1

∂ζ

∂A

∂z1

∂u′

∂ζ
.

Then, one would have to express the ∂uj

∂ζ ’s in terms of the ∂Uj

∂ζ ’s using the expressions
given above. As previously, having no term with a ∂U1

∂ζ after this substitution is
equivalent to having cancellation of the ∂u1

∂ζ factors in the right hand side. In order to
have cancellation of the terms with the factor ∂u1

∂ζ , we are led to the conditions that
the fj ’s and A must satisfy, all functions being functions of z1. (To follow the next
lines, it is easier to change notation and permute the indices j and r in the second
term on the right hand side of the equation for ∂2U1

∂ζ∂ζ
.)
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For the (n − 1) functions fj ’s (by grouping together the terms with a factor ∂uj

∂ζ
∂u1
∂ζ ),

one gets a differential system of (n− 1) equations:

∂f j
∂z1

+
∑
r≥2

cjr,1f r + aj,1 = 0 (j = 2, . . . , n) (1)

and for the matrix A, to be found invertible, one has the equation

∂A

∂z1
+AM1 = 0 . (2)

These equations can be solved as explained in the appendix, although this is less
elementary than in the case of dimension 2, and that ends the proof of Theorem 2.

Remark 2 Said in terms of J , rather than Q, ∂J(e1) = 0 was the goal of Step 1 (see
proof of Proposition 1). The goal would be reached if one had J(e1) ≡ ie1, in which
case we would even have d J(e1) = 0. That can be done (at least locally) by foliating
Cn by J-holomorphic curves, changing variables to make the leaves parallel to the z1
axis, and with appropriate parameterizations of the leaves. But such a foliation would
not allow to keep the standard structure along the z1 axis. What is done in Step 1 is
far less ambitious. One does not take care of the z derivatives, and moreover one gets
a result only along the z1 axis. A more direct geometric approach for Step 1 remains
desirable.

Remark 3 In many circumstances one reduces to the case of an almost complex
structure J close to the standard struture. For working locally near a point, this is
done by simple rescaling (z 7→ Kz, K large positive number). It is worth noticing that
such a simple rescaling does not apply when working along a fixed disc, like the unit disc
on the z1 axis. If one tries to use a non isotropic scaling like z 7→ (z1,Kz2, . . . ,Kzn),
the matrix Q (assumed to be 0 on the z1 axis) is replaced by a matrix Q̃ and by
simple considerations on the equation for J-holomorphic discs, the coefficients of these
matrices are related by:

q̃1,1(z) = q1,1
(
z1,

1
K
z2, . . . ,

1
K
zn
)

q̃1,r(z) =
1
K
q1,r

(
z1,

1
K
z2, . . . ,

1
K
zn
)
, for r ≥ 2

q̃r,1(z) = Kqr,1
(
z1,

1
K
z2, . . . ,

1
K
zn
)

for r ≥ 2

q̃r,s(z) = qr,s
(
z1,

1
K
z2, . . . ,

1
K
zn
)

for r and s ≥ 2 .

So at any point z on the z1 axis, for any r and j ≥ 2 ∂q̃r,1

∂zj
= ∂qr,1

∂zj
(= cjr,1 in the proof).

Consequently the coefficients cjr,1 in the proof, are not made to be small, as it would
be desirable.
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4. Appendix

(Changing notations). Solvability of the equations (1) and (2) at the end of the proof
of Theorem 2 follows from:

($) Let k ∈ N, and 0 < α < 1. If ζ 7→ M(ζ) is a continuous function defined
on a neighborhood of the unit disc in C, with values in the space Mn(C) (of (n × n)
matrices with complex coefficients), then there exists a continuous matrix valued map
ζ 7→ A(ζ) defined on a neighborhood of the unit disc, with values in GL(n,C) (the set
of invertible matrices), such that

∂A

∂ζ
+A(ζ)M(ζ) = 0 .

If M is of class Ck,α, for some k ∈ N and 0 < α < 1, A is of class Ck+1,α. This applies
to the equation ∂A

∂ζ
+MA = 0, by transposition.

This result gives the solution of (2). For (1), set f = (f2, . . . , fn) and (with z1
being now ζ), rewrite (1) in the form

∂f

∂ζ
+ C(ζ)f + g(ζ) = 0 .

Let A be an invertible matrix valued function satisfying ∂A
∂ζ

+ CA = 0. The variation
of parameters method consisiting in setting f = Ah, leads to the simple equation
∂h
∂ζ

+A−1g = 0.

Note that one does not need to use results on regularity up to the boundary since
one can as well start by extending the data. Regularity is then immediate by induction,
knowing that if a function ψ in one complex variable is such that ∂ψ

∂ζ
is of class Cγ (for

γ = 0, bounded), then ψ is of class Cγ+1 unless γ is an integer, in which case one gets
only Cγ′

regularity for γ′ < γ + 1.
The result ($) is due to Malgrange (who gives a version with parameters) [6,

Theorem 1 in Chapter IX]. Here we sketch a proof. First we look at the case when
M has small sup-norm, and sup-norm will be used throughout in the argument. Let
TCG denote the Cauchy-Green operator acting on functions (possibly vector or matrix
valued) ϕ defined on the closed unit disc defined by

TCGϕ(ζ) =
1
π

∫
D

ϕ(η)
ζ − η

dxdy(η) .

Its basic property is that ∂
∂ζ

(TCGϕ) = ϕ. Set A = 1 + B. The equation to solve

becomes ∂B
∂ζ

+BM +M = 0. This can be written as

∂

∂ζ

(
B + TCGBM + TCGM

)
,

which can be solved by asking B+TCGBM+TCGM = 0. If M has small sup-norm the
operator B 7→ B + TCGBM is a small perturbation of the identity, and the equation
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B + TCGBM + TCGM = 0 has a small solution, giving us A invertible, defined on the
unit disc. The same applies to any disc, with the smallness of M depending on the
radius, by simple rescaling. The smaller the disc, the larger M is allowed to be. So, in
case of large M the above argment provides only local solutions, say Aj . Note that if
A is a solution, RA is a solution if and only if R is holomorphic. So the local solutions
differ by holomorphic invertible factors, i.e. AjA−1

k = Cj,k (defined on the intersection
of their domains) where Cj,k is holomorphic. The Cartan Lemma on holomorphic
matrices allows one to write Cj,k = HjH

−1
k with holomorphic matrices, leading to the

global solution given by the H−1
j Aj ’s.
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