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Abstract

Hesse claimed in [7] (and later also in [8]) that an irreducible projective hy-
persurface in Pn defined by an equation with vanishing hessian determinant is
necessarily a cone. Gordan and Noether proved in [6] that this is true for n≤3 and
constructed counterexamples for every n≥4. Gordan and Noether and Franchetta
gave classification of hypersurfaces in P4 with vanishing hessian and which are
not cones, see [6, 5]. Here we translate in geometric terms Gordan and Noether
approach, providing direct geometrical proofs of these results.

Introduction

Let f = f(x0, . . . , xn) ∈ k[x0, . . . , xn] be a non-zero irreducible homogeneous poly-
nomial over an algebraically closed field k of characteristic zero. Then the hessian
polynomial of f is the determinant of the matrix of the second partial derivatives:

hf := det
(
[∂2f/∂xi∂xj ]i,j=0,...,n

)
.

Obviously if the hypersurface X = V (f) ⊂ Pn is a cone (i.e. up to a linear change
of coordinates f does not depend on all the variables), then the hessian polynomial
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of f is identically zero. The converse is clearly true when deg(f) ≤ 2. Hesse claimed
twice that the converse is true also for deg(f) ≥ 3, i.e. he claimed that if the hessian
polynomial of a polynomial f of degree at least three is identically zero then the
hypersurface X = V (f) ⊂ Pn is a cone (see [7, 8]).

The problem was reconsidered by Gordan and Noether [6] who proved that Hesse’s
claim is true when n ≤ 3 but false in general when n ≥ 4. They constructed families of
counterexamples for every n ≥ 4, which have been revisited later by Permutti in [11, 12]
and more recently by Lossen in [9]. Moreover, Gordan and Noether seem to have proved
that their families of examples are the only possible counterexamples if n = 4 but it is
rather difficult to indicate a precise reference for this result in their monumental paper.
Franchetta [5] gave an independent classification of hypersurfaces in P4 with vanishing
hessian which are not cones using more geometrical techniques. Other examples were
given by Perazzo [10], who considered the case of cubic hypersurfaces with vanishing
hessian and obtained the classification of these cubics in P4, P5 and P6.

Since the problem posed by Hesse has a geometrical flavour, the aim of this note
is to translate Gordan and Noether’s approach in more geometric terms, using some
ideas and results contained in [6, 9] and in the recent [1]. We also briefly describe the
counterexamples in projective spaces of dimension at least four produced by Gordan
and Noether, relating them to work of Franchetta and Permutti and we provide a short
geometrical proof of the characterization of hypersurfaces in P4 with vanishing hessian
which are not cones.

In the first Section we describe some background material and we consider a
geometrical construction involving the dual variety of a hypersurface. This construc-
tion allows us to reconsider Gordan and Noether’s results and to describe them in
a geometrical context. In the second Section Hesse’s claim is proved in the case of
hypersurfaces of dimension at most 2. This proof is very easy and it is based on the
geometrical construction given in the first Section. In the third Section the coun-
terexamples by Gordan and Noether and Franchetta are described, using also results
from [11, 12, 1]. The last Section is dedicated to hypersurfaces in P4. We describe the
properties of hypersurfaces in P4 with vanishing hessian and then we give a new proof
of Franchetta’s classification of these hypersurfaces.

Acknowledgements. We started our collaboration on this subject at Pragmatic 2006.
We would like to thank the organizers for the event and Professor Francesco Russo,
who presented us the problem and helped us during the preparation of this paper with
many corrections and suggestions. We are grateful to the referee for some remarks
leading to an improvement of the exposition.

1. Background material

1.1 The Polar map and the Hessian of a projective hypersurface

Consider a non-constant homogeneous polynomial of degree d ≥ 1, f = f(x0, . . . , xn) ∈
k[x0, . . . , xn], in the n + 1 variables x0, . . . , xn over an algebraically closed field k of
characteristic zero. Denote by fi the partial derivatives ∂f/∂xi, i = 0, . . . , n.
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Definition 1.1 Let X = V (f) ⊂ Pn be the associated hypersurface. We say that X
is a cone if, modulo projective transormations of Pn, the equation defining X does not
depend on all the variables.

Equivalently X is a cone if and only if Vert(X) 6= ∅, where Vert(X), the vertex
of X, is the set:

Vert(X) :=
{
x ∈ X : J(x,X) = X

}
,

and
J(x,X) =

⋃
y 6=x,y∈X

〈x, y〉 ⊂ Pn

is the join of x and X.

We recall that, if X ⊂ Pn is an (irreducible) subvariety of dim(X) = d, then

Vert(X) =
⋂
x∈X

TxX = Pl ⊂ X,

with l ≥ −1 (see e.g. [13, Proposition 1.2.6]).

Definition 1.2 The (first) polar map associated to the hypersurface X = V (f) ⊂ Pn
is the rational map φf : Pn 99K Pn, defined by the partial derivatives of f :

φf (p) = (f0(p) : . . . : fn(p)).

If p ∈ X = V (f) is not singular, the polar map φf can be interpreted as mapping the
point p ∈ X to its tangent hyperplane TpX (and, as such, the target of the map φf
is Pn∗ ). Note that the base locus of φf is the scheme Sing(X) = V (f0, . . . , fn) ⊂ Pn.
Denote by Z(f) ⊂ Pn∗ the closure of the image of Pn under the polar map φf . The
variety Z(f) ⊂ Pn∗ is called the polar image of f .

Definition 1.3 We define the Hessian matrix of the polynomial f to be the (n+1)×
(n+ 1) matrix:

Hf :=

(
∂2f

∂xi∂xj

)
i,j=0,...,n

.

Its determinant hf := det(Hf ) ∈ k[x0, . . . , xn] is the Hessian polynomial of f .

Note that the Jacobian matrix Jφf
of the (affine) polar map φf is exactly the

Hessian matrix of f , Hf .
We recall now the construction of the dual variety X∗ of an algebraic reduced

variety X ⊂ Pn.
Let Sm(X) denote the open non-empty subset of non singular points of a reduced

variety X ⊂ Pn. Let

PX :=
{
(x,H) : x ∈ Sm(X), TxX ⊂ H

}
⊂ X × Pn∗

be the conormal variety of X, and consider the projections of PX onto the factors:

PX
p1

||xxxxxxxxx
p2

!!CC
CC

CC
CC

CC

X X∗ = p2(PX) ⊂ Pn∗ .
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The dual variety of X, X∗, is the scheme-theoretic image of PX in Pn∗ . In
particular if X ⊂ Pn is a hypersurface, then X∗ ⊂ Pn∗ is the closure of the set of
hyperplanes tangent to X at non–singular points. Observe that since the Gauss map
of X associates to a non singular point p ∈ X the point in Pn∗ corresponding to the
hyperplane tangent to X in p, we infer that (when X is a hypersurface) the closure of
the image of the Gauss map of X is exactly the dual variety X∗.

Note also that the restriction of the polar map φf to V (f) \ Sing(V (f)) is the
Gauss map of X = V (f), hence the closure of the image of X via φf is the dual
variety X∗ of X.

1.2 Hypersurfaces with vanishing Hessian

We recall that f0, . . . , fr ∈ k[x0, . . . , xr] are algebraically dependent if there exists a
non zero polynomial

π = π(y0, . . . , yr) ∈ k[y0, . . . , yr]

such that π(f0, . . . , fr) = 0. In particular they are linearly dependent if and only if
there exists such a π of degree one.

Note first that the following easy fact holds, recalling that the Jacobian matrix of
the affine polar map φ̂f : kn+1 99K kn+1 is the hessian matrix Hf .

Proposition 1.4

Let f ∈ k[x0, . . . , xn] be a homogeneous polynomial. Then the following conditions
are equivalent:

• hf ≡ 0;
• φf is not a dominant map;
• Z(f) ( Pn∗;
• f0, . . . , fn are algebraically dependent.

We recall the following result from [2], which proves a conjecture stated in [3].

Proposition 1.5 [2, Corollary 2]
The degree of the polar map φf depends only on Supp(V (f)), where, by definition,

the degree of φf is zero if and only if φf is not a dominant map.

Note that by Proposition 1.4 the property of having vanishing Hessian is equivalent
to the fact that dim(Z(f)) < n, whence by Theorem 1.5 this property depends only
on the support of the hypersurface X = V (f).

Since we are interested in hypersurfaces with vanishing Hessian, from now on we
shall assume that X = V (f) is a reduced (and irreducible) hypersurface. The following
result is due to Zak (see [14, Proposition 4.9]).

Proposition 1.6

Let X = V (f) ⊂ Pn be a reduced hypersurface with vanishing Hessian and let
Z(f) ( Pn∗ denote the polar image of f . Suppose d ≥ 2, i.e. φf not constant. Then:

Z(f)∗ ⊂ Sing(X).

In particular, Sing(X) 6= ∅, dim(Z(f)∗) ≤ n− 2 and X∗ ( Z(f).
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In the sequel we shall need the following well-known result, see for example [4,
Proposition 1.1].

Proposition 1.7

The hypersurface V (f) = X is a cone if and only if X∗ is a degenerate variety.
In particular the hypersurface X = V (f) is a cone if and only if the partial derivative
of f are linearly dependent.

Now we recall a problem considered twice by Hesse in [7, 8], giving an equivalent
geometric formulation of it. Note that obviously, if X = V (f) ⊂ Pn is a cone, i.e. up
to a linear change of variables f does not depend on all the variables, then hf ≡ 0.
One can ask if the converse holds, i.e. if

Hesse’s claim: if hf ≡ 0, then V (f) ⊂ Pn is a cone

is always true.
Note that by Proposition 1.7 Hesse’s claim is equivalent to the following: hf ≡ 0

if and only if the derivatives of f are linearly dependent.
The question was reconsidered by Gordan and Noether in [6]. They showed that

Hesse’s claim is true when n ≤ 3 but it is false in general when n ≥ 4. They con-
structed families of counterexamples which have been revisited by Permutti in [11, 12]
and by Lossen in [9]. An easy example for n = 4 is the following cubic polynomial
f(x0, x1, x2, x3, x4) = x0x

2
3 + 2x1x3x4 + x2x

2
4.

Remark 1.8 Note that if d = deg(f) ≤ 2 then Hesse’s claim is true for every n ≥ 1.
Indeed if d = 1 then V (f) is a hyperplane, and so it is a cone and V (f)∗ is a point.
If d = 2 then V (f) is a hyperquadric and Hf is the matrix associated to the quadratic
form of V (f). Since its determinant is zero, the associated hyperquadric is singular,
and so the hyperquadric is a cone.

From now on f ∈ k[x0, . . . , xn] will be a homogeneous reduced polynomial of
degree d ≥ 3 such that hf ≡ 0, unless otherwise stated.

Since hf ≡ 0, there exist non zero homogeneous polynomials π ∈ k[y0, . . . , yn] such
that π(f0, . . . , fn) ∈ k[x0, . . . , xn] is identically equal to zero. Let g ∈ k[y0, . . . , yn] be
such a polynomial and such that

gi :=
∂g

∂yi

( ∂f
∂x0

, . . . ,
∂f

∂xn

)
∈ k[x0, . . . , xn], i = 0, . . . , n ,

are not all identically equal to zero.

Definition 1.9 Let S = V (g) ⊂ Pn∗ be an irreducible and reduced hypersurface
containing the polar image Z(f), where g(y0, . . . , yn) is as above. By definition of g
the variety Z(f) is not completely contained in the singular locus of S. Let

ψg : Pn 99K Pn
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be the composition of φf with φg (or equivalently ψg is the composition of φf with the
Gauss map of S). If the polynomials

gi :=
∂g

∂yi

( ∂f
∂x0

, . . . ,
∂f

∂xn

)
∈ k[x0, . . . , xn]

have a common divisor ρ := g.c.d.(g0, . . . , gn) ∈ k[x0, . . . , xn], set

hi :=
gi
ρ
∈ k[x0, . . . , xn], for i = 0, . . . , n .

It follows that the map ψg is given by:

ψg(p) =
(
g0
(
f0(p), . . . , fn(p)

)
: . . . : gn

(
f0(p), . . . , fn(p)

))
=
(
h0(p) : . . . : hn(p)

)
,

with g.c.d.(h0, . . . , hn) = 1.

So we have:

X
GX
99K X∗

∩ ∩

Pn
φf
99K Z(f) ⊂ S = V (g) ⊂ Pn∗

φg
99K Pn∗∗ ∼= Pn

Pn −−
ψg=φg◦φf

−−−−−−−−−−−− 99K Pn∗∗ ∼= Pn.

Set S∗Z := ψg(Pn) and note that by definition of ψg,

S∗Z ⊂ Z(f)∗.

Indeed Z(f)∗ consists of the hyperplanes containing the tangent spaces to Z(f), while
S∗Z consists of the hyperplanes which are tangent to S at points of Z(f). Since Z(f) ⊂ S
the hyperplanes which are tangent to S in points of Z(f) are clearly hyperplanes
containing the tangent spaces to Z(f).

Recalling Proposition 1.6, we get:

S∗Z ⊂ Z(f)∗ ⊂ Sing(X). (1)

Remark 1.10 Note that the base locus of ψg is the scheme Bs(ψg) = V (h0, . . . , hn) ⊂
Pn. Let e = deg(hi) ≥ 0. By definition of S = V (g) there exists at least one i such that
gi 6= 0 so that there exists at least one i such that hi 6= 0. In particular dim(S∗Z) ≥ 0
with equality holding if and only if e = 0 or all the hi’s are zero except one.

Clearly dim(S∗Z) = 0 if and only if Z(f) is contained in the hyperplane (S∗Z)∗ if
and only if the partial derivatives of f are linearly dependent if and only if X = V (f)
is a cone.

If dim(S∗Z) ≥ 1, then at least two hi’s are non-zero and e ≥ 1, so that
dim(V (h0, . . . , hn)) ≤ n− 2.

Let us recall a fundamental result proved by Gordan and Noether (see [6] and [9,
(2.7)]).
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Theorem 1.11

Let notation be as above and let F ∈ k[x0, . . . , xn]. Then:

n∑
i=0

∂F

∂xi
hi = 0 ⇔ F (x) = F (x+ λψg(x)) ∀λ ∈ k. (2)

Remark 1.12 Note that
∑n
i=0

∂2f
∂xi∂xj

hi = 0. This relation is obtained differentiating
the equation g(f0, . . . , fn) = 0 with respect to xj and applying the chain rule. As a
consequence, we get the following relation by Theorem 1.11:

fi(x) = fi(x+ λψg(x)). (3)

Remark 1.13 Using the above result one can prove
∑n
i=0

∂gk
∂xi

hi = 0.
Indeed since gk is a polynomial in ∂f

∂xj
, j = 0, . . . , n,

n∑
i=0

∂gk
∂xi

hi =
n∑
i=0

 n∑
j=0

∂gk

∂( ∂f∂xj
)
·
(

∂2f

∂xj∂xi

)hi = 0,

where the last equality follows from Remark 1.12.

Remark 1.14 If either one of the two equivalent conditions in (2) holds for a polynomial
F ∈ k[x0, . . . , xn], then:

S∗Z ⊂ V (F ).

Indeed, using equation (2) and applying Taylor’s formula we have:

0 = F (x)− F
(
x+ λψg(x)

)
=

e∑
k=1

λkΦk,

with e = deg(F ), Φk :=
∑
i1...ik

∂kF
∂xi1

...∂xik

hi1
...hik
k! . In particular, if we assume F 6= 0

and homogeneous of degree e ≥ 1, comparing the coefficient for λe we get: F (ψg(x)) =
F (h0, . . . , hn) = 0.

Remark 1.15 Let F = A · B where A,B, F ∈ k[x0, . . . , xn]. If either one of the two
equivalent conditions in (2) holds for F then the same condition holds for A and B
([9, (2.7)]).

Since the property holds for the polynomials gk = ρhk, it holds also for the
polynomials hk and hence

n∑
i=0

∂hk
∂xi

hi = 0. (4)

Since ψg = (h0 : . . . : hn), by Theorem 1.11 we have (cf. [9, (2.8)])

∀p ∈ Pn, ∀λ ∈ k, ψg(p) = ψg(p+ λψg(p)). (5)
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Remark 1.16 Geometrically, equation (5) means that the fiber of ψg over a point
q ∈ S∗Z , ψ−1

g (q), is a cone whose vertex contains the point q. Indeed ∀p ∈ Pn such that
ψg(p) = q, q = ψg(p) = ψg(p + λψg(p)) = ψg(p + λq), i.e. p + λq ∈ ψ−1

g (q) for all λ.
Hence ∀p ∈ Pn such that ψg(p) = q, the line 〈p, q〉 is contained in ψ−1

g (q).

Collecting the above remarks we get the following result.

Proposition 1.17

Let notation and hypothesis be as above. Then:

S∗Z ⊂ V (h0, . . . , hn) = Bs(ψg).

Proof. By equation (4),
∑n
i=0

∂hk
∂xi

hi = 0, hence one of the two equivalent conditions
in (2) holds for hi, i = 0, . . . n. By Remark 1.14 this implies that S∗Z ⊂ V (h0, . . . , hn) =
Bs(ψg). �

We have the following useful proposition will be used later.

Proposition 1.18

Let notation be as above, let q ∈ S∗Z be a general point and let w ∈ Bs(ψg)

(respectively t ∈ Sing(X)). If w ∈ ψ−1
g (q) \ {q}, (respectively t ∈ ψ−1

g (q) \ {q}),
then the line 〈w, q〉 is contained in Bs(ψg), (respectively the line 〈t, q〉 is contained in
Sing(X)).

Proof. Since ψ−1
g (q) is a cone whose vertex contains the point q by (5), then ψ−1

g (q)
is a cone whose vertex contains the point q. The line 〈w, q〉 (respectively the line
〈t, q〉) is contained in ψ−1

g (q), whence the conclusion follows from relation (5) (res-
pectively (3)). �

Remark 1.19 For each q ∈ S∗Z and for each p ∈ Pn such that ψg(p) = q, we have
〈p, q〉 ∩ Bs(ψg) = {q} as sets. Indeed let us suppose that there exists r 6= q such that
r ∈ 〈p, q〉 ∩ Bs(ψg). Then r = p+ λq and ψg(r) = ψg(p) by (5). Since r ∈ Bs(ψg), we
would deduce p ∈ Bs(ψg), contrary to our assumption.

Another general and useful remark is the following lemma which gives a connection
between the polar map of the restriction to a hyperplane with the geometry of Z(f)
(see [1, Lemma 3.10]).

Lemma 1.20

Let X = V (f) ⊂ Pn be a hypersurface. Let H = Pn−1 be a hyperplane not
contained in X, let h = H∗ be the corresponding point in Pn∗ and let πh denote the
projection from the point h. Then:

φV (f)∩H = πh ◦ (φf |H).

In particular, Z(V (f)∩H) ⊂ πh(Z(f)), where Z(V (f)∩H) denotes the closure of the
image of the polar map φV (f)∩H of the hypersurface V (f) ∩H of H.
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2. Cases in which Hesse’s claim is true

In this section we shall consider some hypotheses under which the conclusion in Hesse’s
claim holds.

Remark 2.1

i) Let S = V (g) ⊇ Z(f). If S∗ is a cone, then X = V (f) is a cone. If Z(f)∗ is a
cone then X is a cone.
Indeed if S∗ (resp. Z(f)∗) is a cone, then S (resp. Z(f)) is a degenerate variety
of (Pn)∗. Since X∗ ⊂ Z(f) ⊂ S, X∗ is a degenerate variety, whence X is a cone.

ii) In particular if dim(S∗) = 0 (resp. dim(Z(f)∗) = 0) then X is a cone.
iii) If dim(S∗Z) = 0, then X is a cone (cf. Remark 1.10).

We also recall some properties of the cone X which are described dually by other
geometric properties of its dual variety X∗.

Remark 2.2

i) If X∗ is a non-degenerate subvariety of a linear subspace L = Pn−m (m =
1, . . . , n − 1) in Pn∗(∼= Pn), then X is a cone with vertex a linear subspace
Pm−1 = L∗.

ii) If X∗ is union of d ≥ 1 points which span a linear subspace Pn−m of (Pn)∗, then X
is made up of d hyperplanes whose intersection is a (m− 1)-linear subspace of Pn.

Now we can easily prove Hesse’s claim when n ≤ 3.

Proposition 2.3

Let X = V (f) ⊂ P1 be a reduced hypersurface of degree d. Then X = V (f) has
vanishing Hessian if and only if X is a cone. In this case d = 1 and X is a point.

Proof. In this case Z(f) ( P1 must be a point because φf is not dominant, so
the partial derivatives of f are constant and d = 1 since X is reduced, i.e. X is a
point. �

Proposition 2.4

Let X = V (f) ⊂ P2 be a reduced hypersurface of degree d ≥ 2. Then X = V (f)
has vanishing Hessian if and only if X is a cone, i.e. if and only if X consists of d
distinct lines through a point.

Proof. Note that dim(Z(f)) ≤ 1. As in Proposition 2.3, Z(f) is a point if and only
if d = 1. Assume dim(Z(f)) = 1. By Proposition 1.6, Z(f)∗ ⊂ Sing(X). Since we are
assuming X to be reduced, we infer that Z(f)∗ is a point, so Z(f) is a line and the
hypersurface X is a cone, consisting of d lines meeting in the point Z(f)∗ (where d is
the degree of f). �

The following result was proved by Gordan and Noether in [6]. Here we give an
easier and more geometrical proof of it.
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Proposition 2.5

Let X = V (f) ⊂ P3 be a reduced hypersurface of degree d ≥ 3. Then X = V (f)
has vanishing Hessian if and only if X is a cone. More precisely, X = V (f) has
vanishing Hessian if and only if either X is a cone over a curve with vertex a point
or X consists of d distinct planes through a line. In the first case Z(f) is a plane in
P3∗ while in the second case it is a line in P3∗.

Proof. In this case dim(S∗Z) ≤ dim(Z(f)∗) ≤ 1 by (1) and Proposition 1.6.
If dim(S∗Z) = 0, then X is a cone by Remark 1.10. In particular if also

dim(Z(f)∗) = 0, then Z(f) is a plane and hence X is a cone over a curve (which
is the dual of the curve X∗ with respect to the plane Z(f)) with vertex a point (the
dual of the plane Z(f)). The case dim(S∗Z) = 0 and dim(Z(f)∗) = 1 is very similar
to the case dim(S∗Z) = dim(Z(f)∗) = 1 described in the following and hence in this
case X consists of d distinct planes through a line.

Assume now that dim(S∗Z) = 1, yielding dim(Z(f)∗) = 1. Since Z(f)∗ and
S∗Z are irreducible, Z(f)∗ = S∗Z . Let s1, s2 be two distinct general points of S∗Z .
Then ψ−1

g (si) is a surface which is a cone whose vertex contains the point si. Let
t ∈ ψ−1

g (s1) ∩ ψ−1
g (s2) ⊂ Bs(ψg). By Proposition 1.18, the lines 〈si, t〉, i = 1, 2, are

contained in the base locus of ψg. Since dimS∗Z = 1, by Remark 1.10, dim Bs(ψg) ≤ 1.
Hence the irreducible component of Bs(ψg) passing through s1 is exactly the line 〈s1, t〉.
But also S∗Z is an irreducible component of Bs(ψg) of dimension one passing through s1,
so it has to coincide with the line 〈s1, t〉. We conclude that S∗Z = Z(f)∗ = 〈si, t〉 =
〈s1, s2〉. Since Z(f)∗ is a line, then Z(f) is a line and X∗ ( Z(f) = P1, whence X is
the union of d planes through Z(f)∗ = P1 by Remark 2.2. �

Corollary 2.6

Let X = V (f) ⊂ Pn, n ≥ 4 be a reduced hypersurface of degree d. If X = V (f)
has vanishing Hessian and if dim(Z(f)) ≤ 2, then X = V (f) is a cone.

Proof. Let H ⊂ Pn be a general P3 and let h = H∗ = Pn−4. By iterating Lemma 1.20
we deduce that the variety Z(V (f) ∩H) is contained in the variety πh(Z(f)), whose
dimension equals dim(Z(f)). Thus V (f)∩H has vanishing Hessian because the polar
map φV (f)∩H : P3 99K P3∗ is not dominant. By Proposition 2.5 we infer that V (f)∩H
is a cone. By the generality of H we get that X = V (f) ⊂ Pn is a cone. �

3. Gordan–Noether’s and Franchetta’s counterexamples to Hesse’s conjecture

In this section we will describe some examples of hypersurfaces in Pn, n ≥ 4, with
vanishing Hessian and which are not cones, following [6] and [1, §2.3]. Moreover we
introduce the hypersurfaces in P4 which are counterexamples to Hesse’s claim described
by Franchetta (cf. [5]). We observe that these hypersurfaces are particular cases of the
ones described by Gordan–Noether. We also briefly recall the results of Gordan–
Noether and Permutti in connection with Hesse’s claim, following [1].

Assume n ≥ 4 and fix integers t ≥ m + 1 such that 2 ≤ t ≤ n − 2 and 1 ≤
m ≤ n− t− 1. Consider forms hi(y0, . . . , ym) ∈ k[y0, . . . , ym], i = 0, . . . , t, of the same
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degree, and also forms ψj(xt+1, . . . , xn) ∈ k[xt+1, . . . , xn], j = 0, . . . ,m, of the same
degree. Introduce the following homogeneous polynomials all of the same degree:

Q`(x0, . . . , xn) := det



x0 . . . xt
∂h0
∂ψ0

. . . ∂ht
∂ψ0

. . . . . . . . .
∂h0
∂ψm

. . . ∂ht
∂ψm

a
(`)
1,0 . . . a

(`)
1,t

. . . . . . . . .

a
(`)
t−m−1,0 . . . a

(`)
t−m−1,t


where ` = 1, . . . , t −m. Note that a(`)

u,v ∈ k for u = 1, . . . , t −m − 1, v = 0, . . . , t and
∂hi
∂ψj

stands for the derivative ∂hi
∂yj

computed at yj = ψj(xt+1, . . . , xn) for i = 0, . . . , t
and j = 0, . . . ,m. Let s denote the common degree of the polynomials Q`. Taking
Laplace expansion along the first row, one has an expression of the form:

Q` = M`,0x0 + . . .+M`,txt,

where M`,i, ` = 1, . . . , t−m, i = 0, . . . , t are homogeneous polynomials of degree s− 1
in xt+1, . . . , xn.

Fix an integer d > s and set µ = [ds ]. Fix biforms Pk(z1, . . . , zt−m;xt+1, . . . , xn)
of bidegree k, d− ks, k = 0, . . . , µ. Finally set

f(x0, . . . , xn) :=
µ∑
k=0

Pk(Q1, . . . , Qt−m, xt+1, . . . , xn), (6)

a form of degree d in x0, . . . , xn. The polynomial f is called a Gordan–Noether poly-
nomial (or a GN–polynomial) of type (n, t,m, s), and so will also any polynomial
which can be obtained from it by a projective change of coordinates. Accordingly, a
Gordan–Noether hypersurface (or a GN–hypersurface) of type (n, t,m, s) is the hyper-
surface V (f), where f is a GN–polynomial of type (n, t,m, s).

The main point of the Gordan–Noether construction is that a GN–polynomial
has vanishing Hessian. For a proof see [1, Proposition 2.9]. Another proof closer to
Gordan–Noether’s original approach is contained in [9].

Proposition 3.1

Every GN–polynomial has vanishing Hessian.

Following [12, 1] we give a geometric description of a GN–hypersurface of type
(n, t,m, s) as follows. The main result is that the GN–hypersurfaces have vanishing
Hessian (cf. Proposition 3.1) but in general they are not cones, so they are counterex-
ample to Hesse’s conjecture.

Definition 3.2 Let f be a GN–polnomial of type (n, t,m, s). The core of V (f) is the
t-dimensional subspace Π ⊂ V (f) defined by the equations xt+1 = . . . = xn = 0.
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We will call a GN–hypersurface of type (n, t,m, s) general if the defining data,
namely the polynomials hi(y0, . . . , ym), i = 0, . . . , t, the polynomials ψj(xt+1, . . . , xn),
j = 0, . . . ,m and the constants a(`)

u,v, ` = 1, . . . , t−m, u = 1, . . . , t−m−1, v = 0, . . . , t,
have been chosen generically.

Proposition 3.3 ([1, Proposition 2.11])

Let V (f) ⊂ Pn be a GN–hypersurface of type (n, t,m, s) and degree d. Set µ = [ds ].
Then

i) V (f) has multiplicity d− µ at the general point of its core Π.

ii) The general (t + 1)-dimensional subspace Πξ ⊂ Pn through Π cuts out on V (f),
off Π, a cone of degree µ whose vertex is a m-dimensional subspace Γξ ⊂ Π.

iii) As Πξ varies the corresponding subspace Γξ describes the family of tangent spaces
to an m-dimensional unirational subvariety S(f) of Π.

iv) If V (f) is general and µ > n− t− 2 then V (f) is not a cone.

v) The general GN–hypersurface is irreducible.

Definition 3.4 ([5]) A reduced hypersurface F = V (f) ⊂ P4 of degree d is said to be
a Franchetta hypersurface if it is swept out by a one-dimensional family Σ of planes
such that:

• all the planes of the family Σ are tangent to a plane rational curve C (of degree
p > 1) lying on F ;

• the family Σ and the curve C are such that for a general hyperplane H = P3 ⊂ P4

passing through C, the intersection H ∩ F , off the linear span of C, is the union
of planes of Σ all tangent to the curve C in the same point pH .

Remark 3.5 Note that by Proposition 3.3 a GN–hypersurface X = V (f) ⊂ P4 of
type (4, 2, 1, s) is a Franchetta hypersurface with core the linear span of the curve C.
On the contrary Permutti proved in [11] that a Franchetta hypersurface V (f) ⊂ P4 is
a GN–hypersurface of type (4, 2, 1, s). In particular (by Proposition 3.1) a Franchetta
hypersurface has vanishing Hessian. This fact can be proved directly see also [11] and
[1, Proposition 2.18].

4. A geometrical proof of Gordan–Noether’s and Franchetta’s classification of
hypersurfaces in P4 with vanishing Hessian

In the previous section we saw that the classes of GN-hypersurfaces of type (4, 2, 1, s)
and of Franchetta hypersurfaces coincide. In this section we use the geometrical meth-
ods developed in the first section and some other easy facts to provide a short and self-
contained proof of Franchetta characterization of hypersurfaces with vanishing Hessian
in P4, [5]. So we will prove in a geometrical way that the hypersurfaces in P4 with
vanishing Hessian are either cones or Franchetta hypersurfaces. A similar result is not
known in higher dimension.

First we give a preliminary result describing a geometrical consequence of the
vanishing of the hessian of hypersurfaces in P4, not cones.
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Proposition 4.1

Let X = V (f) ⊂ P4 be a reduced hypersurface of degree d ≥ 3, not a cone.
If X = V (f) has vanishing Hessian then Z(f)∗ ⊂ P4 is an irreducible plane rational
curve. Equivalently Z(f) is a cone with vertex a line over an irreducible plane rational
curve.

Proof. By Corollary 2.6, we can suppose dim(Z(f)) = 3. Thus Z(f)∗ = S∗Z ,
and Z(f) = V (g) with g ∈ k[y0, . . . , y4] an irreducible polynomial. Since X is not
a cone, by Remark 1.10 and Proposition 1.17, 1 ≤ dim(Z(f)∗) ≤ dim(Bs(ψg)) ≤ 2.

Assume first dim(Z(f)∗) = 2 so that Z(f)∗ is an irreducible component of Bs(ψg).
Consider the intersection between the closure of the fibers on two different general
points, s1, s2 ∈ Z(f)∗. The fiber on each of these points has dimension two, so
there exists t ∈ ψ−1

g (s1) ∩ ψ−1
g (s2). By Proposition 1.18, the lines 〈si, t〉, i = 1, 2, are

contained in Bs(ψg) and hence in the irreducible component of it containing s1 and s2.
Since s1 and s2 are general points in Z(f)∗, Z(f)∗ is the unique irreducible component
of Bs(ψg) containing them. Furthermore Z(f)∗ is a ruled surface because through a
general point s ∈ Z(f)∗ there passes a line `s contained in Z(f)∗. Moreover Z(f)∗ is
a cone because `s1 ∩ `s2 6= ∅ for s1, s2 ∈ Z(f)∗ general points, whence by Remark 2.1,
X is a cone.

Thus we can assume dim(Z(f)∗) = 1. Let s1 and s2 be two general points of Z(f)∗.
Then the intersection ψ−1

g (s1) ∩ ψ−1
g (s2) is a surface, say R, contained in Bs(ψg) and

hence an irreducible component of Bs(ψg) since dim(Bs(ψg)) ≤ 2. Note that the surface
R does not depend on s1 and s2, general points of Z(f)∗.

Furthermore for every point t ∈ R and for a general point s ∈ Z(f)∗, by Propo-
sition 1.18, the line 〈s, t〉 is contained in Bs(ψg) ∩ ψ−1

g (s), and hence in R. It follows
that Z(f)∗ is contained in the vertex of the surface R, and that R (and in fact the
intersection of two general fibers of ψg) is a plane (Z(f)∗ is not a line by assumption,
so it cannot be contained in the intersection of two or more planes).

In other words Z(f)∗ is a plane curve, whose linear span Π = R is an irreducible
component of Bs(ψg). Since S∗Z = Z(f)∗, Proposition 1.18 and the same argument
used above show that the plane Π = 〈Z(f)∗〉 is an irreducible component of Sing(X).
Note also that Z(f)∗ is rational. In fact the map ψg is a rational dominant map from
P4 to Z(f)∗, so Z(f)∗ is a unirational curve and hence a rational curve.

Since Z(f)∗ = S∗Z ⊂ Π = P2 is an irreducible rational plane curve (not a
line), Z(f) is a cone with vertex a line L = Π∗ = P1 over an irreducible plane curve Γ
(of degree ≥ 2), which is the dual curve of Z(f)∗ in the plane Π. Furthermore Γ is a
rational curve because the Gauss map of the curve Z(f)∗ is birational. �

The description given in Proposition 4.1 is crucial to prove that a projective
hypersurfaceX = V (f) in P4 with vanishing Hessian which is not a cone is a Francehtta
hypersurface. The following result finally gives a characterization of hypersurfaces in P4

with vanishing Hessian, which are not cones.

Theorem 4.2

Let X = V (f) ⊂ P4 be an irreducible and reduced hypersurface of degree d ≥ 3,
not a cone. The following conditions are equivalent:
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i) X = V (f) has vanishing Hessian.

ii) X = V (f) is a Franchetta hypersurface.

iii) X∗ = V (f)∗ is a scroll surface of degree d, having a line directrix L of multiplic-
ity e, sitting in a 3-dimensional rational cone W (f) with vertex L, and the general
plane ruling of the cone cuts V (f)∗ off L along µ ≤ e lines of the scroll, all passing
through the same point of L.

iv) X = V (f) is a general GN–hypersurface of type (4, 2, 1, s), with µ = [ds ], which
has a plane of multiplicity d− µ.

In particular, X∗ = V (f)∗ is smooth if and only if d = 3, X∗ = V (f)∗ is a rational
normal scroll of degree 3 and X = V (f) contains a plane, the orthogonal of the line
directrix of X∗ = V (f)∗, with multiplicity 2.

Proof. Note that conditions ii) and iii) are easily seen to be equivalent (the directrix
line L of X∗ is the dual of the plane which is the linear span of the curve C of the
Franchetta hypersurface). We shall provide more details below. By Remark 3.5, the
equivalence of ii) and iv) is clear. Condition iv) implies condition i) by Proposition 3.1.
Thus to finish the proof it is sufficient to prove that a hypersurface X = V (f) ⊂ P4

with vanishing Hessian, not a cone, is a Franchetta hypersurface, or equivalently that
it is as in case iii).

By Proposition 4.1, we have that Z(f)∗ ⊂ Sing(X) ⊂ X = V (f) is an irreducible
plane rational curve, whose linear span Π = P2, is an irreducible component of Sing(X).
Therefore Z(f) ⊂ P4∗ is a cone of vertex the line L = Π∗ = P1 over an irreducible
plane curve Γ, the dual of Z(f)∗ as a plane curve.

Consider now a general hyperplane H ⊂ P4 passing through the plane Π. The
intersection X ∩ H is a hypersurface of degree d in H = P3 containing the plane Π
with a certain multiplicity m > 0. Note also that the point h = H∗ ∈ L = Π∗ (because
Π ⊂ H), whence πh(Z(f)) ⊂ P3 is a non-degenerate surface naturally embedded in the
dual space of H. More precisely πh(Z(f)) is a cone with vertex the point pL = πh(L)
over the plane curve Γ̂ = πh(Γ) ' Γ.

By Lemma 1.20 we infer that Z(V (f) ∩H) ⊂ πh(Z(f)) ⊂ P3∗, so that by Propo-
sition 1.4 the hypersurface V (f) ∩ H ⊂ H = P3 has vanishing Hessian. By Proposi-
tion 2.5 it follows that either V (f)∩H is a cone over a plane curve with vertex a point
or V (f) ∩ H consists of d − m distinct planes, eventually counted with multiplicity,
passing through a line. In the first case Z(V (f) ∩H) would be a plane in P3∗, which
is impossible because πh(Z(f)) is a non degenerate cone with vertex a point.

Therefore Z(V (f)∩H) is a line lH in H∗ = P3. The line lH is contained in φf (H)
and, by Lemma 1.20, φf (H) ⊆ ΠH := 〈h, lH〉. We now prove that φf (H) = ΠH .
Indeed, for a general point q, φ−1

f (φf (q)) is a line, we call it Lq. The closure of the
fiber of φf |H passing through q is either the point q or the line Lq. If it were the
point q, dim(φf (H)) = 3, which is impossible, because φf (H) ⊆ ΠH . Hence it is the
line Lq and dim(φf (H)) = 2, i.e. φf (H) = ΠH .

Therefore V (f) ∩ H, off Π, is a union of d −m planes passing through the line
T = Z(V (f) ∩H)∗ ⊂ H (here duality is considered between H and H∗).

Moreover
φV (f)∩H(V (f) ∩H) = {p1, . . . , pd−m} ∈ lH
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and
φf (V (f) ∩H) = 〈h, p1〉 ∪ . . . ∪ 〈h, pd−m〉 ⊂ ΠH = φf (H).

Varying H ⊃ Π we deduce that X∗ is a scroll surface, having as line directrix L and
such that the general plane ruling of the cone Z(f) cuts X∗ off L along d−m = µ lines
of the scroll, all passing through the same point h ∈ L. The scroll surface X∗ ⊂ P4∗

is a non-developable surface, in fact (X∗)∗ = X is a hypersurface in P4 (cf. [1, §1.2]).
Moreover deg(X∗) = deg((X∗)∗) = deg(X) = d (cf. [1, §1.2]) and X ⊂ P4 is a
hypersurface as in iii).

This geometrical description also assures that a general H through Π cuts X along
d−m distinct planes. For such a general H, let z = ψg(H) ∈ Z(f)∗ (Z(f)∗ is the plane
curve dual of Z(f) with respect to the plane Π). Let Π∗

H be the dual of the plane with
respect to the ambient space P4. Since Π∗

H = Tz(Z(f)∗) = T , the line of intersection
of the planes in V (f) ∩H is the tangent line to the plane curve Z(f)∗ at the point z.
In conclusion X = V (f) ⊂ P4 is a Franchetta hypersurface, where we can take as the
one dimensional family Σ of planes contained in X exactly the intersection of a general
P3 through Π with X = V (f) and we consider as the curve C (cf. Definition 3.4) the
curve Z(f)∗. �
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