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Abstract

Given a closed subvariety X of an algebraic torus T , the associated tropical
variety is a polyhedral fan in the space of 1-parameter subgroups of the torus
which describes the behaviour of the subvariety at infinity. We show that the link
of the origin has only top rational homology if a genericity condition is satisfied.

1. Introduction

Given a closed subvariety X of an algebraic torus T , the associated tropical variety is
a polyhedral fan in the space of 1-parameter subgroups of the torus which describes
the behaviour of the subvariety at infinity. We show that the link of the origin has
only top rational homology if a genericity condition is satisfied. Our result is obtained
using work of Tevelev [17] and Deligne’s theory of mixed Hodge structures [2].

Here is a sketch of the proof. We use the tropical variety of X to construct
a smooth compactification X ⊂ X with simple normal crossing boundary B. We
relate the link L of the tropical variety to the dual complex K of B, that is, the
simplicial complex with vertices corresponding to the irreducible components Bi of B
and simplices of dimension j corresponding to (j + 1)-fold intersections of the Bi.
Following [2] we identify the homology groups of K with graded pieces of the weight
filtration of the cohomology of X. Since X is an affine variety, it has the homotopy
type of a CW complex of real dimension equal to the complex dimension of X. From
this we deduce that K and L have only top homology.

The link of the tropical variety of X ⊂ T was previously shown to have only top
homology in the following cases: the intersection of the Grassmannian G(3, 6) with
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the big torus T in its Plücker embedding [15], the complement of an arrangement of
hyperplanes [1], and the space of matrices of rank ≤ 2 in T = (C×)m×n [13]. We
discuss these and other examples from our viewpoint in Section 4.

It has been conjectured that the link of the tropical variety of an arbitrary sub-
variety of a torus is homotopy equivalent to a bouquet of spheres (so, in particular,
has only top homology). I expect that this is false in general, but I do not know a
counterexample. See also Remark 2.11.

We note that D. Speyer has used similar techniques to study the topology of the
tropicalisation of a curve defined over the field C((t)) of formal power series, see [14,
Section 10].

2. Statement of theorem

We work throughout over k = C. Let X ⊂ T be a closed subvariety of an algebraic
torus T ' (C×)r. Let K =

⋃
n≥1 C((t1/n)) be the field of Puiseux series (the algebraic

closure of the field C((t)) of Laurent series) and ord: K× → Q the valuation of K/C
such that ord(t) = 1.

Let M = Hom(T, C×) ' Zr be the group of characters of T and N = M∗. We
have a natural map

val : T (K) → NQ

given by
T (K) 3 P 7→

(
χm 7→ ord(χm(P ))

)
.

In coordinates

(K×)r 3 (a1, . . . , ar) 7→
(
ord(a1), . . . , ord(ar)

)
∈ Qr .

Definition 2.1 [3, 1.2.1] The tropical variety A of X is the closure of val(X(K)) in
NR ' Rr.

Theorem 2.2 [3, 2.2.5]

A is the support of a rational polyhedral fan in NR of pure dimension dim X.

Let Σ be a rational polyhedral fan in NR. Let T ⊂ Y be the associated torus
embedding. Let X = X(Σ) be the closure of X in Y .

Theorem 2.3 [17, 2.3]

X is compact iff the support |Σ| of Σ contains A.

From now on we always assume that X is compact.

Theorem 2.4 [16, 3.9], [18]

The intersection X∩O is non-empty and has pure dimension equal to the expected
dimension for every torus orbit O ⊂ Y iff |Σ| = A.
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Proof. Suppose |Σ| = A. We first show that X∩O is nonempty for every orbit O ⊂ Y .
Let Σ′ → Σ be a strictly simplicial refinement of Σ and f : Y ′ → Y the corresponding
toric resolution of Y . Let X

′ be the closure of X in Y ′. Let O ⊂ Y be an orbit,
and O′ ⊂ Y ′ an orbit such that f(O′) ⊆ O. Then X

′ ∩ O′ 6= ∅ by [17, 2.2], and
f(X ′ ∩O′) ⊆ X ∩O, so X ∩O 6= ∅ as required.

We next show that X∩O has pure dimension equal to the expected dimension for
every orbit O ⊂ Y . Let O ⊂ Y be an orbit of codimension c. Let Z be an irreducible
component of the intersection X ∩O with its reduced induced structure. Let W be the
closure of O in Y and Z the closure of Z in W . Then, since Z is compact, the fan of
the toric variety W contains the tropical variety of Z ⊂ O by Theorem 2.3. We deduce
that dim Z ≤ dim X − c by Theorem 2.2. On the other hand, since toric varieties are
Cohen-Macaulay, the orbit O ⊂ Y is cut out set-theoretically by a regular sequence of
length c at each point of O. It follows that dim Z ≥ dim X − c, so dim Z = dim X − c
as required.

The converse follows from [16, 3.9]. �

Here is the main result of this paper.

Theorem 2.5

Suppose that |Σ| = A and the following condition is satisfied:

(∗) For each torus orbit O ⊂ Y , X ∩ O is smooth and is connected if it has positive
dimension.

Then the link L of 0 ∈ A has only top reduced rational homology, i.e.,
H̃i(L, Q) = 0 for i < dim L = dim X − 1.

Example 2.6 Let Y be a projective toric variety. Let X ⊂ Y be a complete intersec-
tion. That is, X = H1∩· · ·∩Hc where Hi is an ample divisor on Y . Assume that Hi is
a general element of a basepoint free linear system for each i. Let Y ⊂ Y be the open
toric subvariety consisting of orbits meeting X and Σ the fan of Y . Then |Σ| = A by
Theorem 2.4 and X ⊂ Y satisifes the condition (∗) by Bertini’s theorem [10, III.7.9,
III.10.9].

If Σ is the (complete) fan of Y , the fan Σ is the union of the cones of Σ of
codimension ≥ c. So it is clear in this example that the link L of 0 ∈ A has only
top reduced homology. Indeed, let r = dim Y . Then the link K of 0 ∈ Σ is a
polyhedral subdivision of the (r − 1)-sphere, and L is the (r − c − 1)-skeleton of K,
hence H̃i(L, Z) = H̃i(Sr−1, Z) = 0 for i < r − c− 1.

A useful reformulation of condition (∗) is given by the following lemma.

Lemma 2.7

Assume that |Σ| = A. Then the following conditions are equivalent.

(1) X ∩O is smooth for each orbit O ⊂ Y .

(2) The multiplication map m : T ×X → Y is smooth.

Proof. The fibre of the multiplication map over a point y ∈ O ⊂ Y is isomorphic
to (X ∩ O) × S, where S ⊂ T is the stabiliser of y. Now m is smooth iff it is flat
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and each fibre is smooth. The map m is surjective and has equidimensional fibres by
Theorem 2.4. Finally, if W is integral, Z is normal, and f : W → Z is dominant and
has reduced fibres, then f is flat iff it has equidimensional fibres by [6, 14.4.4, 15.2.3].
This gives the equivalence. �

Definition 2.8 [17, 1.1,1.3] We say X ⊂ Y is tropical if m : T ×X → Y is flat and
surjective. (Then in particular X ∩ O is non-empty and has the expected dimension
for each orbit O ⊂ Y , so |Σ| = A by Theorem 2.4.) We say X ⊂ T is schön if m is
smooth for some (equivalently, any [17, 1.4]) tropical compactification X ⊂ Y .

Example 2.9 Here we give some examples of schön subvarieties of tori. (For more
examples see Section 4.)

(1) Let Y be a projective toric variety and X ⊂ Y a general complete intersection as
in Example 2.6. Let T ⊂ Y be the big torus and X = X∩T . Then X∩O is either
empty or smooth of the expected dimension for every orbit O ⊂ Y by Bertini’s
theorem. Hence X ⊂ T is schön.

(2) Let Y be a projective toric variety and G a group acting transitively on Y . Let
X ⊂ Y be a smooth subvariety. Then, for g ∈ G general, gX ∩O is either empty
or smooth of the expected dimension for every orbit O ⊂ Y by [10, III.10.8]. Let
T ⊂ Y be the big torus and X ′ = gX ∩ T . Then X ′ ⊂ T is schön for g ∈ G
general.

Example 2.10 Here is a simple example X ⊂ T which is not schön. Let Y be a
projective toric variety and X ⊂ Y a closed subvariety such that X meets the big
torus T ⊂ Y and X is singular at a point which is contained in an orbit O ⊂ Y of
codimension 1. Let X = X ∩ T . Then X ⊂ T is not schön. Indeed, suppose that
m : T × X

′ → Y ′ is smooth for some tropical compactification X
′ ⊂ Y ′. We may

assume that the toric birational map f : Y ′ → Y is a morphism by [17, 2.5]. Now
X ∩ O is singular by construction, and f : Y ′ → Y is an isomorphism over O because
O ⊂ Y has codimension 1, hence X

′ ∩ f−1O is also singular, a contradiction.

Remark 2.11 It has been suggested that the link L of the tropical variety of an arbitrary
subvariety of a torus is homotopy equivalent to a bouquet of top dimensional spheres
(so, in particular, has only top homology). I expect that this is false in general,
but I do not know a counterexample. However, there are many examples where the
hypothesis (∗) of Theorem 2.5 is not satisfied but the conclusion is still valid. For
example, let X ⊂ Y be a complete intersection in a projective toric variety such that
X ∩ O has the expected dimension for each orbit O ⊂ Y and let X = X ∩ T ⊂ T
where T ⊂ Y is the big torus. Then X ⊂ T is not schön in general but L is a bouquet
of top-dimensional spheres, cf. Example 2.10, 2.6. See also Example 4.4 for another
example.

Construction 2.12 [17, 1.7] We can always construct a tropical compactification
X ⊂ Y as follows. Choose a projective toric compactification Y 0 of T . Let X0

denote the closure of X in Y 0. Assume for simplicity that

S =
{
t ∈ T | t ·X = X

}
⊂ T
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is trivial (otherwise, we can pass to the quotient X/S ⊂ T/S). Consider the em-
bedding T ↪→ Hilb(Y 0) given by t 7→ t−1[X0]. Let Y be the normalisation of
the closure of T in Hilb(Y 0). (So Y is a projective toric compactification of T .)
Let X be the closure of X in Y , and Y ⊂ Y the open toric subvariety consisting of
orbits meeting X. Let U ⊂ Hilb(Y 0) × Y 0 denote the universal family over Hilb(Y 0)
and U0 = U ∩ (Hilb(Y 0)× T ). One shows that there is an identification

T ×X
∼ //

m
""FF

FF
FF

FF
F U0|Y

}}{{
{{

{{
{{

Y

(1)

given by (t, x) 7→ (tx, t) [17, p. 1093, Pf. of 1.7]. In particular, m is flat.

Remark 2.13 We note that, in the situation of 2.12, we can verify the condition (∗)
using Gröbner basis techniques. Let O ⊂ Y be an orbit. Let σ be the cone in the fan
of Y corresponding to O, and w ∈ N an integral point in the relative interior of σ. We
regard w as a 1-parameter subgroup C× → T of T . Then, by construction, the limit
limt→0 w(t) lies in the orbit O. Let X

w
0 be the flat limit of the 1-parameter family

w(t)−1X0 as t → 0. Then the fibres of U → Hilb(Y 0) over O are the translates of
X

w
0 . Let y ∈ O be a point and S ⊂ T the stabiliser of y. The fibre of m over y is

isomorphic to both (X ∩O)× S and X
w
0 ∩ T (by the identification (1)). Hence X ∩O

is smooth (resp. connected) iff X
w
0 ∩ T is so. Suppose now that Y 0 ' PN , and let

I ⊂ k[X0, . . . , XN ] be the homogeneous ideal of X0 ⊂ PN . Then X
w
0 is the zero locus

of the initial ideal of I with respect to w.

3. The stratification of the boundary and the weight filtration

Let X be a smooth projective variety of dimension n, and B ⊂ X a simple normal
crossing divisor. We define the dual complex of B to be the CW complex K defined as
follows. Let B1, . . . , Bm be the irreducible components of B and write BI =

⋂
i∈I Bi

for I ⊂ [m]. To each connected component Z of BI we associate a simplex σ with
vertices labelled by I. The facet of σ labelled by I \ {i} is identified with the simplex
corresponding to the connected component of BI\{i} containing Z.

Theorem 3.1

The reduced homology of K is identified with the top graded pieces of the weight
filtration on the cohomology of the complement X = X\B. Precisely,

H̃i(K, C) = GrW
2n H2n−(i+1)(X, C).

Corollary 3.2

If X is affine, then

H̃i(K, C) =

{
GrW

2n Hn(X, C) if i = n− 1
0 otherwise .
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Proof of Theorem 3.1 This is essentially contained in [2], see also [19, Section 8.4]. De-
fine a filtration W̃ of the complex Ω·

X
(log B) of differential forms on X with logarithmic

poles along B by
W̃lΩk

X
(log B) = Ωl

X
(log B) ∧ Ωk−l

X
.

The filtration of Ω·
X

(log B) yields a spectral sequence

Ep,q
1 = Hp+q(X,GrW̃

−p Ω·
X

(
log B)

)
=⇒ Hp+q(Ω·

X
(log B)

)
= Hp+q(X, C).

which defines a filtration W̃ on H ·(X, C). The weight filtration W on H i(X, C) is
by definition the shift W = W̃ [i], i.e., Wj(H i) = W̃j−i(H i). The spectral sequence
degenerates at E2 [2, 3.2.10], so

Ep,q
2 = GrW̃

−p Hp+q(X, C).

The E1 term may be computed as follows. Let B̃l denote the disjoint union of the l-
fold intersections of the components of B, and jl the map B̃l → X. (By convention
B̃0 = X.) The Poincaré residue map defines an isomorphism

GrW̃
l Ωk

X
(log B) ∼−→ jl∗Ω

k−l

B̃l
, (2)

see [19, Proposition 8.32]. This gives an identification

Ep,q
1 = Hp+q(X,GrW̃

−p Ω·
X

(log B)) = H2p+q(B̃(−p),Ω·
B̃(−p)) = H2p+q(B̃(−p), C).

The differential
d1 : H2p+q(B̃(−p)) → H2(p+1)+q(B̃(−p−1))

is identified (up to sign) with the Gysin map on components [19, Proposition 8.34].
Precisely, write s = −p. Then d1 : Hq−2s(B̃(s)) → Hq−2(s−1)(B̃(s−1)) is given by the
maps

(−1)s+tj∗ : Hq−2s(BI) → Hq−2(s−1)(BJ),

where I = {i1 < · · · < is}, J = I\{it}, j denotes the inclusion BI ⊂ BJ , and j∗ is
the Gysin map. Equivalently, identify Hq−2s(B̃(s)) = H2n−q(B̃(s)) by Poincaré duality.
Then d1 : H2n−q(B̃(s)) → H2n−q(B̃(s−1)) is given by the maps

(−1)s+tj∗ : H2n−q(B̃(s)) → H2n−q(B̃(s−1)).

So, the E1 term of the spectral sequence is as follows.

H0(B̃(n)) → H0(B̃(n−1)) → · · · → H0(B̃(1)) → H0(B̃(0))

H1(B̃(n−1)) → · · · → H1(B̃(1)) → H1(B̃(0))
...

...

H2n−2(B̃(1)) → H2n−2(B̃(0))

H2n−1(B̃(0))

H2n(B̃(0)) .
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The top row (q = 2n) is the complex

· · · → H0(B̃(s+1)) → H0(B̃(s)) → H0(B̃(s−1)) → · · · ,

which computes the reduced homology of the dual complex K of B. We deduce

GrW̃
s H2n−s(X, C) = H̃s−1(K, C).

�

Proof of Corollary 3.2 If X is affine then X has the homotopy type of a CW complex
of dimension n, so Hk(X, C) = 0 for k > n. �

Proof of Theorem 2.5 By our assumption and Lemma 2.7 the multiplication map
m : T ×X → Y is smooth. Let Y ′ → Y be a toric resolution of Y given by a refinement
Σ′ of Σ. Then m′ : T ×X

′ → Y ′ is also smooth — it is the pullback of m [17, 2.5]. So
X
′ is smooth with simple normal crossing boundary B′ = X

′ \X (because this is true
for Y ′). Hence the dual complex K of B′ has only top reduced rational homology by
Corollary 3.2.

It remains to relate K and the link L of 0 ∈ A. Recall that the fan Σ of Y
has support A. The cones of Σ of dimension p correspond to toric strata Z ⊂ Y of
codimension p. These correspond to strata Z ∩ X ⊂ X of codimension p, which are
connected (by our assumption) unless p = dim X. We can now construct K from L as
follows. Give L the structure of a polyhedral complex induced by the fan Σ. For each
top dimensional cell, let Z ⊂ Y be the corresponding toric stratum, and k = |Z ∩X|.
We replace the cell by k copies, identified along their boundaries. Let L̂ denote the
resulting CW complex. Note immediately that L̂ is homotopy equivalent to the one
point union of L and a collection of top dimensional spheres. So L̂ has only top reduced
rational homology iff L does. Finally let L̂′ denote the subdivision of L̂ induced by the
refinement Σ′ of Σ. Then L̂′ is the dual complex K of B′. This completes the proof. �

We note the following corollary of the proof.

Corollary 3.3

In the situation of Theorem 2.5, if in addition X ∩ O is connected for every
orbit O ⊂ Y , then we have an identification

H̃n−1(L, C) = GrW
2n Hn(X, C).

4. Examples

We say a variety X is very affine if it admits a closed embedding in an algebraic
torus. If X is very affine, the intrinsic torus of X is the torus T with character lattice
M = H0(O×

X)/k×. Choosing a splitting of the exact sequence

0 → k× → H0(O×
X) → M → 0

defines an embedding X ⊂ T , and any two such are related by a translation.
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Example 4.1 Let X be the complement of an arrangement of m hyperplanes in Pn

whose stabiliser in PGL(n) is finite. Then X is very affine with intrinsic torus T =
(C×)m/C×, and the embedding X ⊂ T is the restriction of the linear embedding Pn ⊂
Pm−1 given by the equations of the hyperplanes. The embedding X ⊂ T is schön, and
a tropical compactification X ⊂ Y is given by Kapranov’s visible contour construction,
see [7, Section 2]. In [1] it was shown that the link L of 0 ∈ A has only top reduced
homology, and the rank of Hn−1(L, Z) was computed using the Möbius function of
the lattice of flats of the matroid associated to the arrangement. Theorem 2.5 gives
a different proof that the link has only top reduced rational homology. Moreover, in
this case X ∩ O is connected for every orbit O ⊂ Y , and the mixed Hodge structure
on H i(X, C) is pure of weight 2i for each i. So we have an identification

H̃n−1(L, C) = GrW
2n Hn(X, C) = Hn(X, C)

by Corollary 3.3.

Example 4.2 Let X = M0,n, the moduli space of n distinct points on P1. The
variety X can be realised as the complement of a hyperplane arrangement in Pn−3, in
particular it is very affine and the embedding X ⊂ T in its intrinsic torus is schön by
Example 4.1.

More generally, consider the moduli space X = X(r, n) of n hyperplanes in linear
general position in Pr−1. The Gel’fand–MacPherson correspondence identifies X(r, n)
with the quotient G0(r, n)/H, where G0(r, n) ⊂ G(r, n) is the open subset of the
Grassmannian where all Plücker coordinates are nonzero and H = (C×)n/C× is the
maximal torus which acts freely on G0(r, n). See [4, 2.2.2]. Thus the tropical variety
A of X(r, n) is identified (up to a linear space factor) with the tropical Grassmannian
G(r, n) studied in [15]. In particular, for r = 2, the tropical variety of M0,n corresponds
to G(2, n), the so called space of phylogenetic trees. For (r, n) = (3, 6), the link L of
0 ∈ A has only top reduced homology, and the top homology is free of rank 126 [15,
5.4]. Jointly with Keel and Tevelev, we showed that the embedding X ⊂ T of X(3, 6)
in its intrinsic torus is schön (using work of Lafforgue [12]) and described a tropical
compactification X ⊂ Y explicitly. So Theorem 2.5 gives an alternative proof that L
has only top reduced rational homology. Moreover, X ∩O is connected for each orbit
O ⊂ Y , and the mixed Hodge structure on H i(X(3, 6), C) is pure of weight 2i for each
i by [9, 10.22]. So by Corollary 3.3 we have an identification

Hd−1(L, C) = GrW
2d Hd(X(3, 6), C) = Hd(X(3, 6), C)

where d = dim X(3, 6) = 4. This agrees with the computation of H ·(X, C) in [9].
We note that it is conjectured [11, 1.14] that X(3, 7) and X(3, 8) are schön, but

in general the compactifications of X(r, n) we obtain by toric methods will be highly
singular by [12, 1.8]. The cases X(3, n) for n ≤ 8 are closely related to moduli spaces
of del Pezzo surfaces, see Example 4.3 below.

Example 4.3 [8] Let X = X(n) denote the moduli space of smooth marked del
Pezzo surfaces of degree 9 − n for 4 ≤ n ≤ 8. Recall that a del Pezzo surface S
of degree 9 − n is isomorphic to the blowup of n points in P2 which are in general
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position (i.e. no 2 points coincide, no 3 are collinear, no 6 lie on a conic, etc). A
marking of S is an identification of the lattice H2(S, Z) with the standard lattice
Z1,n of signature (1, n) such that KS 7→ −3e0 + e1 + · · · + en. It corresponds to
a realisation of S as a blowup of n ordered points in P2. Hence X(n) is an open
subvariety of X(3, n) (because X(3, n) is the moduli space of n points in P2 in linear
general position). The lattice K⊥

S ⊂ H2(X, Z) is isomorphic to the lattice En (with
negative definite intersection product). So the Weyl group W = W (En) acts on X(n)
by changing the marking. The action of the Weyl group W on X induces an action
on the lattice N of 1-parameter subgroups of T which preserves the tropical variety A
of X in NR. The link L of 0 ∈ A is described in [8, §7] in terms of sub root systems
of En for n ≤ 7.

In [8] we showed that for n ≤ 7 the embedding X ⊂ T of X in its intrinsic torus
is schön and described a tropical compactification X ⊂ Y explicitly. The intersection
X∩O is connected for each orbit O ⊂ Y . So L has only top reduced rational homology
by Theorem 2.5, and Hd−1(L, C) = GrW

2d Hd(X(n), C) where d = dim X(n) = 2n − 8
by Corollary 3.3.

Example 4.4 [13] Let X̃ ⊂ (C×)mn be the space of matrices of size m×n and rank≤ 2
with nonzero entries. (Thus X̃ is the zero locus of the 3×3 minors of the matrix.) Let
X ⊂ T be the quotient of X̃ ⊂ (C×)mn by the torus (C×)m × (C×)n acting by scaling
rows and columns. In [13] it was shown that the link L of the origin in the tropical
variety A of X ⊂ T is homotopy equivalent to a bouquet of top dimensional spheres.
Here we give an algebro-geometric interpretation of this result.

A point of X corresponds to n collinear points {pi} in the big torus in Pm−1,
modulo simultaneous translation by the torus. Let f : X ′ → X denote the space of
lines through the points {pi}. The morphism f is a resolution of X with exceptional
locus Γ ' Pm−2 over the singular point P ∈ X where the pi all coincide. Given a
point (C ⊂ Pm−1, {pi}) of X ′, let qj be the intersection of C with the jth coordinate
hyperplane. We obtain a pointed smooth rational curve (C, {pi}, {qj}) such that pi 6= qj

for all i and j, and the qj do not all coincide. Conversely, given such a pointed curve
(C, {pi}, {qj}), let Fj be a linear form on C ' P1 defining qj . Then we obtain a linear
embedding

F = (F1 : · · · : Fm) : C ⊂ Pm−1

which is uniquely determined up to translation by the torus.
We construct a compactification X ⊂ X using a moduli space of pointed curves.

Let X
′ denote the (fine) moduli space of pointed curves (C, {pi}n

1 , {qj}m
1 ) where C is a

proper connected nodal curve of arithmetic genus 0 (a union of smooth rational curves
such that the dual graph is a tree) and the pi and qj are smooth points of C such
that

(1) pi 6= qj for all i and j.
(2) Each end component of C contains at least one pi and one qj , and each interior

component of C contains either a marked point or at least 3 nodes.
(3) The qj do not all coincide.

(The moduli space X
′ can be obtained from M0,n+m as follows: for each boundary

divisor ∆I1,I2 = M0,I1∪{∗} × M0,I2∪{∗} we contract the ith factor to a point if Ii ⊆
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[1, n] or Ii ( [n + 1, n + m].) Define the boundary B of X
′ to be the locus where

the curve C is reducible. It follows by deformation theory that X
′ is smooth with

normal crossing boundary B. The construction of the previous paragraph defines an
identification X ′ = X

′ \ B. The desired compactification X ⊂ X is obtained from
X ′ ⊂ X

′ by contracting Γ ⊂ X ′.
Assume without loss of generality that m ≤ n. Consider the resolution f : X ′ → X

of X with exceptional locus Γ ' Pm−2 described above. By [5, Theorem II.1.1*] since
2 dim Γ ≤ dim X and X is affine it follows that X ′ has the homotopy type of a CW
complex of dimension dim X. Hence by Theorem 3.1 the dual complex K of the
boundary B has only top rational homology, and H̃d−1(K, C) = Gr2d Hd(X ′, C) where
d = dim X ′ = m + n− 3.

The compactification X of X is a tropical compactification X ⊂ Y of X ⊂ T
such that X ∩ O is connected for each orbit O ⊂ Y . This is proved using the general
result [8, 2.10]. The toric variety Y corresponds to the fan Σ with support A given
by [13, 2.11]. In particular, it follows that K is a triangulation of the link L. Hence
we obtain an alternative proof that L has only top reduced rational homology, and a
geometric interpretation of the top homology group.
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