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Abstract
Modeling nest–survival data: a comparison of recently developed methods that can be implemented in
MARK and SAS.— Estimating nest success and evaluating factors potentially related to the survival rates of
nests are key aspects of many studies of avian populations. A strong interest in nest success has led to a
rich literature detailing a variety of estimation methods for this vital rate. In recent years, modeling ap-
proaches have undergone especially rapid development. Despite these advances, most researchers still
employ Mayfield’s ad–hoc method (Mayfield, 1961) or, in some cases, the maximum–likelihood estimator of
Johnson (1979) and Bart & Robson (1982). Such methods permit analyses of stratified data but do not
allow for more complex and realistic models of nest survival rate that include covariates that vary by
individual, nest age, time, etc. and that may be continuous or categorical. Methods that allow researchers to
rigorously assess the importance of a variety of biological factors that might affect nest survival rates can
now be readily implemented in Program MARK and in SAS’s Proc GENMOD and Proc NLMIXED. Accord-
ingly, use of Mayfield’s estimator without first evaluating the need for more complex models of nest survival
rate cannot be justified. With the goal of increasing the use of more flexible methods, we first describe the
likelihood used for these models and then consider the question of what the effective sample size is for
computation of AICc. Next, we consider the advantages and disadvantages of these different programs in
terms of ease of data input and model construction; utility/flexibility of generated estimates and predictions;
ease of model selection; and ability to estimate variance components. An example data set is then analyzed
using both MARK and SAS to demonstrate implementation of the methods with various models that contain
nest–, group– (or block–), and time–specific covariates. Finally, we discuss improvements that would, if they
became available, promote a better general understanding of nest survival rates.
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Resumen
Modelización de datos de supervivencia en nidos: estudio comparativo de varios métodos desarrollados
recientemente que pueden implementarse en MARK y SAS.—  La estimación del éxito de nidificación y la
evaluación de los factores potencialmente relacionados con las tasas de supervivencia de los mismos
son aspectos clave de numerosos estudios sobre poblaciones de aves. El gran interés por el éxito de
nidificación se ha traducido en una rica literatura que detalla varios métodos de estimación de esta tasa
vital. En los últimos años, los enfoques de modelización han experimentado un rápido desarrollo. No
obstante, pese a estos avances, la mayoría de los investigadores siguen empleando el método ad–hoc
de Mayfield (Mayfield, 1961) o, en algunos casos, el estimador de probabilidad máxima de Johnson
(1979) y Bart & Robson (1982). Tales métodos permiten el análisis de datos estratificados, pero, en
cambio, no permiten modelos más complejos y realistas de la tasa de supervivencia en nidos cuando
se incluyen covariantes que cambian según el individuo, la edad del nido, el tiempo, etc., y que pueden
ser continuas o categóricas. Actualmente, con la ayuda de Program MARK, así como de Proc GENMOD
y Proc NLMIXED de SAS, es posible implementar métodos que permiten a los investigadores evaluar
rigurosamente la importancia de varios factores biológicos susceptibles de incidir en las tasas de
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supervivencia en nidos. Por consiguiente, no está justificada la utilización del estimador de Mayfield
sin antes evaluar la necesidad de emplear modelos más complejos para determinar la tasa de
supervivencia en nidos. Con objeto de incrementar el empleo de métodos más flexibles, primero
describimos la probabilidad empleada para estos modelos, para posteriormente tomar en
consideración cuál es el tamaño de muestra eficaz para el cálculo de AICc. Seguidamente, tomamos
en consideración las ventajas y desventajas de estos programas por lo que respecta a la facilidad de
introducción de datos y de construcción de modelos, la utilidad/flexibilidad de las estimaciones y
predicciones generadas, la facilidad de la selección de modelos y la capacidad para estimar los
componentes de la varianza. A continuación, analizamos un conjunto de datos de ejemplo utilizando
los programas MARK y SAS con objeto de demostrar la implementación de los métodos con varios
modelos que contienen nido–, grupo– (o bloque–), y covariantes específicas al tiempo. Por último,
comentamos varias mejoras que, si estuvieran disponibles, fomentarían una mejor comprensión
general de las tasas de supervivencia en nidos.

Palabras clave: Éxito de nidificación, Supervivencia en nidos, Modelos lineales generalizados, Demografía
en aves, Mayfield.
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Introduction

Nest success is a key component of reproductive
rate for many species of birds, which can be de-
fined as the probability that a nest survives from
initiation to completion and has at least one off-
spring leave the nest. Accordingly, estimates of nest
success are crucial to many studies of avian
populations, and methods for estimating this vital
rate have received considerable attention (e.g.,
Mayfield, 1961; Johnson, 1979; Hensler & Nichols,
1981; Bart & Robson, 1982; Pollock & Cornelius,
1988; Bromaghin & McDonald, 1993; Aebischer,
1999; Natarajan & McCulloch, 1999; Rotella et al.,
2000; Dinsmore et al., 2002). Williams et al. (2002)
provide a useful review of historical development,
available approaches, and estimation programs. In
most studies, nests are found at various (and per-
haps unknown) ages, i.e., days since the first egg
was deposited in the nest, and estimation is done
on a nest’s daily survival rate during the period of
time it is under observation. The estimated prob-
abilities of surviving each day in the entire nesting
cycle are then multiplied together to estimate nest
success.

The Mayfield method, either in its original form or
as expanded by Johnson (1979) and Bart & Robson
(1982), requires the assumption of a constant daily
nest survival rate for all nests in a sample over the
time period being considered. Thus, nest success
data are frequently divided into groups for analysis
with the Mayfield method, e.g., stratification by stage
of the nesting cycle, season, and habitat conditions.
But, stratification can lead to small samples for many
strata if multiple covariates are used to classify data,
which is common because most nesting studies
investigate how daily survival rates of nests vary in
relation to multiple explanatory variables, many of
which are measured on continuous scales.

Despite these limitations, the Mayfield method is
still frequently used to analyze nest success data,
e.g., Chase (2002), Liebezeit & George (2002),
Moorman et al. (2002), Tarvin & Garvin (2002). Ac-
cordingly, many studies fail to fully explore their inter-
esting biological questions regarding spatial and
temporal variation in daily nest survival. Yet, research-
ers clearly appear to be interested in such ques-
tions. For example, Chase (2002) and Liebezeit &
George (2002) both used multiple–logistic regres-
sion to compare features of successful and unsuc-
cessful nests. Given that these authors employed
the Mayfield method to estimate nest success, it
seems that they were aware of the bias inherent in
conducting logistic regression analyses on what is
essentially apparent nest success, i.e., the propor-
tion of nests in the sample that are successful. Such
an analysis is only valid if inactive nests can be
found with the same probability as active ones, a
condition rarely met in studies of real nests (see
Shaffer [2004] for a detailed explanation).

Such problematic analyses are no longer neces-
sary, however, given recent advances in analysis
methods. Concurrently, Dinsmore et al. (2002),

Stephens (2003), and Shaffer (2004) developed meth-
ods for modeling daily survival rates of nests as
functions of hypothesized nest–, group– and time–
specific covariates. The likelihood–based methods
allow visitation intervals to vary among observations
and make no assumptions about when nest failure
occurs within an interval. Values for time–specific
explanatory variables, such as nest age, date, distur-
bance, and weather, are allowed to vary daily. Mod-
els can contain variables that are measured on cat-
egorical or continuous scales. Thus, these methods
provide a highly–flexible and powerful alternative to
traditional constant–nest–survival methods and al-
low a wide variety of competing models to be as-
sessed via likelihood–based information–theoretic
methods (see Burnham & Anderson 2002).

Although the modeling methods presented by
Dinsmore et al. (2002), Stephens (2003), and
Shaffer (2004) all use the likelihood presented by
Dinsmore et al. (2002: pp 3478), there are impor-
tant differences among the approaches and how
they are implemented. For example, methods of
Dinsmore et al. (2002) are implemented in pro-
gram MARK (White & Burnham, 1999), whereas
those of Stephens (2003) and Shaffer (2004) are
executed in SAS (SAS Institute, 2000). Key differ-
ences also exist in terms of input data, how
covariates are handled, ease of model specifica-
tion, the need to provide starting values for param-
eters, the potential to model random effects, simu-
lation capabilities, and how desired model output
is obtained. To facilitate use of these methods,
this paper describes the general approach, points
out the advantages of implementing the method in
different programs, and, where possible, provides
methods for re–coding data such that future
projects can easily switch from one method to
another. In this way, researchers can take advan-
tage of the best features of each method based
on project goals and investigator experience with
the relevant software packages.

A generalized linear models approach for
nest survival

The approaches to modeling nest–survival described
by Dinsmore et al. (2002), Stephens (2003), and
Shaffer (2004) extend the model described by Bart &
Robson (1982). Each employs a generalized linear
modeling approach (McCullagh & Nelder, 1989)
based on the same binomial likelihood, where daily
survival rates are modeled as a function of nest–,
group, and/or time–specific covariates. Daily survival
rates can then be estimated from the resulting model
and multiplied together, as appropriate, to estimate
nest success.

To illustrate the model likelihood, let Si denote
the probability that a nest survives from day i to day
i + 1 (i.e., Si is a daily survival rate). Consider a nest
that was found on day k, was active when revisited
on day l, and was last checked on day m (k < l < m).
Because the nest is known to have survived the
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first interval, its contribution to the likelihood for that
interval is Sk Sk+1...Sl–1. During the second interval,
the nest either survives with probability Sl Sl+1...Sm–1
or fails with probability (1 – Sl Sl+1...Sm–1). The likeli-
hood is thus proportional to the product of prob-
abilities of observed events for all nests in the
sample (see Dinsmore et al., 2002).

In the nest survival models discussed here, a
link function is used to characterize the relation-
ship between daily survival rate and the covariates
of interest. A variety of link functions can be used
(White & Burnham, 1999; Williams et al., 2002).
Here, focus will be on use of the logit link (and its
inverse) as it is the natural link for the binomial
distribution (McCullagh & Nelder, 1989). The logit
link is frequently used in mark–resight modeling,
provides a flexible form, bounds estimates of sur-
vival in the (0,1) interval, and is available in MARK
and SAS. Dinsmore et al. (2002), Stephens (2003),
and Shaffer (2004) all used the logit link in their
work, and Lebreton et al. (1992) presented meth-
ods for estimating confidence intervals and back–
transforming to model parameters and estimates
of their variances and covariances when the logit
link is used.

Until very recently, the log link was most com-
monly used in likelihood–based extensions of the
Mayfield method, e.g., Johnson (1979), Bart &
Robson (1982), and Rotella et al. (2000). The log
link is convenient because, unlike for the logit link,
covariate values can be summed across a visita-
tion interval to obtain the appropriate covariate
value for the interval being modeled (Dinsmore et
al., 2002). However, convergence problems can
arise when the log link is used, and the log link
does not constrain survival to the interval (0,1).
Further, the methods described herein provide al-
ternative methods of obtaining the appropriate
covariate value for the interval being modeled such
that there is no loss of utility when using the logit
link instead of the log link. Thus, use of the log link
will not be considered here.

With the logit link, daily survival rate of a nest on
day i is modeled as

where the xji (j = 1,2,…,J) are values for J covariates
on day i and the {�j} are coefficients to be esti-
mated from the data. Logit transformation of the
above expression yields �0 + �j �j xji. Thus, it can
be seen that the relationship between the logit of
Si, i.e., ln (Si / (1 – Si)), and the covariates is linear,
whereas the relationship between Si and the
covariates is logistic or S–shaped. Once the {�j}
have been estimated, the {Si} for given values of
{xij} can be estimated from the inverse–link func-
tion. Note that the above formulation allows daily
survival rates to vary among groups of nests (i.e.,
group–specific covariates), among individual nests
(i.e., nest–specific covariates), and among days
(i.e., time–specific covariates).

The model likelihood provides insight into the
effective sample size for nest–survival data col-
lected from periodic nest visits. A nest that sur-
vives an interval of t days is modeled as t Bernoulli
trials, whereas a nest that fails the interval is
modeled as a single Bernoulli trial. The effective
sample size is thus the sum of (1) the total number
of days that all nests were known to have survived
(each day that a nest was known to survive con-
tributes 1 to effective sample size, i.e., the out-
come of each Bernoulli trial is known) and (2) the
number of intervals that ended in failure (each
interval in which a nest was known to fail contrib-
utes 1 to effective sample size, i.e., the exact day
of failure was not known but it is certain that the
nest failed during the interval). For example, a
nest that survived 45–day intervals and subse-
quently failed would contribute 21 to the study’s
effective sample size, regardless of the length of
the interval during which the failure occurred.

The parameters {�j} of competing models are
estimated iteratively by the method of maximum
likelihood in software designed for generalized lin-
ear models. Accordingly, a variety of likelihood–
based methods are available for obtaining param-
eter estimates and evaluating competing models.
In the rare case of control–treatment experiments
where nests are randomly allocated to treatment
groups, likelihood ratio tests can be used to for-
mally test hypotheses about whether specific
covariates are associated with variation in nest
survival. If an a priori set of candidate models is
posed, then information–theoretic measures such
as Akaike’s information criterion (AIC) can be used
to select which model or models to use for infer-
ence (Burnham & Anderson, 2002).

Assumptions of the daily nest–survival models
described here are: (1) homogeneity of daily sur-
vival rates; (2) nest fates are correctly determined;
(3) nest discovery and subsequent nest checks do
not influence survival; (4) nest fates are independ-
ent; (5) all visits to nests are recorded; and (6) nest
checks are conducted independently of nest fate. If
data are available for > 1 interval length, an exten-
sion of the model presented by Rotella et al.  (2000)
can be used to evaluate and possibly relax as-
sumption 3 as shown below. Assumption 1, by
virtue of the fact that daily survival rates can be
modeled as a function of group–, nest–, and time–
specific covariates, is far less restrictive than is
necessary for Mayfield’s method. If nest age is to
be considered in models of daily survival rate then
it is also assumed that nests can be correctly aged
when they are first found (Dinsmore et al., 2002).

Three approaches to modeling nest survival

Nest survival model in program MARK (approach 1)

The nest survival model of Dinsmore et al. (2002) is
implemented in Program MARK (White & Burnham,
1999). Minimally, five pieces of information are re-
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quired for each nest: (1) the day the nest was found;
(2) the last day the nest was checked when alive; (3)
the last day the nest was checked; (4) the fate of the
nest (0 = successful, 1 = depredated), and (5) the
number (frequency) of nests that had this history. In
MARK, these pieces of information are used to gen-
erate an encounter history for each nest in live/dead
(LDLD…) format. Encounter histories, which are as-
signed to groups, can also include individual and
group– and time–specific covariates. Group
covariates can also be incorporated through the de-
sign matrix (White & Burnham, 1999).

For example, to model daily nest–survival rates
for Mountain Plovers (Charadrius montanus),
Dinsmore et al. (2002) standardized 19 May as
day 1 of the nesting season and numbered all
nest–check dates sequentially thereafter. They as-
signed each encounter history to one of 12 groups
(two sex groups in each of six years). For each
nest, they included 78 individual covariates. Sev-
enty six of the covariates accounted for the daily
age of the nest on each of the 76 days of the
nesting season as a continuous covariate. Begin-
ning on the day the nest was found, nest age (in
days) was entered sequentially until hatching age
(29 d); all other values were zero. An example
encounter history (see tables 1 and 2) for a single
nest was: 53 59 63 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 27; where
the first five numbers represent the critical infor-
mation for the nest, and the remaining values indi-
cate daily values of nest age (i.e., the xij values for
the ith nest). [Information about the last two
covariates, i.e., sex and year, was provided by group
assignment (see above).] The use of 76 individual
covariates for nest age is a straightforward way of
providing information to Program MARK about the
age of each nest on each day of the nesting sea-
son; however, other options exist for handling nest
age if one is proficient with the special functions
(i.e., programming statements) that are allowed
as entries in the design matrix of Program MARK.
For example, one could simply enter the nest’s
age on the first day of the nesting season (a sin-
gle value instead of 76 values) and subsequently
use this value and special functions in the design
matrix to create the ages on other days (see the
program’s help files for details). In Program MARK,
the design matrix allows additional constraints to
be placed on parameter estimates. In the Moun-
tain Plover example, daily values for maximum
daily temperature and daily precipitation were en-
tered in the design matrix. The design matrix can
also be used to specify individual covariates to be
included in the model.

If one were interested in estimating the effects
of observer visits to nests on nest survival (Rotella
et al., 2000), an additional 76 covariates could be
added to the encounter history to indicate whether
the nest was visited (1 = visited) or not (0 = not
visited) on each day. As was done for nest age by

Dinsmore et al. (2002), observer effects could be
modeled as a single parameter. More complex
models of observer effects could be developed if
additional covariates contained information on the
nature of the visit, e.g., how closely the nest was
approached, how long the visit lasted, and whether
or not nest contents were handled.

Clearly, as shown by Dinsmore et al. (2002), a
diverse collection of models can be considered
with this method. Simpler models that have been
commonly employed in past studies of nest sur-
vival can also be evaluated. A model that includes
a single value of Si (i.e., constant for all groups,
nest ages, dates, and weather conditions) is simi-
lar to that of Johnson (1979) and Bart & Robson
(1982). Evaluating a model that allows {Si} to vary
among groups is analogous to (but more analyti-
cally efficient than) conducting a stratified analy-
sis with methods of Johnson (1979) and Bart &
Robson (1982) and testing for homogeneity
among group–specific survival rates with meth-
ods of Sauer & Williams (1989).

Nest survival models in SAS (approaches 2 and 3)

Stephens (2003) and Shaffer (2004) each pre-
sented methods for analyzing nest survival data
containing multiple interval lengths in SAS (SAS
Institute, 2000). These two different approaches
have many similarities and several key differences.
As was the case for Dinsmore et al.’s (2002) ap-
proach, these methods require no assumptions
about when nest losses occur during an observa-
tion interval for which a nest failure is recorded
and can handle diverse types of covariates.

The data input for SAS is different from that
used in MARK but ultimately provides the same
information. For SAS, each row of input typically
contains information for one observation interval
for an individual nest. An observation interval is
the length of time (t; an integer, typically meas-
ured in days) between any two successive nest
visits. Note that for a given nest, different obser-
vation intervals do not need to be of the same
length. The minimum data that must be provided
are the length of the interval (t) and the nest’s fate
for the interval (IFate; 1 = successful, 0 = unsuc-
cessful). In addition, individual and group– and
time–specific covariates can be included. For ex-
ample, the date (StartDate) and age of the nest
(StartAge) at the start of the interval might be
recorded. Other individual covariates such as habi-
tat measures associated with the nest site could
be included. Group covariates such as habitat
type or year could also be included.

The example Mountain Plover nest encounter
history presented earlier consists of data from two
observation intervals and thus, would be entered
as two SAS observations (observation one:
6 1 53 4; and observation two: 4 0 59 10; where
the variables are t, IFate, StartDate, and StartAge).
Here, the nest (1) survived the first interval, which
was 6 days long and began on day 53 of the
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nesting season when the nest was 4 days old and
(2) failed during the second interval, which was 4
days long and began on day 59 of the nesting
season when the nest was 10 days old. The group
assignments used by Dinsmore et al.  (2002) can
be achieved by adding two additional covariates
for sex and year.

Because interval lengths typically are > 1 d, it is
necessary to use SAS procedures that allow lo-
gistic regression to be done iteratively for each
day in an interval. Stephens (2003) and Shaffer
(2004) achieved this in slightly different ways with
similar end results.

Proc GENMOD – approach 2

Shaffer (2004) used Proc GENMOD (SAS Institute,
2000) to achieve this by (1) specifying use of a
binomial probability distribution, (2) defining the
inverse link function between an interval’s fate and
the covariates of interest as

and (3) specifying the response as the ratio of the
outcome (IFate = 1 or 0) to the number of trials
(n = 1) for each interval. For covariates that varied
across an interval, e.g., nest age or weather con-
ditions, Shaffer (2004) averaged daily values within
each observation interval and used the averages
as explanatory variables. For nest age and date,
the average value across the interval can easily be
obtained using the values for these variables at
the start of the interval, the interval length, and
SAS’s DATA Step. Thus, a variety of models can
then be readily evaluated using various combina-
tions of covariates and, if desired, transformed
values of covariates, e.g., squared values for evalu-
ating quadratic terms in models.

Proc NLMIXED – approach 3

Stephens (2003) implemented nest–survival mod-
els in Proc NLMIXED of SAS (SAS Institute, 2000)
using the same data input format as Shaffer (2004)
in approach 2. However, this method uses pro-
gramming statements from within NLMIXED to it-
eratively do logistic regression for each of the days
in an interval (see below). Through programming
statements, covariates that vary across an interval
in a predictable fashion, e.g., date and age, can
be calculated for each day of the interval thus,
avoiding the need to work with values that are
averaged across an interval.

Consider a model that includes (1) a covariate x1
that does not vary by time, (2) nest age, and (3)
date. This method models the probability that a
nest survives a given interval (i.e., probability that
IFatei = 1) as:

Applying this model to a 2–d observation interval
that started on the 20th day of the nesting season
for a nest that was 15 days old at the start of the
interval and whose value for covariate x1 was 8
would yield:

Because Stephens’(2003) method allows covariates
to vary for different days within an interval, observer
effects on nest survival can be modeled in a straight-
forward manner. Specifically, an index variable (visit)
is created with programming statements such that
it takes on a value of 1 for the first day of an interval
(day the nest was visited) and 0 otherwise. This
variable can then be used to evaluate whether vari-
ation in daily survival rates was associated with
observer visits. If additional covariates contain in-
formation on the nature of a nest visit, these
covariates can be allowed to interact with the visit
variable to test for their potential influence on sur-
vival rate. To illustrate, consider a 2–d interval and a
model that includes the effect of (1) an observer
visit and (2) a single covariate (x1) on daily survival
rate. With Stephens’ (2003) method,

IFatei =

Procedures in SAS allow for examination of a rich
collection of models for nest survival and provide
an alternative to Program MARK. The NLMIXED
procedure also allows models to include random
effects as well as fixed effects, i.e., mixed models
(SAS Institute, 2000). Mixed models are appropri-
ate if levels of some covariates (i.e., fixed effects)
represent all possible levels, or at least the levels
for which inferences are desired, i.e., fixed factors,
whereas for others covariates (i.e., random ef-
fects), the levels observed are only a random sam-
ple of a larger set of potential levels of interest
(Breslow & Clayton, 1993; Littell et al., 1996;
Pinheiro & Bates, 2000). Examples of covariates
that might be treated as random effects are study
site, year, or individual. This is true because it will
often be the case that the sites, years, or individu-
als studied, i.e., the particular experimental units,
are selected at random from the population of
interest, i.e., the population of sites, years, or indi-
viduals. As stated by Pinheiro & Bates (2000: 8),
"they are effects because they represent a devia-
tion from an overall mean". Thus, the effect of
choosing a particular site, year, or individual may
be a shift in the expected response value for ob-
servations made on that experimental unit relative
to those made on other experimental units experi-
encing the same levels for the fixed effects. In
other words, multiple observations made on the
same site, year, or individual may be correlated,
and, if so, this should be accounted for in the
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analysis. In a broad discussion of data analysis,
Littell et al. (1996: vii) stated that, "we firmly believe
that valid statistical analysis of most data sets
requires mixed model methodology."

Proc NLMIXED allows inclusion of a single
random factor, which can then be modeled as an
influence on daily survival rate (SAS Institute,
2000). The random effects are assumed to follow
normal distributions, typically with zero mean and
unknown variances. Examples of the utility of
mixed models are provided by Stephens (2003),
who reported strong support for models that con-
sidered study site as a random factor in a multi–
site data set, and by Shaffer (2004) who illus-
trated use of a random site effect to analyze data
from a randomized block study design. The
NLMIXED procedure can be used regardless of
whether Stephens (2003) or Shaffer’s (2004) ap-
proach to handling values of time–varying
covariates is used.

Strengths and weaknesses of each
approach

It is clear that each of the methods described above
can consider a wide variety of models and allow for
substantial improvements over analyses that have
been typically employed in nesting studies. All meth-
ods will yield the same results for models that do
not consider covariates that vary during an observa-
tion interval (Shaffer, 2004). For models that do
consider time–varying covariates such as nest age,
differences in results obtained from Shaffer’s (2004)
method and those of Dinsmore et al. (2002) or
Stephens (2003) will be slight, especially if inter-
vals are short and effects of time–varying covariates
are modest (Shaffer, 2004). Regardless of these
similarities, there are advantages and disadvan-
tages to each approach that may influence which
method is most appropriate for use in a specific
study.

Program MARK is readily available at no cost at
the following URL: http://www.cnr.colostate.edu/
~gwhite/mark/mark.htm. Also, its use is well docu-
mented (e.g., White & Burnham, 1999; Dinsmore et
al., 2002), and formal coursework and internet teach-
ing materials are readily available to those inter-
ested in using the software. Software support is
available through an electronic analysis forum at:
http://www.phidot.org/forum/index.php. Further, Pro-
gram MARK provides a consistent approach to im-
plementing a broad variety of mark–resight analy-
ses. Once the software is learned, MARK allows
users to build a variety of models and to easily
employ different link functions. AIC model–selec-
tion and model–averaging capabilities are built into
the software. In addition, because Program MARK
has a module specifically designed for analyzing
nest–survival data, effective sample size is auto-
matically calculated and used in AICc calculations.

One drawback to use of Program MARK is the
method in which nest–specific, time–varying

covariates are entered. If nesting seasons com-
prise many days and a number of individual and
time–varying covariates are to be considered, in-
put files can be cumbersome. Further complica-
tions with the handling of covariates can be en-
countered during the modeling process if one is
interested in evaluating various transformations of
the covariates, including interactions or polyno-
mial terms. The difficulty can be mitigated if all
covariates of interest, including transformed val-
ues and products of multiple variables (for interac-
tion terms) are included in the input file. Also, the
tools available for transforming covariates and cre-
ating interaction terms within Program MARK are
continually being improved.

Monte Carlo simulation studies are useful for
evaluating various properties of estimation and
model–selection methods under different modeling
scenarios. Program MARK does not currently have
simulation capabilities for nest–survival data. Thus,
Monte Carlo methods cannot yet be employed in
this software.

Because SAS is commonly used for a many
types of statistical analyses, many researchers have
ready access to the software and are familiar with
its use. In SAS, the formatting of input data is flex-
ible, and powerful tools are available for subse-
quent data manipulation through the DATA Step. In
addition, programming capabilities are available
within the relevant procedures. Thus, link functions
other than the logit can be implemented (though
not as easily as in Program MARK), and model
specification is straightforward. Specification of
models involving categorical covariates can be
somewhat tedious in Proc NLMIXED, as categori-
cal covariates must be recoded as indicator vari-
ables in a DATA Step. Proc GENMOD allows the
use of a CLASS statement for specifying categori-
cal covariates. This can save time and frustration if
there are multiple categorical covariates, especially
if those covariates take on numerous values, and
models with and without interactions are being con-
sidered.

As noted above, Proc NLMIXED allows random
effects to be incorporated, which may be of interest
in some studies. A variety of output data sets can be
created in SAS that can be useful for examining
predicted values across ranges of covariate values.
AIC model–selection and model–averaging capa-
bilities are not built into the software, but macros for
performing the computations are available for Proc
GENMOD at http://www.npwrc.usgs.gov/resource/
tools/nestsurv/nestsurv.htm. A macro that generates
a table of AIC model–selection results from PROC
NLMIXED is located at http://www.montana.edu/rotella/
nestsurv/. Because SAS procedures are not specifi-
cally designed for analyzing nest–survival data, the
effective sample size is not automatically calculated
and used in AICc calculations. Rather, the number of
observations (intervals) present in the input file is
considered to be the sample size. Fortunately, the
effective sample size is easily calculated in a DATA
Step, and the value can then be used to correctly

http://www.cnr.colostate.edu/~gwhite/mark/mark.htm
http://www.cnr.colostate.edu/~gwhite/mark/mark.htm
http://www.phidot.org/forum/index.php
http://www.npwrc.usgs.gov/resource/tools/nestsurv/nestsurv.htm
http://www.npwrc.usgs.gov/resource/tools/nestsurv/nestsurv.htm
http://www.montana.edu/rotella/nestsurv/
http://www.montana.edu/rotella/nestsurv/
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calculate AICc (see code at http://www.npwrc.usgs.gov/
resource/tools/nestsurv/nestsurv.htm or http://
www.montana.edu/rotella/nestsurv/).

Monte Carlo simulations are possible in SAS us-
ing various programming statements and macros
(Fan et al., 2003). Simulations can be useful during
the planning stages of a study by allowing the re-
searcher to understand how results may vary as a
function of the generating model, estimating mod-
els, sampling designs, and sampling effort. SAS
programs for conducting simulations and summa-
rizing results of analyses with Proc NLMIXED can be
obtained at http://www.montana.edu/rotella/nestsurv/

Program MARK and Proc NLMIXED both allow
one to input starting values for each parameter in
the model. By default, when the logit link is used
and one does not specify starting values for the
parameters, Program MARK starts the optimiza-
tion of all parameter estimates at 0.01; and
NLMIXED uses a default value of 1. Model conver-
gence can be affected by the choice of starting
values, and researchers may have to experiment
with different starting values to achieve conver-
gence. This is usually not an issue unless sam-
ple sizes are small, or models are fairly complex
or involve a random effect. Non–convergence can
also occur when strong collinearity exists among
covariates or with erroneously coded data (e.g.,
interval lengths < 1). Useful strategies for research-
ers who are experiencing convergence problems
with MARK or NLMIXED is to obtain starting values
by first fitting a simpler model that is nested within
the model you are currently building. In our experi-
ence, this approach is critical when working in
NLMIXED with models containing random effects.
If convergence problems still exist, then we sug-
gest obtaining starting values for the model’s pa-
rameters using Proc GENMOD. In most cases,
starting values obtained in this manner will be
very similar to or identical to final estimates pro-
duced by MARK or Proc NLMIXED (see Shaffer,
2004). A limitation of this approach is that models
involving observer effects or random effects can-
not be fitted in Proc GENMOD. However, Proc
GENMOD can still be used to estimate starting
values for other covariates in the model.

Given that each of the methods described above
has slight advantages and disadvantages, it is
worth noting that it is not particularly difficult to
convert a dataset prepared for analysis in SAS into
an input file appropriate for use in Program MARK.
This can be accomplished using SAS’ DATA Step
and programming statements to re–configure a
SAS input file that consists of multiple data records
per nest into a MARK input file that contains a
single record for each nest. Such a conversion,
which is implemented in the example below, al-
lows users to readily analyze data in either pro-
gram MARK or SAS and thus, make the best use
of each program’s advantages. Converting a
dataset prepared for analysis in Program MARK
into an input file appropriate for use in SAS can
also be accomplished (see below). However, the

input file for Program MARK will not necessarily
include the information about the dates of all nest
visits, and thus, in such cases, estimation of ob-
server effects on daily nest survival rate will not be
possible unless the input data are modified to
include such information.

An example

To demonstrate the implementation of the methods
described above in both SAS and MARK, an analysis
of data for Mallard (Anas platyrhynchos) nests that
were monitored during 2000 in the Coteau region of
North Dakota as part of a larger study (Stephens,
2003) is presented for various models that contain
nest–, group– and time–specific covariates. The data
set contains information from a total of 1,585 obser-
vation intervals made on 565 nests that were moni-
tored on 18 sites during a 90–d nesting season.
Interval lengths were typically 4, 5, or 6 d (average =
4.66 d, SD = 1.41 d). Here, the following subset of
the covariates measured by Stephens (2003) was
considered: (1) nest age (Age; 1 to 35 d), (2) date
(Date; 1 to 90), (3) vegetative visual obstruction at the
nest site (Robel; Robel et al., 1970), (4) the propor-
tion of grassland cover (PpnGr) on the 10.4–km2

study site that contained the nest, (5–7) the habitat
type in which the nest was located (3 indicator vari-
ables, each coded as 0 or 1, that were used to
distinguish among nests found in native grassland
[NatGr], planted nesting cover [PlCov], wetland veg-
etation [Wetl], and roadside right–of–ways [Road]),
(9) study site (Site), and (10) nest–visitation status
(Ob–an indicator variable coded as 1 on the day a
nest was visited and 0 otherwise).

Data were originally recorded in interval–specific
form, i.e., each row of data contained information
for one observation interval for an individual nest
(table 1). Data in this format were appropriate for
analysis by approaches 2 and 3 in SAS but needed
to be re–formatted before being analyzed in Pro-
gram MARK. Accordingly, SAS DATA Steps and pro-
gramming statements (appendix 1) were used to
re–configure the original data file into a MARK input
file with a single record per nest (table 2). Likewise,
the MARK input file can be re–configured appropri-
ately for analysis in SAS (appendix 2).

Competing models of nest survival were first
evaluated using Program MARK. Because these
analyses were done for illustrative purposes, the
model list was kept brief, and justification of the
models is not provided. No model in the list in-
cluded study site because this was considered to
be a random effect and so was beyond the current
capabilities of nest–survival analyses in MARK.
Although effects of observer visits on nest survival
could have been considered in MARK, they were
not because we considered it best to estimate
observer effects in models that considered as
many other sources of heterogeneity as possible,
i.e., in models that contained the full suite of both
fixed and random effects.

http://www.npwrc.usgs.gov/resource/tools/nestsurv/nestsurv.htm
http://www.npwrc.usgs.gov/resource/tools/nestsurv/nestsurv.htm
http://www.montana.edu/rotella/nestsurv/
http://www.montana.edu/rotella/nestsurv/
http://www.montana.edu/rotella/nestsurv/
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Table 1. Input format for interval–specific nest–survival data: ID. Nest number; Species. Species
code; Site. Study site; Hab. Habitat code; Int. Observation interval; t. Interval length (d); IFate. Nest
fate for the interval; SDate. Date at the start of the interval; SAge. Nest age at the start of the interval;
Robel. Vegetative visual obstruction at nest site; PpnGr. Proportion of grassland cover on the
10.4 km2 study site. (Also, see table 2.)

Tabla 1.  Formato para la introducción de datos específicos a un intervalo, relacionados con la
supervivencia en: ID. Número del nido; Species. Código de la especie; Site. Lugar del estudio; Hab.
Código del hábitat; Int. Intervalo de observación; t. Duración del intervalo (d); IFate. Destino del nido
para el intervalo; SDate. Fecha al inicio del intervalo; SAge. Edad del nido al inicio del intervalo;
Robel. Obstrucción vegetativa visual en el lugar del nido; PpnGr. Proporción de cobertura de pasto
en los 10,4 km2  que ocupa el lugar del estudio. (Véase también la tabla 2.)

ID      Species     Site       Hab      Int         t IFate SDate    SAge      Robel  PpnGr

1 Mall 14 PlCov 1 5 1 1 1 4.50 0.96

1 Mall 14 PlCov 2 5 1 6 6 4.50 0.96

1 Mall 14 PlCov 3 4 1 11 11 4.50 0.96

1 Mall 14 PlCov 4 6 1 15 15 4.50 0.96

1 Mall 14 PlCov 5 5 1 21 21 4.50 0.96

1 Mall 14 PlCov 6 5 1 26 26 4.50 0.96

1 Mall 14 PlCov 7 4 1 31 31 4.50 0.96

2 Mall 14 PlCov 1 5 1 1 3 0.88 0.96

2 Mall 14 PlCov 2 5 1 6 8 0.88 0.96

2 Mall 14 PlCov 3 4 1 11 13 0.88 0.96

2 Mall 14 PlCov 4 6 0 15 17 0.88 0.96

…

2,206 Mall 16 Road 1 4 1 73 13 6.00 0.80

2,206 Mall 16 Road 2 5 1 77 17 6.00 0.80

2,206 Mall 16 Road 3 4 1 82 22 6.00 0.80

2,206 Mall 16 Road 4 3 1 86 26 6.00 0.80

The most parsimonious fixed–effects model of
nest survival included Age and PpnGr (table 3).
This model was 1.06 AICc units better than the
second–best model, which included Age but not
PpnGr, and was ≥ 2.90 AICc units better than all
other models evaluated. The best model indi-
cated that daily survival rate increased with nest
age (  = 0.0188, SE = 0.007) and grassland ex-
tent (  = 0.369, SE = 0.211) (fig. 1). Models that
held daily survival rate constant or simply allowed
it to vary by habitat type, i.e., the only model types
that have been used in many recent publications
on nest survival (see above), received little sup-
port (�AICc ≥ 6.11).

Shaffer (2004) showed that analyses using his
methods in Proc GENMOD yield (1) the same results
as those obtained in MARK for fixed–effects models
with time–invariant covariates and (2) similar answers
to those provided by MARK for models with time–
varying covariates, e.g., nest age or date. Results
from the GENMOD approach are not presented here
(see appendix 3 for example code), but they were
indeed nearly identical to those obtained with MARK.

Proc NLMIXED was used to evaluate the same
list of fixed–effects models; results were virtually
identical to those obtained from MARK. For exam-
ple, t to at least 4 decimal places (   = 0.3689,
SE = 0.2105).

To evaluate the importance of considering more
complex models, three additional models were
evaluated using Proc NLMIXED (appendix 4). These
models were created by adding observer effects, a
random effect of site, or both effects to the most
parsimonious fixed–effects model. Of the 12 mod-
els considered, the two most parsimonious mod-
els both included a random effect of site (table 4).
Spatial process variance was estimated as 0.089
(SE = 0.052) by the better of these two models. The
second–most parsimonious model (�AICc = 0.33)
provided some evidence of a negative effect of ob-
server visits on daily survival rate for the day imme-
diately following a nest visit (  = –0.844, SE = 0.629).
The point estimate indicates that the effect was
potentially of a size that is of interest, but the lack of
precision makes inference difficult. For example,
on a site with 50% grassland cover, daily survival
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for a 15–d old nest would be predicted as 0.911 (SE
= 0.033, 95% CI = 0.842 to 0.981) if it were visited
and 0.960 (SE = 0.010, 95% CI = 0.939 to 0.981)
otherwise, where the estimates were obtained us-
ing the ESTIMATE statement (1 statement for each of
the 2 scenarios) of Proc NLMIXED (see appendix 4).

When the random effect of site was added to
various fixed–effects models, estimates of coeffi-
cients for fixed effects were quite stable with one
notable exception. The coefficient for grassland
extent was reduced from 0.369 to 0.086, while the
estimated standard error increased slightly (0.211
to 0.233), which alters the inferences that can be
drawn from this data set in important ways, i.e.,
the importance of grassland extent is called into
question. Because our emphasis here is on illus-
trating the various analysis methods, these
changes are not discussed further, and other mod-
els that might be suggested by the data are not
explored. However, Stephens (2003) conducted a
detailed analysis of both a priori and exploratory
models for the larger, multi–year dataset that in-
cluded the data analyzed here.

Recommendations

The methods presented by Dinsmore et al. (2002),
Stephens (2003) and Shaffer (2004), which are
elaborated on here, allow a variety of competing
models to be assessed via likelihood–based infor-
mation–theoretic methods. Thus, they provide ex-
cellent alternatives to traditional constant–survival
methods, and these three approaches can be used
interchangeably as best suits a particular problem.
The methods presented here: (1) can be used to
conduct analyses of stratified data (appropriate if
the simplifying assumptions of constant survival
apply) and provide estimates that are almost iden-
tical to Mayfield estimates (or various refinements),
(2) perform comparisons of survival rates among
groups, (3) allow a much broader variety of
covariates and competing models to be evaluated,
and (4) should be employed in most nest–survival
studies. It is worth noting that these methods can
also be used for analyzing survival data collected
from radiomarked individuals using ragged (un-
even) intervals among animals and over time.

Table 2. Input format for nest–survival data to be analyzed in Program MARK (White & Burnham,
1999; Dinsmore et al., 2002) where the numeric variables are: 1. Nest identification number; 2. The
date the nest was found; 3. The last date the nest was known to be alive; 4. The date that the nest’s
final fate was determined; 5. The nest’s fate (0 = successful, 1 = depredated); 6. The number of
nests with this history; 7–95. The age of the nest on the first 89 days of the 90–day nesting season
(a 0 is used for all dates preceding the date the nest was found and following age 35, i.e., the
maximum age); 96. Vegetative visual obstruction at the nest site; 97. Proportion of grassland cover
at nest site (10.4 km2); 98–101. Indicator variables indicating the habitat type a nest was in. (See
table 1 for alternative format.)

Tabla 2. Formato para la introducción de datos relativos a la supervivencia en nidos que se analizarán
con Program MARK (White & Burnham, 1999; Dinsmore et al., 2002), donde las variables numéricas
son: 1. El número de identificación del nido; 2. La fecha en que se encontró el nido; 3. La última fecha
en que se tenía conocimiento de que el nido estaba vivo; 4. La fecha en que se determinó el destino
final del nido; 5. El destino del nido (0 = satisfactorio, 1 = depredado); 6. El número de nidos con este
historial; 7–95. La edad del nido durante los primeros 89 días de la estación de anidamiento de 90 días
(para todas las fechas anteriores a la fecha en que se encontró el nido, se emplea un 0, seguido de la
edad 35; es decir, la edad máxima); 96. Obstrucción vegetativa visual en el lugar del nido; 97.
Proporción de cobertura de hierba en el lugar del nido (10,4 km2); 98–101. Variables indicadoras del
tipo de hábitat en que se encontraba el nido.  (Para un formato alternativo, ver tabla 1.)

Nest Survival Group = 1;

/* 1 */ 1 35 35 0 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
29 30 31 32 33 34 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.5 0.9616 0 1 0 1;

/* 2 */ 1 15 21 1 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.875 0.9616 0 1 0 1;

…

/* 2206 */ 73 89 89 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 6 0.8002 0 0 0 1;
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Fig. 1.  Estimated relationship between daily survival rate (S) and the proportion of a study site
consisting of grassland (PpnGr) for Mallard nests of different ages.  Estimates from the best fixed-
effects model where log (S / (1 – S)) = 2.43 + 0.019 · Age + 0.369. PpnGr.

Fig. 1.  Relación estimada entre la tasa de supervivencia diaria (S) y la proporción de un lugar de
estudio formado por pastos (PpnGr) en nidos de distintas edades de Mallard. Las estimaciones de
los mejores modelos de efectos fijos fueron log (S / (1 – S)) = 2.43 + 0.019 · Age + 0.369. PpnGr.
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Table 3. Summary of model–selection results obtained in Program MARK (White & Burnham, 1999;
Dinsmore et al., 2002) for fixed–effects models of daily survival rate for Mallard nests studied by Stephens
(2003) in North Dakota. K is the number of parameters in the model, and wi is the model weight.

Tabla 3. Resumen de los resultados sobre la selección de modelos obtenidos con Program MARK
(White & Burnham, 1999; Dinsmore et al., 2002) para los modelos de efectos fijos de la tasa de
supervivencia diaria en nidos de Mallard estudiados por Stephens (2003) en Dakota del Norte. K es
el número de parámetros que contiene el modelo, y wi es el peso del modelo.

Model K AICc �AICc wi

�0 + �1*Age + �2*PpnGr 3 1563.010 0.000 0.465

�0 + �1*Age 2 1564.066 1.056 0.274

�0 + �1*Age + �2*Robel 3 1565.906 2.896 0.109

�0 + �1*Age + �2NatGr + �3*CRP + �4*Wetl 5 1567.344 4.334 0.053

�0 + �1*PpnGr 2 1567.368 4.358 0.053

�0 1 1569.117 6.107 0.022

�0 + �1*Robel 2 1570.775 7.765 0.010

�0 + �1 *Date 2 1570.826 7.817 0.009

�0 + �1*NatGr + �2*CRP + �3*Wetl 4 1571.957 8.948 0.005
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Despite these advances, further analysis im-
provements would be useful. The methods pre-
sented here do not consider age–specific encoun-
ter probabilities, where "age" refers to the age of a
newly encountered nest, as do some methods for
survival analysis (Pollock & Cornelius, 1988;
Williams et al., 2002). Information on age–specific
nest encounter probabilities can provide informa-
tion about survival probabilities prior to encounter.
The utility of such information is presented by
Williams et al. (2002).

Improved methods of estimating goodness–of–
fit and for detecting and estimating overdispersion,
or extra–binomial variation, would be useful given
that a variety of factors may cause overdispersion.
Nest–success data are commonly collected accord-
ing to multilevel designs that result in grouped data,
e.g., multiple observations on at least some nests,
multiple nests per site, and multiple sites within
each year. Thus, undetermined random effects of
individuals, sites, and years could cause over-
dispersion or within–group correlations in daily sur-
vival rates, e.g., nest fates from multiple nests from
within a colony or from a given study plot may not
be independent. In addition, the spatial clustering
of covariate levels could generate spatial correla-
tion in nest survival rates and thus cause over-
dispersion. The random–effects model imple-
mented in Proc NLMIXED offers an improvement
as it can estimate random effects due to one source,
e.g., site. However, current methods in NLMIXED do

not accommodate multi–level nonlinear mixed mod-
els (e.g., some random effects associated with site,
some associated with year, and others associated
with individuals), although, as mentioned above,
they will be of interest in some studies. Recently,
Bayesian techniques (Cam et al., 2002; Link et al.,
2002; Williams et al., 2002) were used to address
individual heterogeneity in mark–resight analysis,
and to estimate age–specific nest–survival rates
(He et al., 2001; He, 2003). Thus, Bayesian tech-
niques may hold potential for improving future
modeling of nest survival data. A composite likeli-
hood approach (Lele & Taper, 2002) has been used
successfully for nest–success data (M. Taper, S.
Lele, & J. J. Rotella) and should allow more thor-
ough treatment of multiple random effects in nest–
survival data in the future, e.g., through simultane-
ous consideration of factors such as individuals,
sites, and years. In some studies, uncertainty will
exist about nest ages and when transitions among
nest stages occur (Williams et al., 2002). This prob-
lem has been addressed for stratified data (Stanley,
2000) but not yet for data sets containing more
complex sets of covariates.
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Appendix 1. Code for converting an example dataset prepared for analysis in SAS (SAS Institute,
2000) into an input file for Program MARK (White & Burnham, 1999).

Apéndice 1. Código para convertir un conjunto de datos de un ejemplo preparado para ser
analizado en SAS (SAS Institute, 2000) a un archivo de datos para Program MARK (White &
Burnham, 1999).

proc sort data = sasuser.mall2000nd;
by id int;
run;

data mark1; set Sasuser.mall2000nd;
     retain firstday; retain firstage;
by id;

if first. id then do;
firstday= sdate; /*date at start of 1st interval = date found*/
firstage=sage; /*age at start of 1st interval = age when found*/

end;
if last. id then do;

lastdaylive= sdate; /*date at start of last interval for nest*/
lastday=sdate + t; /*date at end of last interval for nest*/

end;
if firstday=. then delete;
if lastday=. then delete;
if lastdaylive=. then delete;

/* create indicator variables for different nesting habitats*/
if hab=1 then NatGr=1; else NatGr=0; /*Native Grassland*/
if hab=2 or hab=3 or hab=9 then PlCov=1; else PlCov=0; /*Planted Cover*/
if hab=7 or hab=22 then Wetl=1; else Wetl=0; /*Wetland sites*/
if hab=20 or hab=8 then Road=1; else Road=0; /*Roadside sites*/

drop sdate sage;
run;

data mark2; set mark1;
array age{90}; /*where 90 is the number of days in the study’s nesting season*/

do i=1 to 90;
if i<firstday then age{i}=0;
else age{i}=firstage+i-firstday;

end;
do i=1 to 90;

if age{i}>35 then age{i}=0; /*where 35 is the species’ maximum nest*/
end;

run;
data markinp; set mark2;
/*Create a text file with the necessary output for MARK*/
/*The directory used in the statement below must exist on the computer being used*/
file ‘C:\My Documents\nest success\MallMARK.inp’ ;
/*Use ID number for first nest in the data set to put header line on file for MARK*/
/*the next line can be deleted if ID numbers aren’t in the dataset. But the header line*/
/*for MARK must then be put in by hand before using it in MARK.*/
if id=1 then put «Nest Survival Group=1 ;» ;
/*Code below assumes that ifate is 1 for a nest that survives an interval and*/
/*that ifate is 0 for nests that fail during an interval between 2 visits.*/
if ifate = 1 then put «/* « id « */ « firstday lastday lastday « 0 1 « age1-age89 robel
PpnGr NatGr PlCov Wetl Road «;»;

else put «/* « id « */ « firstday lastdaylive lastday « 1 1 « age1-age89 robel
PpnGr NatGr PlCov Wetl Road «;»;
run;
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Appendix 2.  Code for converting a particular dataset prepared for analysis in Program MARK (White
& Burnham, 1999) into an input file for SAS (SAS Institute, 2000).

Apéndice 2. Código para convertir un conjunto de datos concreto preparado para ser analizado con
Programa MARK (White & Burnham, 1999) a un archivo de datos para SAS (SAS Institute, 2000).

* This program reads the MARK input file shown in table 3 and creates a SAS
* data set that can be analyzed with Proc Genmod or Proc Nlmixed.
* Because the MARK format does not contain information on all intermediate visits
* to a nest, a maximum of 2 records is generated for each nest.;

data mark2sas;
  array age(89) age1-age89;
  Infile ‘C:\My Documents\nest success\MallMARK.inp’ firstobs=2 lrecl=750;
  Input junk $ id junk $ firstday lastdaylive lastday markfate freq age1-age89 Robel PpnGr NatGr PlCov Wetl Road;
  If markfate=0 then do;  /* successful nest - generate 1 interval with ifate=1 */
     ifate=1;
     sdate=firstday;
     t = lastday - firstday;
     sage = age{sdate};
     output;
  end;
  If markfate=1 then do; /* unsuccessful nest - generate 1 interval with ifate=1 and 1 interval with ifate=0 */
     ifate=1;
     sdate=firstday;
     t = lastdaylive - firstday;
     sage = age{sdate};
     output;
     ifate=0;

sdate=lastdaylive;
t = lastday -lastdaylive;
sage = age{sdate};
output;

  end;
  keep id Robel PpnGr NatGr PlCov Wetl Road ifate sdate t sage;
run;

proc print; run;
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Appendix 3. Example code for analyzing fixed–effects models of nest–survival data from periodic
nest visits with Proc GENMOD in SAS (SAS Institute, 2000). Note: code will have to be modified
accordingly for other datasets, e.g., variable names will need to be adjusted.

Apéndice 3. Código de ejemplo para analizar con Proc GENMOD en SAS (SAS Institute, 2000)
modelos de efectos fijos correspondientes a los datos de supervivencia en nidos a partir de visitas
periódicas a los mismos. Nota: el código deberá modificarse en función de los otros conjuntos de
datos; es decir, se deberán ajustar los nombres de las variables.

* Sample code for fitting logistic–exposure models (Shaffer, 2004) to
* interval nest–visit data.
*
* Variables are as follows:
*
* Ifate = 0 if nest fails the interval, and 1 if it survives.
* Trials = 1 in all cases.
* Avgage = age (d) of the nest at interval midpoint.
* PctGr = proportion of grassland cover.
* t = interval length (d)
*
* Macros for generating AIC analyses and model-averaged parameter
* estimates are available from
* http://www.npwrc.usgs.gov/resource/tools/nestsurv/nestsurv.htm
*;

Proc Genmod Data=Mall;
Fwdlink link = log((_mean_**(1/t))/(1-_mean_**(1/t)));
Invlink ilink = (exp(_xbeta_)/(1+exp(_xbeta_)))**t;
Model Ifate/Trials = Avgage PpnGr / Dist=bin;
Ods output modelfit=modelfit;
Ods output modelinfo=modelinfo;
Ods output ParameterEstimates=ParameterEstimates;
Title ‘b0 + b1*avgage + b2*pctgr4’;

Run;

http://www.npwrc.usgs.gov/resource/tools/nestsurv/nestsurv.htm
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Appendix 4. Code for analyzing fixed– and random–effects models of nest–survival data from
periodic nest visits with Proc NLMIXED in SAS (SAS Institute, 2000). Note: code will have to be
modified accordingly for other datasets, e.g., variable names will need to be adjusted.

Apéndice 4. Código para analizar con Proc NLMIXED en SAS (SAS Institute, 2000) modelos de
efectos fijos y aleatorios correspondientes a los datos de supervivencia en nidos a partir de visitas
periódicas.  Nota: el código deberá modificarse en función de los otros conjuntos de datos; es decir,
se deberán ajustar los nombres de las variables.

* This file:
* 1. inputs a dataset containing nest survival information,
* 2. calculates the effective sample size for the dataset,
* 3. runs a variety of models of NEST SURVIVAL in NLMIXED,
* 4. creates an AICc table for model selection, &
* 5. outputs the AICc table to HTML, RTF, and pdf files.
* Step 1: calculate the effective sample size according to the methods
* of Dinsmore et al. (2002). Here, n–ess is incremented by 1 for
* each day a nest was under observation and survived and by 1 for
* each interval for which a nest was under observation and failed.;
* This step:
* 1. calculates the contribution to n–ess for each observation
* interval and adds that contribution to the sum of ness, i.e.,
* ness column is a running total
* 2. creates dummy/indicator variables for each of 4 habitat types;
data Mall; set Sasuser.mall2000nd;
 if ifate=0 then ness+1;
 else if ifate=1 then ness+t;
/* create indicator variables for different nesting habitats */

/* Native Grassland */
if hab=1 then NatGr=1; else NatGr=0;

/* CRP & similar */
 if hab=2 or hab=3 or hab=9 then CRP=1; else CRP=0;

/* Wetland sites */
 if hab=7 or hab=22 then Wetl=1; else Wetl=0;

/* Roadside sites */
 if hab=20 or hab=8 then Road=1; else Road=0;

run;

* This step finds the actual n-ess for the dataset,
* which is the maximum value in the ness column.;
Proc Univariate data=Mall;
 var ness;
 output out=ness max=ness;
run;

* This step sorts the data by site, which is used as a random factor in * some models below. PROC
NLMIXED assumes that a new realization

* occurs whenever the SUBJECT= variable changes from the previous
* observation, so your input data set should be clustered according
* to this variable. You can accomplish this by running PROC SORT
* prior to calling PROC NLMIXED using the SUBJECT=variable as the
* BY variable. ;
Proc Sort data=Mall;
by site; run;

* This step reformats the Fit Statistics table of NLMIXED
* so it displays more decimal places in the created tables;
proc template;

define table Stat.Nlm.FitStatistics;
notes «Fit statistics»;
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column Descr Value;
header H1;
define H1;

text «Fit Statistics»;
space = 1;

end;
define Descr;

header = «Description»;
width = 30;
print_headers = OFF;
flow;

end;
define Value;

header = «Value»;
format = 12.4;
print_headers = OFF;

end;
end;

run;

* Run the most parsimonious fixed-effects model for this datset;
Proc Nlmixed data=Mall tech=quanew method=gauss maxiter=1000;
parms B0=0, B1=0, B2=0;

p=1;
   do i=0 TO t-1;
logit=B0+B1*(SAge+i)+B2*PpnGr;
      p=p*(exp(logit)/(1+exp(logit)));
   end;

model ifate~binomial(1,p);
Run;

* Run the most parsimonious fixed-effects model for this datset
*   with the addition of an observer effect on dsr for day 1
*   of each interval (done with a dummy variable called ‘Ob’);
Proc Nlmixed data=Mall tech=quanew method=gauss maxiter=1000;
parms B0=0, B2=0, B4=0, B8=0;

p=1;
   do i=0 TO t-1;

if i=0 then Ob=1;
else Ob=0;
logit=(B0+(B8*Ob))+B2*(SAge+i)+B4*PpnGr;
p=p*(exp(logit)/(1+exp(logit)));

   end;
model ifate~binomial(1,p);
Run;

* Run the most parsimonious fixed-effects model for this datset
*   with the addition of a random effect of site, i.e., run a
*   mixed model where the random effect influences the intercept.;
Proc Nlmixed data=Mall tech=quanew method=gauss maxiter=1000;
parms B0=2.42, B2=0.019, B4=0.38, vsite=0.5;

p=1;
   do i=0 TO t-1;
   if i=0 then Ob=1;
   else Ob=0;

   logit=(B0+u)+B2*(sage+i)+B4*PctGr4;
      p=p*(exp(logit)/(1+exp(logit)));
   end;

Appendix 4. (Cont.)
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model ifate~binomial(1,p);
random u~normal(0,vsite) subject=site;
Run;

* Run the most parsimonious fixed-effects model for this datset
*   with the addition of an observer effect on dsr for day 1
*   and the addition of a random effect of site.;
Proc Nlmixed data=Mall tech=quanew method=gauss maxiter=1000;
parms B0=2.42, B2=0.019, B4=0.38, B8=-1, vsite=0.5;

p=1;
   do i=0 TO t-1;
   if i=0 then Ob=1;
   else Ob=0;

   logit=(B0+u+B8*Ob)+B2*(sage+i)+B4*PctGr4;
      p=p*(exp(logit)/(1+exp(logit)));
   end;

model ifate~binomial(1,p);
random u~normal(0,vsite) subject=site;

* The following lines of code estimate the daily survival rate
*  (DSR) for a 15-day old nest on a site with a grassland
*   proportion of 0.5 on (1) the day of a nest visit and
*   (2) a day without a nest visit;

estimate ‘dsr-visited’
   exp(B0+B2*(15)+B4*0.5+B8*1)/(1+exp(B0+B2*(15)+B4*0.5+B8*1));
estimate ‘dsr-not visited’
   exp(B0+B2*(15)+B4*0.5+B8*0)/(1+exp(B0+B2*(15)+B4*0.5+B8*0));

Run;
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