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Abstract

Hilbert schemes of zero-dimensional ideals in a polynomial ring can be covered
with suitable affine open subschemes whose construction is achieved using border
bases. Moreover, border bases have proved to be an excellent tool for describing
zero-dimensional ideals when the coefficients are inexact. And in this situation
they show a clear advantage with respect to Gröbner bases which, nevertheless,
can also be used in the study of Hilbert schemes, since they provide tools for
constructing suitable stratifications.

In this paper we compare Gröbner basis schemes with border basis schemes.
It is shown that Gröbner basis schemes and their associated universal families can
be viewed as weighted projective schemes. A first consequence of our approach
is the proof that all the ideals which define a Gröbner basis scheme and are
obtained using Buchberger’s Algorithm, are equal. Another result is that if the
origin (i.e. the point corresponding to the unique monomial ideal) in the Gröbner
basis scheme is smooth, then the scheme itself is isomorphic to an affine space.
This fact represents a remarkable difference between border basis and Gröbner
basis schemes. Since it is natural to look for situations where a Gröbner basis
scheme and the corresponding border basis scheme are equal, we address the
issue, provide an answer, and exhibit some consequences. Open problems are
discussed at the end of the paper.
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1. Introduction

This paper has three main sources and one ancestor. Let me be more specific.

Source 1. Given a zero-dimensional ideal I in a polynomial ring, and assuming
that the coefficients of the generating polynomials are inexact, what is the best way of
describing I? The idea that Gröbner bases are not suitable for computations with in-
exact data has been brought to light by Stetter (see [18]) and other numerical analysts.
Gröbner bases are inadequate due to the rigidity imposed by the term ordering. The
class of border bases is more promising. A pioneering paper on border bases is [15]
and a detailed description is contained in [12, Section 6.4].

Source 2. The possibility of parametrizing families of schemes with a scheme is a
remarkable peculiarity of algebraic geometry. Hilbert schemes are one instance of this
phenomenon, and consequently are widely studied. If we let P = K[x1, . . . , xn], Hilbert
schemes of zero-dimensional ideals in P can be covered by affine open subschemes
which parametrize all the subschemes Spec(P/I) of the affine space An

K such that P/I
has a fixed basis. What is interesting is that the construction of such subschemes is
performed using border bases (see for instance [7, 8, 14]).

Source 3. Despite their inability to treat inexact data well, Gröbner bases can
nevertheless be used in the study of Hilbert schemes, since with their help it is possible
to construct suitable stratifications. Among the vast literature on this subject let me
mention the two fairly recent articles [3, 16] and the bibliography quoted therein.

The three main sources are now described; it remains to reveal the ancestor. It is
paper [13] where we tried to extend to border bases a very nice property of Gröbner
bases, the possibility of connecting every ideal to its leading term ideal via a flat
deformation. We were able to get partial results, so that the connectedness of border
basis schemes is still an open problem (see Question 2 at the end of this paper).

So what is the content of the next pages? The main idea is to compare Gröbner
basis schemes (see Definition 2.4) with border basis schemes. We also define a universal
family (see Definition 2.6), and the first main result is Theorem 2.8 where it is shown
that Gröbner basis schemes and their associated universal families can be endowed
with a graded structure where the indeterminates have positive weights. In other
words, they can be viewed as weighted projective schemes (see Remark 2.12). The
second main result is Theorem 2.9 where the comparison of the two schemes is fully
described. In particular, it is shown that Gröbner basis schemes can be obtained as
sections of border basis schemes with suitable linear spaces. Since our description of
Gröbner basis schemes is not directly linked to the concept of Gröbner basis, we prove
in Corollary 2.11 that indeed our definition is well-placed.

Section 3 is devoted to exhibiting some consequences of the above mentioned
results. Let me explain the first one. In the literature Gröbner basis schemes are mostly
described using Buchberger’s Algorithm. However, this approach has a drawback, since
the reduction process in the algorithm is far from being unique, and the consequence
is that the description of the Gröbner basis scheme is a priori not canonical. A first
consequence of our approach is the proof that all the ideals obtained using Buchberger’s
Algorithm are equal (see Proposition 3.6) and coincide with the ideal defined in this
paper (see Proposition 3.5).

Another remark is made in Corollary 3.7 where it is shown that if the origin (i.e.
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the point corresponding to the unique monomial ideal) in the Gröbner basis scheme
is smooth, then the scheme itself is isomorphic to an affine space. This fact repre-
sents a remarkable difference between border basis and Gröbner basis schemes (see
Example 3.9).

After Theorem 2.9 it is natural to look for situations where a Gröbner basis
scheme and the corresponding border basis scheme are the same. The answer is given
in Proposition 3.11 and a nice consequence is shown in Corollary 3.13.

Doing mathematics is looking for solutions to problems, a process which inevitably
sparks new questions. This paper is no exception; in particular, two open questions
are presented at the end of Section 3.

Judge others by their questions
rather than by their answers.

(François-Marie Arouet (Voltaire))

Unless explicitly stated otherwise, we use definitions and notation introduced
in [11, 12, 13]. All the experimental computation was done with the computer algebra
system CoCoA (see [2]).

2. Border basis and Gröbner basis schemes

In the following we let K be a field, P = K[x1, . . . , xn] a polynomial ring, and I ⊂ P
a zero-dimensional ideal. Recall that an order ideal O is a finite set of terms in
Tn = T(x1, . . . , xn) = {xα1

1 · · ·xαn
n | αi ≥ 0} such that all divisors of a term in O are

also contained in O. The set ∂O = (x1O ∪ · · · ∪ xnO) \ O is called the border of O.

Definition 2.1 Let O = {t1, . . . , tµ} be an order ideal and ∂O = {b1, . . . , bν} its
border.

a) A set of polynomials {g1, . . . , gν} ⊆ I is called an O-border prebasis of I if it is of
the form gj = bj −

∑µ
i=1 aijti with aij ∈ K.

b) An O-border prebasis of I is called an O-border basis of I if P = I ⊕ 〈O〉K .

It is known that if I has an O-border basis, then such O-border basis of I is
unique (see [12, Proposition 6.4.17]).

Proposition 2.2 (Border bases and multiplication matrices)
Let O = {t1, . . . , tµ} be an order ideal of monomials, let the set {g1, . . . , gν} be an

O-border prebasis, and let I be the ideal generated by {g1, . . . , gν}. Then the following
conditions are equivalent

a) The set {g1, . . . , gν} is the O-border basis of I.

b) The formal multiplication matrices of {g1, . . . , gν} are pairwise commuting.

Proof. See [12, Definition 6.4.29] and Theorem 6.4.30. �

Definition 2.3 Let {cij | 1 ≤ i ≤ µ, 1 ≤ j ≤ ν} be a set of new indeterminates.
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a) The generic O-border prebasis is the set of polynomials G = {g1, . . . , gν} in
K[x1, . . . , xn, c11, . . . , cµν ] given by

gj = bj −
µ∑

i=1

cijti .

b) For k = 1, . . . , n, let Ak ∈ Matµ(K[cij ]) be the kth formal multiplication ma-
trix associated to G (cf. [12, Definition 6.4.29]). It is also called the kth generic
multiplication matrix with respect to O.

c) The ideal of K[c11, . . . , cµν ] generated by the entries of AkA` − A`Ak with 1 ≤
k < ` ≤ n defines an affine subscheme of Aµν which will be denoted by BO and
called the O-border basis scheme. Its defining ideal will be denoted by I(BO), and
its coordinate ring K[c11, . . . , cµν ]/I(BO) will be denoted by BO.

The reason why it is called the O-border basis scheme is the following. When we
apply the substitution Σ(cij) = αij to G, a point (αij) ∈ Kµν yields a border basis
if and only if Σ(Ak) Σ(A`) = Σ(A`) σ(Ak) for 1 ≤ k < ` ≤ n (see Proposition 2.2).
Thus the K-rational points of BO are in 1–1 correspondence with the O-border bases
of zero-dimensional ideals in P , and therefore are in 1–1 correspondence with all zero-
dimensional ideals I in P such that O is a basis of P/I as a K-vector space.

Next, we are going to define (O, σ)-Gröbner basis schemes, and to do this an extra
bit of notation is required. Let O = {t1, . . . , tµ} be an order ideal. Then the set of
minimal generators of the monoideal Tn \ O (also called the corners of O) is denoted
by cO, and we denote by η the cardinality of cO. Since cO ⊆ ∂O, it follows that η ≤ ν,
and we label the elements in ∂O so that cO = {b1, . . . , bη}.

We let σ be a term ordering on Tn and recall that if I is an ideal in the polynomial
ring P , we denote the order ideal Tn \LTσ(I) by Oσ(I). Moreover, we denote by SO,σ

the set {cij ∈ {c11, . . . , cµν} | bj >σ ti}, by LO,σ the ideal generated by {c11, . . . , cµν} \
SO,σ in K[c11, . . . , cµν ], by ScO,σ the intersection SO,σ ∩ {c11, . . . , cµη}, and by LcO,σ

the ideal generated by {c11, . . . , cµη} \ScO,σ in K[c11, . . . , cµη]. Furthermore we denote
the cardinality of ScO,σ by s(cO, σ).

Definition 2.4 For j = 1, . . . , ν we define g∗j in the following way.

g∗j = bj −
∑

{i | bj>σ ti}
cijti = bj −

∑
cij∈SO,σ∩{c1j ,...,cµj}

cijti .

a) The generic (O, σ)-Gröbner prebasis is the set of polynomials {g∗1, . . . , g∗η}.
b) The ideal

(
LO,σ + I(BO)

)
∩ K[ScO,σ] of K[ScO,σ] defines an affine subscheme of

As(cO,σ) which will be denoted by GO,σ and called the(O, σ)-Gröbner basis scheme.
The defining ideal

(
LO,σ + I(BO)

)
∩K[ScO,σ] will be denoted by I(GO,σ) and the

coordinate ring K[ScO,σ]/I(GO,σ) will be denoted by GO,σ.

We observe that g∗j is obtained from gj by setting to zero all the indeterminates in
LO,σ ∩ {c1j , . . . , cµj}.
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Example 2.5 We examine the inclusion cO ⊆ ∂O. If O = {1, x, y, xy} then cO =
{x2, y2} while ∂O = {x2, y2, x2y, xy2}, so that cO ⊂ ∂O. On the other hand, if
O = {1, x, y} then cO = ∂O = {x2, xy, y2}.

Returning to O = {1, x, y, xy} we observe that t1 = 1, t2 = x, t3 = y, t4 = xy,
b1 = x2, b2 = y2, b3 = x2y, b4 = xy2. Let σ = DegRevLex, so that x >σ y. Then
LO,σ = LcO,σ = (c42), g∗1 = g1, g∗2 = y2 − (c12 + c22x + c32y), g∗3 = g3, g∗4 = g4.

Having introduced the Gröbner basis scheme, we define a naturally associated
universal family. To this end we recall the following definition taken from [13] and
extend it.

Definition 2.6 The ring K[x1, . . . , xn, c11, . . . , cµν ]/
(
I(BO) + (g1, . . . , gν)

)
will be

denoted by UO. The ring K[x1, . . . , xn, ScO,σ]/
(
I(GO,σ)+ (g∗1, . . . , g

∗
η)

)
will be denoted

by UO,σ.

a) The natural homomorphism of K-algebras Φ : BO −→ UO is called the universal
O-border basis family.

b) The natural homomorphism of K-algebras Ψ : GO,σ −→ UO,σ is called the
universal (O, σ)-Gröbner basis family.

c) The induced homomorphism of K-algebras BO/LO,σ −→ UO/LO,σ will be de-
noted by Φ.

Remark 2.7 It is known (see [1], and [4, Exercise 15.12, p. 370]) that given power
products t, t1, . . . , tr ∈ Tn and a term ordering σ such that t >σ ti for i = 1, . . . r, then
there exists a system V of positive weights on x1, . . . , xn (i.e a matrix V ∈ Mat1,n(N+))
such that degV (t) > degV (ti) for i = 1, . . . , r.

We are ready to prove an important property of some ideals described before.
To help the reader, we observe that for simplicity we write x for x1, . . . , xn and c for
c11, . . . cµν .

Theorem 2.8

There exist a system W of positive weights on the elements of ScO,σ, a system W
of positive weights on the elements of SO,σ, and a system V of positive weights on x
such that the following conditions hold true.

a) The system W is an extension of the system W.

b) The ideal I(GO,σ) in K[ScO,σ] is W -homogeneous.

c) The ideal I(GO,σ) + (g∗1, . . . , g
∗
η) in K[x, ScO,σ] is (V,W )-homogeneous.

d) The image of I(BO) in K[SO,σ] ∼= K[c]/LO,σ is W -homogeneous.

e) The image of I(BO) + (g∗1, . . . , g
∗
ν) in K[x, SO,σ] ∼= K[x, c]/LO,σ is (V,W )-

homogeneous.

Proof. The definition of ScO,σ and Remark 2.7 imply that there exists a system V of
positive weights on x such that degV (bj) > degV (ti) for every j = 1, . . . , η and every
ti ∈ Supp(g∗j − bj). We define W by giving the cij’s suitable positive weights, so that
all elements g∗j in the generic (O, σ)-Gröbner prebasis are (V,W )-homogeneous when
they are viewed as polynomials in K[x, ScO,σ].



16 Robbiano

Then we choose a deg(V,W )-compatible term ordering σ on T(x, ScO,σ) with the
property that for every t, t′ ∈ T(ScO,σ), xa1

1 · · ·xan
n t >σ xb1

1 · · ·xbn
n t′ if they have the

same (V,W )-degree and xa1
1 · · ·xan

n >σ xb1
1 · · ·xbn

n . If we use the σ-division algorithm
with respect to the tuple (g∗1, . . . , g

∗
η), we can express every element bj ∈ ∂O \ cO as a

linear combination of those elements in O which are σ-smaller than bj . Since all the g∗i
are monic and homogeneous, the coefficients hij of these linear combinations are ho-
mogeneous polynomials in the cij’s. We define W by putting degW (cij) = degW (hij)
for cij ∈ SO,σ ∩ {c1j , . . . , cµj} and j = η + 1, . . . , ν. We observe that W does not
depend on the choice of the order in the division algorithm, it only depends on O,
σ, V. At this point we have proved statement a) and have shown that the polyno-
mials g∗1, . . . , g

∗
ν are (V,W )-homogeneous which implies that d) and e) are equivalent.

Moreover, we observe that b) follows from d), while c) and d) follow from e), so we
only need to prove d). Multiplication by xi yields a graded homomorphism between
(V,W )-graded free K[x, c]/LO,σ-modules, therefore the multiplication matrices are ho-
mogeneous (see [12, Definition 4.7.1] and Proposition 4.7.4). Consequently, the image
of the ideal I(BO) modulo LO,σ is W -homogeneous and the proof is complete. �

In the sequel we consider the following commutative diagram of canonical homo-
morphisms

GO,σ
ϕ−→ BO/LO,σyΨ

yΦ

UO,σ
ϑ−→ UO/LO,σ

(1)

i.e.

K[ScO,σ]/I(GO,σ)
ϕ−→ K[c]/

(
LO,σ + I(BO)

)
yΨ

yΦ

K[x, ScO,σ]/
(
I(GO,σ) + (g∗1, . . . , g

∗
η)

) ϑ−→ K[x, c]/
(
LO,σ + I(BO) + (g1, . . . gν)

)
.

We recall the equality I(GO) =
(
LO,σ + I(BO)

)
∩ K[ScO,σ] from which the

homomorphism ϕ derives. The homomorphism ϑ is obtained as follows: let
Θ : K[x, ScO,σ] −→ K[x, c] be the natural inclusion of polynomial rings. Then clearly
I(GO,σ) + (g∗1, . . . , g

∗
η) ⊆ Θ−1

(
LO,σ + I(BO) + (g1, . . . gν)

)
.

We are ready to state the main result of this section. To prove it we are going to
make extensive use of the above diagram (1).

Theorem 2.9 (Gröbner and border)
Let O = {t1, . . . , tµ} be an order ideal of monomials in P and let σ be a term

ordering on Tn.
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a) The classes of the elements in O form a BO/LO,σ-module basis of UO/LO,σ.

b) The classes of the elements in O form a GO,σ-module basis of UO,σ.

c) We have the equality I(GO,σ) + (g∗1, . . . , g
∗
η) = ϑ−1

(
LO,σ + I(BO) + (g1, . . . gν)

)
.

d) The maps ϕ and ϑ in the above diagram are isomorphisms.

Proof. We observe that ϕ is injective by definition. The fact that Φ : BO −→ UO is
free with basis O and injective is proved in [13, Theorem 3.4.] Passing to the quotient
modulo LO,σ, we deduce that Φ : BO/LO,σ :−→ UO/LO,σ is free with basis O and
injective, so that a) is proved. We divide the proof of b) into two claims.

Claim 1. O generates. According to Theorem 2.8, we may choose positive weights
W on the elements of ScO,σ and positive weights V on x so that I(GO,σ) is a W -
homogeneous ideal of K[ScO,σ] and I(GO,σ) + (g∗1, . . . , g

∗
η) is a (V,W )-homogeneous

ideal of K[x, ScO,σ]. Following the lines of the proof of Theorem 2.8, we choose a
deg(U,W )-compatible term ordering σ on T(x, ScO,σ) with the property that for every
t, t′ ∈ T(ScO,σ), xa1

1 · · ·xan
n t >σ xb1

1 · · ·xbn
n t′ if they have the same (V,W )-degree and

xa1
1 · · ·xan

n >σ xb1
1 · · ·xbn

n . We observe that O is the complement in Tn of the monoideal
generated by cO, hence if we use the σ-division algorithm with respect to the tuple
(g∗1, . . . , g

∗
η), we can express every polynomial in K[x, ScO,σ] as a linear combination of

elements in O, modulo (g∗1, . . . , g
∗
η).

Claim 2. O is linearly independent over GO,σ. Let f =
∑µ

i=1 fiti ∈ K[x, ScO,σ]
and assume that f = 0 modulo

(
I(GO,σ) + (g∗1, . . . , g

∗
η)

)
. The map ϑ sends f to zero,

hence we have
∑µ

i=1 fiti = 0 modulo
(
LO,σ + I(BO) + (g∗1, . . . , g

∗
ν)

)
. By what we have

proved before, Φ is free with basis O, hence we deduce that fi ∈ LO,σ + I(BO), hence
fi ∈

(
LO,σ+I(BO)

)
∩K[ScO,σ] for i = 1, . . . µ. The equality

(
LO,σ+I(BO)

)
∩K[ScO,σ] =

I(GO,σ) yields the conclusion and the proof of b) is complete.
The proof of c) uses the same argument as above, which shows that if ϑ(f) = 0

then f = 0. Finally we prove d). At this point we know that diagram (1) is commu-
tative, all the homomorphisms are injective, and both Ψ and Φ are free with basis O.
Due to this particular structure, the surjectivity of ϑ is equivalent to the surjectivity
of ϕ. Since all the indeterminates which generate LO,σ are killed, we need to show
that all the indeterminates in SO,σ can be expressed as polynomial functions of the
indeterminates in ScO,σ. We consider the generic (O, σ)-Gröbner prebasis {g∗1, . . . , g∗η}
and argue as in the proof of Proposition 2.8. For every j = η + 1, . . . , ν we produce
elements bj −

∑
{i | bj>σ ti} hijti which are in the ideal (g∗1, . . . , g

∗
η) ⊆ (g∗1, . . . , g

∗
ν). Con-

sequently, modulo
(
LO,σ + I(BO) + (g∗1, . . . , g

∗
ν)

)
we have bj −

∑
{i | bj>σ ti} hijti = 0 as

well as bj −
∑

{i | bj>σ ti} cijti = 0 for every j = η + 1, . . . , ν. We deduce the relations∑
{i | bj>σ ti}(cij − hij)ti = 0 in UO/LO,σ for every j = η + 1, . . . , ν. Using a) we get

the relations cij = hij in the ring BO/LO,σ, for every cij ∈ SO,σ \ ScO,σ, and every
j = η + 1, . . . , ν, and the proof is complete. �
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Remark 2.10 After the theorem, diagram (1) can be rewritten in the following way.

GO,σ

ϕ

' BO/LO,σyΨ

yΦ

UO,σ

ϑ

' UO/LO,σ

(2)

Corollary 2.11

Let O = {t1, . . . , tµ} be an order ideal of monomials in P and let σ be a term
ordering on Tn.

a) The affine scheme GO,σ parametrizes all zero-dimensional ideals I in P for which
O = Oσ(I).

b) The fibers over the K-rational points of the universal (O, σ)-Gröbner family
Ψ : GO,σ −→ UO,σ are the quotient rings P/I for which I is a zero-dimensional
ideal with the property that O = Oσ(I). Moreover, the reduced σ-Gröbner basis
of I is obtained by specializing the (O, σ)-Gröbner prebasis {g∗1, . . . , g∗η} to the
corresponding maximal linear ideal.

Proof. The freeness of Ψ implies that a) follows from b), and we prove b) in two steps.
A K-rational point of the universal (O, σ)-Gröbner basis family can be viewed as the
Ψ-fiber over a maximal linear ideal of GO,σ. The latter is the canonical projection of
a maximal linear ideal n = (cij − aij | cij ∈ ScO,σ, aij ∈ K) of K[ScO,σ]. Let us put
IndL = {(i, j) | cij is a generator of LO,σ}. The theorem implies that then n is the
contraction to K[ScO,σ] of a maximal linear ideal

m =
(
cij − aij | cij ∈ {c11, . . . , cµν}, aij ∈ K, aij = 0 for all (i, j) ∈ IndL

)
of K[c11, . . . , cµν ]. The ideal m contains I(BO), hence if we substitute cij with aij in the
polynomials g∗1, . . . , g

∗
ν , we get polynomials g1, . . . , gν in P which form the O-border

basis of the ideal I = (g1, . . . , gν). Moreover, by construction we have LTσ(gj) = bj

for j = 1, . . . , ν. Hence {g1, . . . , gη} is the reduced σ-Gröbner basis of I by [12,
Proposition 6.4.18].

Conversely, let I be a zero-dimensional ideal in P such that Oσ(I) = O and let
{g1, . . . , gη} be its reduced σ-Gröbner basis. Using the division algorithm, we represent
all the elements in ∂O \ cO uniquely (modulo I) as linear combinations of elements
in O. In this way, the O-border basis (g1, . . . , gν) of I is constructed. Collecting the
coefficients, we produce a maximal linear ideal in BO, equivalently a rational point p
of BO. By construction, bj = LTσ(gj) for j = 1, ..., ν, and hence the coordinates of p
corresponding to the indices ij such that (i, j) ∈ IndL have to be zero. In conclusion,
the point p corresponds to a maximal linear ideal m of BO/LO,σ hence to a maximal
linear ideal of GO,σ by the theorem, hence to a rational point q of GO,σ. The ideal
itself is represented via its reduced σ-Gröbner basis {g1, . . . , gη} in the Ψ-fiber over m.
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Remark 2.12 Diagram (2) gives rise to the corresponding diagram

GO,σ
∼= Spec(BO/LO,σ)xπΨ

xπ
Φ

Spec(UO,σ) ∼= Spec(UO/LO,σ)

of affine schemes, but more can be said. Let W , W , V be systems of positive weights,
chosen suitably to satisfy Theorem 2.8. Then GO,σ is a W -graded ring, BO is a W -
graded ring, UO,σ is a (V,W )-graded ring, and UO/LO,σ is a (V,W )-graded ring.

With the above assumptions we see that diagram (2) gives rise to a diagram

Proj(GO,σ) ∼= Proj(BO/LO,σ)xΠΨ

xΠ
Φ

Proj(UO,σ) ∼= Proj(UO/LO,σ)

(3)

of projective schemes Proj(GO,σ), Proj(BO/LO,σ), Proj(UO,σ), Proj(UO/LO,σ) such
that Proj(GO,σ) ⊂ P(W ), Proj(BO/LO,σ) ⊂ P(W ), Proj(UO,σ) ⊂ P(V,W ), and
Proj(UO/LO,σ) ⊂ P(V,W ) where P(W ), P(W ), P(V,W ), and P(V,W ) are the cor-
responding weighted projective spaces.

Moreover, let p = (aij) ∈ GO,σ be a rational point, let I ⊂ P be the corresponding
ideal according to Corollary 2.11, let vi = deg(xi) in the V -grading, and let wij =
deg(cij) in the W -grading. Then it is well-known that the substitution aij −→ twijaij

gives rise to a flat family of ideals whose general fibers are ideals isomorphic to I,
and whose special fiber is the monomial ideal LTσ(I). In the setting of diagram (2),
the rational monomial curve which parametrizes such family is a curve in GO,σ which
connects the two points representing I and LTσ(I). In the setting of diagram (3), the
rational monomial curve is simply a point in Proj(GO,σ) ⊂ P(W ), which represents all
the above ideals except the special one.

3. Consequences and problems

We open the section by discussing the relation between our construction of I(GO) and
other constructions described in the literature (see for instance [3, 16]). If one starts
with the generic σ-Gröbner prebasis {g∗1, . . . , g∗η} one can construct an affine subscheme
of As(cO,σ) in the following way. Using Buchberger Algorithm one reduces the critical
pairs of the leading terms of the σ-Gröbner prebasis as much as possible. The reduction
stops when a polynomial is obtained which is a linear combination of the elements in
O with coefficients in K[ScO,σ]. Collecting all coefficients obtained in this way for all
the critical pairs, one gets a set which generates an ideal J in K[ScO,σ]. Clearly each
zero of J gives rise to a specialization of the generic σ-Gröbner prebasis which is, by
construction, the reduced σ-Gröbner basis of a zero-dimensional ideal I in P for which
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O = Oσ(I). However, there is a drawback; the reduction procedure in Buchberger
Algorithm is far from being unique. This observation leads to the following definition
which puts the above description in a more formal context.

Definition 3.1 Let J be an ideal in K[ScO,σ] such that Spec(K[ScO,σ]/J) parame-
trizes all zero-dimensional ideals I in P for which O = Oσ(I). Then J is called an
(O, σ)-parametrizing ideal.

Let J be an an (O, σ)-parametrizing ideal and assume that there exists a finite
set S of polynomials of type

∑η
j=1 fjg

∗
j =

∑
ti∈O riti where the fi’s are polynomials in

K[x, ScO,σ], the ri’s are polynomials in K[ScO,σ], and J is generated by the ri’s. Then
J will be called an (O, σ)-reduction ideal, and S an (O, σ)-reduction set of J .

Lemma 3.2

Let J be an (O, σ)-parametrizing ideal. Then the canonical homomorphism
K[ScO,σ]/J −→ K[x, ScO,σ]/

(
J+(g∗1, . . . , g

∗
η)

)
makes the quotient ring K[x, ScO,σ]/

(
J+

(g∗1, . . . , g
∗
η)

)
into a free K[ScO,σ]/J-module, and a basis is the set of the residue classes

of the elements of O.

Proof. To prove this lemma we have to show that the residue clases of the elements in
O generate K[x, ScO,σ]/

(
J + (g∗1, . . . , g

∗
η)

)
and are linearly independent.

O generates. It is enough to use the σ-division algorithm, as we did in the proof
of Theorem 2.8.

O is linearly independent over K[ScO,σ]/J . Suppose not. Then there would be a
non-empty open set of Spec(K[ScO,σ]/J), whose maximal linear ideals would represent
ideals I of P for which Oσ(I) ⊂ O, a contradiction. �

Remark 3.3 If J is an (O, σ)-parametrizing ideal, then it is not necessarily an (O, σ)-
reduction ideal. It suffices to pick an ideal J which is an (O, σ)-parametrizing ideal
in K[ScO,σ] but not radical. Then

√
J is still an (O, σ)-parametrizing ideal but not

necessarily an (O, σ)-reduction ideal.

Lemma 3.4

Let x = x1, . . . , xn, y = y1, . . . , ym, and let P = K[x], Q = K[x,y]. Let g1, . . . , gt

be polynomials in Q, let J be the ideal generated by {g1, . . . , gt}, and assume that there
exist polynomials f1(x), . . . , fm(x) such that the elements y1 − f1(x), . . . , ym − fm(x)
are in J . Then the ideal J ∩ K[x] is generated by {g1(x, f), . . . , gt(x, f)} where
f = (f1, . . . , fm).

Proof. Every polynomial g ∈ Q can be written as

g(x,y) =
m∑

i=1

hi(yi − fi) + g(x, f)

and the remainder g(x, f) is unique, since {y1 − f1(x), . . . , ym − fm(x)} is a Gröbner
basis with respect to an ordering which eliminates y. Now the conclusion follows
easily. �
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Proposition 3.5

The ideal I(GO,σ) is an (O, σ)-reduction ideal.

Proof. Following Definition 3.1 we have to prove that I(GO,σ) is an (O, σ)-param-
etrizing ideal, and that there exists an (O, σ)-reduction set of I(GO,σ). The first claim
was proved in Corollary 2.11. To prove the second claim we use [13, Proposition 4.1]
and [10, Section 4] to get generators of the ideal I(BO) as the coefficients of the ti’s in
polynomial expressions of type

∑ν
j=1 fjgj =

∑
ti∈O riti where the fi’s are polynomials

in K[x, c] and the ri’s are polynomials in K[c].
Consequently, to get generators of the ideal LO,σ + I(BO) we pick all these poly-

nomial expressions, set equal to zero all the indeterminates which generate LO,σ, and
get expressions

∑ν
j=1 f∗j g∗j =

∑
ti∈O r∗i ti where the f∗i ’s are polynomials in K[x, SO,σ]

and the r∗i ’s are polynomials in K[SO,σ].
For the sake of clarity, let us call c̃ the set of indeterminates ScO,σ, and d̃ the set

of indeterminates SO,σ \ ScO,σ. We rewrite
∑ν

j=1 f∗j g∗j =
∑

ti∈O r∗i ti

η∑
j=1

f∗j (c̃, d̃) g∗j (c̃) +
ν∑

j=η+1

f∗j (c̃, d̃) g∗j (d̃) =
∑
ti∈O

r∗i (c̃, d̃) ti . (∗)

Once more, we argue as in the proof of Theorem 2.9.d, and for every j = η + 1, . . . , ν
we produce elements bj −

∑
{i | bj>σ ti} hijti which are in the ideal (g∗1, . . . , g

∗
η). Using

Theorem 2.9, we get relations cij = hij in the ring K[c]/(LO,σ + I(BO), in other
words relations cij − hij ∈ LO,σ + I(BO). We make the substitution cij −→ hij in the
expressions (∗), write hij for the tuple hij , and get expressions

η∑
j=1

f̃j(c̃)g∗j (c̃) =
∑
ti∈O

r̃i(c̃)ti where r̃i(c̃) = r∗i (c̃,hij) . (∗∗)

Now it suffices to prove that the set of all the r̃i(c̃) generates I(GO,σ). We recall the
equality I(GO,σ) =

(
LO,σ +I(BO)

)
∩K[ScO,σ] and we know that the ideal LO,σ +I(BO)

is generated by LO,σ and the polynomials r∗i (c̃, d̃), hence the conclusion follows from
the lemma. �

Proposition 3.6

All the (O, σ)-reduction ideals are equal.

Proof. Let J1, J2 be (O, σ)-reduction ideals. By interchanging the role of J1 and J2 it
suffices to prove that J1 ⊆ J2. Let S be an (O, σ)-reduction set of J1. Every element
in S has the shape

∑η
j=1 fjg

∗
j =

∑
ti∈O hiti. We consider the canonical homomorphism

K[ScO,σ]/J2 −→ K[x, ScO,σ]/
(
J2 + (g∗1, . . . , g

∗
η)

)
and deduce that

∑
ti∈O hiti = 0 in the ring K[x, ScO,σ]/

(
J2 + (g∗1, . . . , g

∗
η)

)
which is

free over K[ScO,σ]/J2 by Lemma 3.2. Therefore the coefficients hi are zero in the ring
K[ScO,σ]/J2. In particular, they belong to J2 and the proof is complete. �

A combination of Theorems 2.8 and 2.9 yields a remarkable property of GO,σ.
A similar result can be found in [16, Proposition 4.3]. The main difference is that
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there the authors deal with standard homogeneous saturated ideals. Moreover their
proof is incorrect.

Corollary 3.7

Let O ⊂ Tn be an order ideal of monomials, let σ be a term ordering on Tn, and

let o be the origin in the affine space As(cO,σ).

a) The point o belongs to GO,σ.

b) The following conditions are equivalent

1) The scheme GO,σ is isomorphic to an affine space.
2) The point o is a smooth point of GO,σ.

Proof. The point o corresponds to the monomial ideal generated by cO, and hence it
belongs to GO,σ by Corollary 2.11. To prove part b), it is clearly sufficient to show
that 2) implies 1). We argue as follows. Suppose that among the W -homogeneous
generators of the ideal I(GO,σ) there is one, say f , of type cij − g with the property
that cij does not divide any elements in the support of g. The graded ring GO,σ/(f)
is isomorphic to a graded K-algebra embedded in a polynomial ring with one less
indeterminate, the isomorphism being constructed by substituting cij with g. Suppose
we do this operation until no polynomial like f is found anymore, call Q/J the graded
algebra obtained in this way, with Q a polynomial ring, and J a homogeneous ideal.
We claim that no polynomial in J can have a non-zero linear part. For contradiction,
suppose that a polynomial h of that type exists, and let cij be an indeterminate in
the support of the linear part of h. Then cij must divide another power product in
the support of h which is impossible since J is homogeneous with respect to a set of
positive weights. In conclusion, we have J = (0). �

The algebraic argument given in the above proof agrees with the well-known fact
that a quasi-cone over a projective subscheme X of a weighted projective scheme P(V )
is smooth if and only if X = P(V ).

Remark 3.8 There is a strong difference between GO,σ and BO,σ even when n = 2. It
is known that for n = 2 the scheme BO is smooth and irreducible. However, unlike the
case of GO,σ as explained in Corollary 3.7, it does not need to be an affine cell (i.e.
isomorphic to an affine space) as the following example shows.

Example 3.9 This is an example where GO,σ is isomorphic to an affine space
of dimension 9, and where BO,σ is a smooth irreducible variety of dimension 10
not isomorphic to an affine space. Let P = k[x, y] and O = (1, x, y, x2, y2).
Then ∂O = (xy, y3, x3, xy2, x2y) and so µ = ν = 5. Using CoCoA we compute I(BO)
and find out that dim(BO) = 10. It is the expected number since the Hilbert scheme
has only one component whose general point corresponds to the ideal of five distinct
points in A2, and hence depends on ten parameters. Moreover we see that BO is iso-
morphic to a smooth irreducible variety of dimension 10, embedded in an affine space
of dimension 14 and described by an ideal with 9 generators. Looking at the shape of
the equations it is easy to see that it is not isomorphic to an affine space. The fact that
BO is smooth and irreducible agrees with a general statement that all the border basis
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schemes in two indeterminates are smooth and irreducible (see [6, Proposition 2.4]
and [9, Corollary 9.5.1]).

Now we let σ = DegLex. We see that SO,σ = {c11, . . . c55} \ {c41} since xy <σ x2,
hence LO,σ = (c41). Then we check that cO = (xy, y3, x3), hence η = 3, and L is
the ideal generated by c41 in K[c11, . . . , c53]. Now we check with CoCoA that the ring
BO/LO,σ is isomorphic to a polynomial ring with 9 indeterminates, and, in agreement
with Corollary 2.11, we deduce from the Theorem 2.9 that also GO,σ is isomorphic to
a polynomial ring with 9 indeterminates.

As a natural follow up to Theorem 2.9 we look for conditions under which we have
LO,σ = ∅ so that diagram (2) can be written as

GO,σ

ϕ

' BOyΨ

yΦ

UO,σ

ϑ

' UO

(4)

In other words we look for conditions under which the border basis scheme and the
Gröbner basis scheme are isomorphic. We recall some definitions from [13, (Defini-
tion 2.7)] and [17].

Definition 3.10 Let O be an order ideal, let V be a matrix in Mat1,n(N+), and let
σ be a term ordering on Tn.

a) The order ideal O is said to have a maxdegV border if degV (b) ≥ degV (t) for
every b ∈ cO and every t ∈ O.

b) Similarly, O is said to be a V -cornercut (or to have a strong maxdegV border) if
degV (b) > degV (t) for every b ∈ cO and every t ∈ O.

c) The order ideal O is said to be a σ-cornercut if b >σ t for every b ∈ cO and every
t ∈ O.

Proposition 3.11

Let O be an order ideal and σ a term ordering on Tn. Consider the following
conditions.

a1) The canonical embedding of K[SO,σ] in K[c11, . . . , cµν ] induces an isomorphism
between GO,σ and BO.

a2) The canonical embedding of K[x, SO,σ] in K[x, c11, . . . , cµν ] induces an isomor-
phism between UO,σ and UO.

b1) The ideal LO,σ is the zero ideal.

b2) The order ideal O is a σ-cornercut.

Then a1) is equivalent to a2), b1) is equivalent to b2), and b1) implies a1).

Proof. The equivalence of a1) and a2) follows from Theorem 2.9, since UO is a free BO
module with basis O, and also UO,σ is a free GO,σ module with basis O. Next we
prove the implication b1) =⇒ b2). If LO,σ is the zero ideal, then bj >σ ti for every
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j = 1, . . . , ν and every i = 1, . . . , µ. Consequently we have b >σ t for every b ∈ cO
and every t ∈ O i.e. O is a σ-cornercut. The implication b2) =⇒ b1) follows from
the definition of LO,σ and the implication b1) =⇒ a1) follows immediately from
Theorem 2.9. �

Remark 3.12 Let us make some remarks about this proposition.

a) Remark 2.7 has the following implication. If condition b2) is fulfilled i.e. O is a
σ-cornercut, then there exists a system V of positive weights such that O is a
V -cornercut.

b) Example 3.9 shows that in the above proposition one cannot substitute condition
b2) with the weaker condition that the order ideal O has a maxdegV -border.

c) The author does not know whether all the conditions of the above proposition are
equivalent.

As a consequence of Proposition 3.11 we give a very short proof of the fact that
if O has the shape of a segment then BO is an affine space.

Corollary 3.13

Let O = {1, xn, x2
n, . . . , xµ−1

n } ⊂ Tn. Then BO is isomorphic to the affine space
Aµn.

Proof. Clearly O is a Lex-cornercut, hence BO is isomorphic to GO,Lex and we have
g∗j = gj for j = 1, . . . , ν. Corollary 2.11 implies that GO,Lex parametrizes all zero-
dimensional ideals I in P for which O = OLex(I). Hence I(GO,Lex) contains relations
under which the generic Lex-Gröbner prebasis is the reduced Lex-Gröbner basis of an
ideal I in P for which O = OLex(I). On the other hand, it is clear that η = n and
the generic Lex-Gröbner prebasis consists of n polynomials whose leading terms are
x1, . . . , xn−1, x

µ
n. They are pairwise coprime, hence every specialization of the generic

Lex-Gröbner prebasis is a reduced Lex-Gröbner basis. It follows that I(GO) is the zero
ideal and the proof is complete. �

We observe that the explicit isomorphism of BO with the polynomial ring
K[x11, . . . , xµn] is given by expressing the indeterminates x1,n+1, . . . , xµν as polynomi-
als in the indeterminates in x11, . . . , xµn, as explained in the proof of Theorem 2.9.d.

The final part of the section and hence of the paper is devoted to a general remark
and the discussion of some open problems.

Remark 3.14 In the paper [13] we have introduced and discussed the homogeneous
border basis scheme. With the obvious modifications one can as well introduce the
homogeneous Gröbner basis scheme.

Using Theorem 2.9 and Remark 2.10 we know the precise relation between the
two schemes GO,σ and BO. It is then quite natural to ask the following question.

Question 1: Is there any connection between the smoothness of the origin in GO,σ

and the smoothness of the origin in BO?

The scheme GO,σ is connected since it is a quasi-cone, and hence all its points
are connected to the origin (see Remark 2.12). Using Theorem 2.9 and Remark 2.10
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we know the precise relation between the two schemes GO,σ and BO. However, the
problem of the connectedness of BO is still open, so let me state it formally.

Question 2: Is BO connected?
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