La Màquina de Bartleby: explorar la desobediència creativa en els ordinadors

Main Article Content

Bruno Caldas Vianna

La idea de màquines desobedients es desenvolupa des de la perspectiva dels desenvolupaments històrics i actuals en intel·ligència artificial (IA). La desobediència s’utilitza sovint en art i tecnologia com a tema i eina. Més enllà d’això, la desobediència es presenta com una de les habilitats indispensables per la intel·ligència natural. L’article no aprofundeix en l’ús de les IA com a eina d’ajuda per la creació. En el seu lloc, especula si les IA permetran l’aparició d’un creador artificial independent i autònom. Es presenten diferents enfocaments de les IA, des del simbolisme fins a l’emergisme. Es descriuen els avantatges dels models d’aprenentatge automàtic, així com les seves limitacions, com ara la incapacitat de generar avanços fora de les seves dades d’entrenament, el seu determinisme i la incapacitat d’usar analogies per resoldre problemes inesperats. Altres habilitats humanes (o biològiques) que falten, presents en l’art, són l’emoció, la producció sense objectius i l’agència, la qual cosa és un problema fins i tot quan s’estudia la voluntat humana. Els límits del formalisme computacional són com els límits del raonament matemàtic: sempre requereixen algunes regles externes, o axiomes provats, com la prova de Gödel. La teoria de la consciència d’Hofsdtader proposa una manera de conciliar el fet que la creativitat humana també es basa en regles biològiques tancades i fixes. Finalment, s’argumenta que una màquina no pot ser creativa tret que també pugui desobeir. No obstant això, els ordinadors han de seguir un conjunt d’instruccions o deixen de funcionar, és a dir, la definició d’una màquina de Turing. Per tant, hem d’enfrontar-nos a la paradoxa de voler sistemes obedients, amb les limitacions de les màquines simbòliques, al mateix temps que exigim resultats més autònoms i creatius. És primordial explorar els comportaments erronis algorítmics que podrien eludir aquesta paradoxa per al desenvolupament addicional de IAs per les arts i la societat en general.

Paraules clau
intel·ligència artificial, art, IA simbòlica, conexionisme, xarxes neuronals convolucionals, consciència, màquina de Turing, voluntat, desobediència de la máquina

Article Details

Com citar
Caldas Vianna, Bruno. “La Màquina de Bartleby: explorar la desobediència creativa en els ordinadors”. Artnodes, no. 32, pp. 1-10, doi:10.7238/artnodes.v0i32.409664.
Biografia de l'autor/a

Bruno Caldas Vianna, Universitat d’Art i Disseny d’Hèlsinki

Viu a Barcelona i està cursant un doctorat a la Universitat de les Arts d’Hèlsinki en Arts Visuals i Aprenentatge Automàtic. Va estudiar Enginyeria informàtica però es va graduar en Estudis Cinematogràfics. Té un màster del Programa de Telecomunicacions Interactives de l’NYU. Crea narratives visuals utilitzant suports clàssics i innovadors, ha dirigit curtmetratges i llargmetratges, i també pel·lícules editades en viu, realitat augmentada, aplicacions mòbils i instal·lacions. Entre 2011 i 2016, va dirigir Nuvem, un laboratori d’art rural i espai de residència, situat entre Rio de Janeiro i San Pau, i va treballar com a professor a Oi Kabum!, una escola d’art i tecnologia de Rio fins l’any 2018.

Referències

Alcorn, Michael A., Qi Li, Zhitao Gong, Chengfei Wang, Long Mai, Wei-Shinn Ku and Anh Nguyen. “Strike (with) a Pose: Neural Networks Are Easily Fooled by Strange Poses of Familiar Objects”. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA (2019): 4840-4849. DOI: https://doi.org/10.1109/CVPR.2019.00498

Alom, Md Zahangir, Tarek M. Taha, Christopher Yakopcic, Stefan Westberg, Paheding Sidike, Mst Shamima Nasrin, Brian C. Van Esesn, Abdul A. S. Awwal, and Vijayan K. Asari. “The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches”. arXiv (2018, March). DOI: https://doi.org/10.48550/arXiv.1803.01164

Asimov, Isaac. I, Robot. Vol. 1. Spectra, 2004.

Baard, Mark. “AI Founder Blasts Modern Research”. WIRED (2003, May). https://www.wired.com/2003/05/ai-founder-blasts-modern-research/

Benedek, Mathias and Emanuel Jauk. “10 Creativity and Cognitive Control”. The Cambridge Handbook of Creativity, (2019): 200. DOI: https://doi.org/10.1017/9781316979839.012

Braitenberg, Valentino. Vehicles: Experiments in Synthetic Psychology. Cambridge, Massachusetts: The MIT Press, 2004.

Buchanan, Bruce G. “A (Very) Brief History of Artificial Intelligence”. Ai Magazine, vol. 26, no. 4 (2005, December). DOI: https://doi.org/10.1609/AIMAG.V26I4.1848

Caldas Vianna, Bruno. “Generative Art: Between the Nodes of Neuron Networks”. Artnodes, no. 26 (2020, July): 1-9. DOI: https://doi.org/10.7238/a.v0i26.3350

Campbell, Murray. “Knowledge Discovery in Deep Blue”. Communications of the ACM, vol. 42, no. 11 (1999): 65-67. DOI: https://doi.org/10.1145/319382.319396

Canet Sola, Mar and Varvara Guljajeva. “Dream Painter: Exploring Creative Possibilities of AI-Aided Speech-to-Image Synthesis in the Interactive Art Context”. Proceedings of the ACM on Computer Graphics and Interactive Techniques, vol. 5, no. 4 (2022): 1-11. DOI: https://doi.org/10.1145/3533386

Chollet, François. “On the Measure of Intelligence”. arXiv, (2019, November). DOI: https://doi.org/10.48550/arXiv.1911.01547

Clark, David. “Deep Thoughts on Deep Blue”. IEEE Computer Architecture Letters, vol. 87, no. 9 (1997): 31-31.

Cohen, Paul. “Harold Cohen and AARON”. Ai Magazine, vol. 37, no. 4 (2016): 63-66. DOI: https://doi.org/10.1609/aimag.v37i4.2695

CYC. “Cyc Technology Overview”, (2021). https://cyc.com/wp-content/uploads/2021/04/Cyc-Technology-Overview.pdf

Domingos, Pedro. Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World. Penguin Books, Limited, 2017.

Dreher, Thomas. History of Computer Art. 2nd ed. Morrisville, North Carolina: Lulu Press, inc., 2020.

Fellbaum, Christiane. “WordNet.” In: Theory and Applications of Ontology: Computer Applications, edited by Roberto Poli, Michael Healy, and Achilles Kameas, 231-43. Dordrecht: Springer Netherlands, 2010. DOI: https://doi.org/10.1007/978-90-481-8847-5_10

Fukushima, Kunihiko. “Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position”. Biological Cybernetics, no. 36 (1980): 193-202. DOI: https://doi.org/10.1007/BF00344251

Gershgorn, Dave. “The Data That Transformed AI Research—and Possibly the World”. Quartz, July 26, 2017. https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world/

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. “Deep Learning”. Adaptive Computation and Machine Learning. Cambridge, Massachusetts: The MIT Press, 2016.

Haggard, Patrick. “Human Volition: Towards a Neuroscience of Will”. Nature Reviews Neuroscience, no. 9 (2008): 934-46. DOI: https://doi.org/10.1038/nrn2497

Harari, Yuval Noaḥ. Homo Deus: A Brief History of Tomorrow. London: Harvill Secker, 2016.

Haugeland, John. Artificial Intelligence: The Very Idea. Cambridge, Massachusetts: The MIT Press, 1986.

Hay, John C., Ben E. Lynch and David R. Smith. Mark I Perceptron Operators’ Manual. Buffalo, NY: Cornell Aeronautical Lab Inc, 1960.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren and Jian Sun. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”. In: Proceedings of the IEEE International Conference on Computer Vision, 7-13 December 2015, Santiago, Chile. 1026-1034. DOI: https://doi.org/10.1109/ICCV.2015.123

Hofstadter, Douglas R. Gödel, Escher, Bach: An Eternal Golden Braid. 20th-anniversary ed. London: Penguin, 2000.

Hui, Yuk. Art and Cosmotechnics. Minneapolis, MN: University of Minnesota Press, 2021. DOI: https://doi.org/10.5749/j.ctv1qgnq42

Klingemann, Mario, Simon Hudson and Zivvy Epstein. “Botto, Decentralized Autonomous Artist”. In: NeurIPS Machine Learning for Creativity and Design Workshop, 2021.

Kogan, Gene. “Artist in the Cloud: Towards an Autonomous Artist”. In: NeurIPS Machine Learning for Creativity and Design Workshop, 2019.

Krizhevsky, Alex, Ilya Sutskever and Geoffrey E. Hinton. “ImageNet Classification with Deep Convolutional Neural Networks”. Communications of the ACM, vol. 60, no. 6 (2017): 84-90. DOI: https://doi.org/10.1145/3065386

Lecun, Y., L. Bottou, Y. Bengio and P. Haffner. “Gradient-Based Learning Applied to Document Recognition”. Proceedings of the IEEE, vol. 86, no. 11 (1998): 2278-2324. DOI: https://doi.org/10.1109/5.726791

LeCun, Yann. “Deep Learning and the Future of AI”. Presented at the CERN Colloquium, Geneva, Switzerland, March 24, 2016. https://web.archive.org/web/20160423021403/https://indico.cern.ch/event/510372/

LeCun, Yann, Bernhard E. Boser, John S. Denker, Davis Henderson, Richard E. Howard, William Hubbard and Lawrence D. Jackel. “Backpropagation Applied to Handwritten Zip Code Recognition”. Neural Computation vol. 1, no. 4 (1989): 541-51. DOI: https://doi.org/10.1162/neco.1989.1.4.541

Lehman, Joel and Kenneth O. Stanley. “Abandoning Objectives: Evolution Through the Search for Novelty Alone”. Evolutionary Computation, vol. 19, no. 2 (2011): 189-223. DOI: https://doi.org/10.1162/EVCO_a_00025

Lenat, Doug, Mayank Prakash and Mary Shepherd. “CYC: Using Common Sense Knowledge to Overcome Brittleness and Knowledge Acquisition Bottlenecks”. AI Magazine, vol. 6, no. 4 (1986): 65-85.

Libet, Benjamin, Curtis A. Gleason, Elwood W. Wright and Dennis K. Pearl. “Time of Conscious Intention to Act in Relation to Onset of Cerebral Activity (Readiness-Potential).” In: Neurophysiology of Consciousness, edited by Benjamin Libet, 249-68. Boston, Massachusetts: Birkhäuser, 1993. DOI: https://doi.org/10.1007/978-1-4612-0355-1_15

Massey, Irving. “A New Turing Test: Metaphor vs. Nonsense”. AI & Soc, no. 36 (2021): 677-684. DOI: https://doi.org/10.1007/s00146-021-01242-9

McCulloch, Warren S. and Walter Pitts. “A Logical Calculus of the Ideas Immanent in Nervous Activity.” The Bulletin of Mathematical Biophysics, no. 5 (1943): 115-133. DOI: https://doi.org/10.1007/BF02478259

Minsky, Marvin and Seymour A. Papert. Perceptrons: An Introduction to Computational Geometry. Cambridge, Massachusetts: The MIT Press, 1972.

Mitchell, Melanie. Artificial Intelligence: A Guide for Thinking Humans. London: Penguin UK, 2019

Neumann, J. von. “First Draft of a Report on the EDVAC”. IEEE Annals of the History of Computing, vol. 15, no. 4 (1993): 27-75. DOI: https://doi.org/10.1109/85.238389

Newell, Allen, J. C. Shaw and Herbert A. Simon. “Chess-Playing Programs and the Problem of Complexity” IBM Journal of Research and Development, vol. 2, no. 4 (1958): 320-335. DOI: https://doi.org/10.1147/rd.24.0320

Nilsson, Nils J. Artificial Intelligence: A New Synthesis. San Francisco, California: Morgan Kaufmann Publishers, 1998.

Noel, Mathew Mithra, Arunkumar L, Advait Trivedi and Praneet Dutta. “Growing Cosine Unit: A Novel Oscillatory Activation Function That Can Speedup Training and Reduce Parameters in Convolutional Neural Networks”. arXiv (2021, September). DOI: https://doi.org/10.48550/arXiv.2108.12943

Patterson, David, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David So, Maud Texier and Jeff Dean. “Carbon Emissions and Large Neural Network Training”. arXiv (2021, April). DOI: https://doi.org/10.48550/arXiv.2104.10350

Raatikainen, Panu. “Gödel’s Incompleteness Theorems.” In: The Stanford Encyclopedia of Philosophy, edited by Edward N. Zalta, Spring 2021 Edition. Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/spr2021/entries/goedel-incompleteness/

Rosenblatt, Frank. “The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain”. Psychological Review, vol. 65, no. 6 (1958): 386-408. DOI: https://doi.org/10.1037/h0042519

Russakovsky, Olga, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, et al. “ImageNet Large Scale Visual Recognition Challenge (2015)”. International Journal of Computer Vision (IJCV), no. 115, (2015): 211-252. DOI: https://doi.org/10.1007/s11263-015-0816-y

Secretan, Jimmy, Nicholas Beato, David B. D’Ambrosio, Adelein Rodriguez, Adam Campbell, Jeremiah T. Folsom-Kovarik and Kenneth O. Stanley. “Picbreeder: A Case Study in Collaborative Evolutionary Exploration of Design Space”. Evolutionary Computation, vol. 19, no. 3 (2011): 373-403. DOI: https://doi.org/10.1162/EVCO_a_00030

Smolensky, Paul. “Connectionist AI, Symbolic AI, and the Brain”. Artificial Intelligence Review, vol. 1, no. 2 (1987): 95-109. DOI: https://doi.org/10.1007/BF00130011

Stanley, Kenneth O. and Joel Lehman. Why Greatness Cannot Be Planned: The Myth of the Objective. Cham, Switzerland: Springer International Publishing, 2015. DOI: https://doi.org/10.1007/978-3-319-15524-1

Steinberg, Monica. “Coercive Disobedience: Art and Simulated Transgression”. Art Journal, vol. 80, no. 3 (2021): 78-99. DOI: https://doi.org/10.1080/00043249.2021.1920288

Totschnig, Wolfhart. “Fully Autonomous AI”. Science and Engineering Ethics, no. 26 (2020): 2473-85. DOI: https://doi.org/10.1007/s11948-020-00243-z

Turing, Alan M. “On Computable Numbers, with an Application to the Entscheidungsproblem”. Proceedings of the London Mathematical Society, vol. s2-42, no. 1 (1937): 230-265. DOI: https://doi.org/10.1112/plms/s2-42.1.230

Wallas, Graham. The Art of Thought. London: J. Cape, 1926.

Whitehead, Alfred North and Bertrand Russell. Principia Mathematica. San Bernardio, California: Rough Draft Printing, 2011.

Wiener, Norbert. Cybernetics: Or Control and Communication in the Animal and the Machine. 1965 edition. Massachusetts: The MIT Press, 1948.

Zach, Richard. “Hilbert’s Program”. In: The Stanford Encyclopedia of Philosophy, edited by Edward N. Zalta, Fall 2019. Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/fall2019/entries/hilbert-program/

Zeilinger, Martin. Tactical Entanglements: AI Art, Creative Agency, and the Limits of Intellectual Property. Lüneburg: meson press, 2021.

Articles similars

<< < 20 21 22 23 24 25 26 27 28 29 > >> 

També podeu iniciar una cerca avançada per similitud per a aquest article.