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Abstract
Individual heterogeneity and identifiability in capture–recapture models.— Individual heterogeneity in detec-
tion probabilities is a far more serious problem for capture–recapture modeling than has previously been
recognized. In this note, I illustrate that population size is not an identifiable parameter under the general
closed population mark–recapture model Mh. The problem of identifiability is obvious if the population
includes individuals with pi = 0, but persists even when it is assumed that individual detection probabilities
are bounded away from zero. Identifiability may be attained within parametric families of distributions for pi,
but not among parametric families of distributions. Consequently, in the presence of individual heterogeneity
in detection probability, capture–recapture analysis is strongly model dependent.
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Resumen
Heterogeneidad individual e identificabilidad en modelos de captura–recaptura.— La heterogeneidad
individual en las probabilidades de detección representa un problema para la modelación del procedimiento
de captura–recaptura mucho más serio de lo que previamente se había reconocido. En este artículo se
demuestra que el tamaño de la población no constituye un parámetro identificable en el modelo general Mh
que emplea técnicas de marcaje–recaptura de poblaciones cerradas.  El problema de la identificabilidad
resulta evidente si la población incluye individuos con pi = 0, pero sigue persistiendo aun cuando se
presuponga que las probabilidades de detección individual se han alejado de cero. La identificabilidad
puede conseguirse en familias paramétricas de distribuciones para pi, pero no entre familias paramétricas
de distribuciones. Por consiguiente, si se da una heterogeneidad individual en la probabilidad de detección,
el análisis de captura–recaptura depende considerablemente del modelo considerado.

Palabras clave: Captura–recaptura, Probabilidades de detección, Heterogeneidad, Identificabilidad,
Estimación de la población.
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Introduction

Let Xi, i = 1,2,...,N be independent binomial random
variables, with common index T and success rates
pi sampled independently from distribution g(p).
Further, let

where 1(·) is the indicator function. Having ob-
served f c = (f1,f2,...,fT), the problem is to estimate N,
or equivalently, to predict f0. This is the closed
population capture–recapture model Mh: N is the
unknown population size, Xi is the number of times
animal i is captured in T sampling occasions, fj is
the number of animals captured exactly j times.

Numerous methods for estimating N exist, rang-
ing from the jackknife method of Burnham & Overton
(1978), to finite mixture models (Norris & Pollock,
1996; Pledger, 2000), and including parametric
models such as the logit normal (Coull & Agresti,
1999) and beta models (Dorazio & Royle, 2003).
Given the restrictions on g(p) implicit to these
methods, estimation of N is usually successful.
However, as will be demonstrated here and else-
where (Link, 2003), N is not identifiable without
untestable model assumptions restricting the set of
distributions g(p).

One example of this difficulty is well known. If
the population consists of N1 individuals with pi = 0,
and N2 individuals with pi > 0, an analyst of model
Mh can at best estimate N2, rather than N = N1 + N2.
This circumstance is generally dismissed with the
assertion that "we’re only estimating the observable
portion of the population."

But what of animals with low but nonzero detec-
tion probabilities? These are clearly the ones which
present the challenge to capture–recapture analy-
sis. Huggins (2001), seeking to identify restrictions
on the collection of distributions that would ensure
identifiability, focused his attention on removing
difficulties associated with low detection probabili-
ties. The condition he considered was that g(p)
places no mass on values of p < 1  – (1 – �)1/T for a
fixed value � c (0,1). This means that every
individual has probability of at least � > 0 of
being captured on one of the T sampling occa-
sions. Huggins concluded that if the converse of
his Theorem 3 were true (he describes this as
"difficult to establish" and "an open question")
then the condition would be sufficient to ensure
identifiability.

The restriction is not sufficient, as is demon-
strated by example1, below. It is possible to con-
struct 2 distinct distributions, g1(p) g g2(p), each
with support bounded away from zero, the two
distributions producing identical sampling distri-
butions for the observed data f c, but leading to
contradictory inference about f0.

Stronger restrictions, or at least different restric-
tions are required, to ensure identifiability of N. For
example, Burnham’s (1972) thesis includes a dem-
onstration that restricting attention to beta distrib-

uted heterogeneity leads to identifiability of N. Thus
we can feel confident dealing with model Mh if we are
confident that g(p) is a beta distribution. But what if,
unbeknownst to us, g(p) is a logit normal distribu-
tion? It can be demonstrated by example that the
sampling distribution of fc induced by a beta distribu-
tion can be very closely approximated by the sam-
pling distribution of f c induced by a logit normal
distribution, but with substantially different inferences
about N. (See example 2, below.) The inferences are
distinct, but there is no way, on the basis of data f c

to decide which is correct (except with vast sample
sizes). Since it is unlikely that one will have episte-
mological grounds for assuming the beta distribution
over the logit normal (or other distributions, such as
the log gamma; see Link, 2003), it seems faint
comfort to learn that N is identifiable within any one
of these classes.

My third example, below, shows that if nature is
perverse in its selection of g(p), the sampling distri-
bution of f c can be strongly and misleadingly sug-
gestive of a particular form for g(p), even for a
variety of values for T.

Additional notation

Let n denote the number of distinct animals ever
sighted, i.e., n = f1 + f2 +...+ fT . I refer to the data f c

as the observed frequency distribution, and to
f = (f0,f1,...,fT) as the complete frequency distribu-
tion. The vectors f and f c are multinomial random
variables with indices N and n, respectively, and jth
cell probabilities designated by �(j) and �C(j), re-
spectively. These are related by �C(j) = �(j)/1 – �(0).
Under model Mh, we have

(1)

Substituting an estimate  for g(p) in (1), one
obtains estimates , j = 0,1,2,...,n.

It is easily verified that

(2)

Thus, it is natural to predict the number of individu-
als not seen by

and to predict the unknown population size by
    = n +   .

Example 1

Suppose that T = 6, that g1(p) corresponds to a
uniform distribution on (0.008512, 0.76), and that
g2(p) corresponds to a 3–point mixture placing
masses {0.350739, 0.414090, 0.235172} on values
{0.161937, 0.449089, 0.692734}. The minimum
value of p attainable under either model is 0.008512
= 1 – (1 – �)1/T, for � = 0.050; every animal has at
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least a 5% chance of being caught on one or more
sampling occasions.

The cell probabilities for f and f c are given in
table 1. Note that the sampling distribution of the
data f c is identical for the two distributions g(p),
but that the predicted value of f0 is nearly half
again as large under the uniform distribution as
under the two–point mixture: with n = 100, the
prediction of f0 under the uniform specification is
100 (0.179) /(1 – 0.179) ..... 22, while the prediction
of f0 under the 3–point specification is 100(0.133)/
(1 – 0.133) ..... 15.

I describe the method used for constructing
Example 1 in presenting Example 3, below. Exam-
ple 1 may be of special interest to analysts, since
the two distributions correspond to models that
could be fit based on observations from T = 6
sampling periods. It is worth mentioning that the
problem of identifiability does not depend on both
models being fittable, a point to which I return in
presenting Example 3.

Example 2

Let T = 5, and g1(p) represent the distribution
resulting from the assumption that logit(p) has a
normal distribution with mean of –1.75 and stand-
ard deviation of 2.00. I calculated the sampling
distribution for f and f c by numeric integration over
a grid of 100,000 points.

Next, I minimized the Kullback–Leibler (KL) dis-
tance from the distribution of f  c induced by g1(p) to
the distribution of f c induced by g(p) in the beta
family of distributions (for details on the KL–dis-
tance; see Agresti, 1990: p. 241). The resulting beta
distribution has parameters a = 0.2512 and
b = 1.1300. This beta distribution and the logit nor-
mal distribution described in the previous para-
graph are plotted in figure 1.

The observed and complete frequency distribu-
tions are given in table 2. Note that while the
observed frequency distributions are not identical,
they are close enough to be virtually indistinguish-

able except with extremely large samples. The dis-
crepancy in predictions of f0 is substantial: based
on n = 100, the predictions are 83 (for the logit–
normal model) and 156 (for the beta model).

Example 3

Expanding the term (1 – p)T–j in equation (1) by
means of the binomial theorem, it is seen that the
values �(x) are linear combinations of the first T
moments of distribution g(p), for x = 1,2,...,T. The
same is true for

Let mg(j) denote the jth moment of g(p). If we
could construct a distribution h(p) with moments
mh(j) = cmg(j), for some c g 1, and for j = 1,2,...,T,
the observations in the previous paragraph, and
the relation �C(j) = �(j)/(1 –     �(0)) lead to the
conclusion that distributions g(p) and h(p) will
induce the same values �C(j), but different values
for �(0). Using subscripts g and h to distinguish
the values of �(0), we obtain the relation

(3)

Thus these distinct distributions of heterogeneity
will lead to the same sampling distributions for
observed data, but different predictions for f0, and
consequently, for N.

If g(p) is the uniform distribution, mg(j) = 1 /
 (j + 1). Consider the distribution function h(p) = 1/
15 ( 114 – 4950 p + 79200 p2 – 600600 p3 +
2522520 p4– 6306300 p5 + 9609600 p6 –
8751600 p7 + 4375800 p8 – 923780 p9).

This distribution is plotted along with the uni-
form distribution in figure 2. Straightforward cal-
culation shows that the moments of h(p) are
mh(j) = c / (j + 1), with c = 14 / 15, for j = 1,2,...,9.

Thus for a study involving any number of
sampling occasions up to T = 9, the data pro-
duced with heterogeneity distribution h(p) will be

Table 1. Cell probabilities for �(x) and �C(x) for complete and observed frequency distributions of
Example 1.

Tabla 1.  Probabilidades de cada celda para �(x) y �C(x) de las frecuencias de distribución completas
y observadas del Ejemplo 1.

0 1 2 3 4 5 6

Unif (a,b) �(x) .179048 .189616 .188057 .178371 .147685 .089382 .027840

�C(x) – .230971 .229072 .217273 .179895 .108876 .033912

3 pt. mixture �(x) .133294 .200184 .198538 .188312 .155916 .094364 .029392

�C(x) – .230971 .229072 .217273 .179895 .108876 .033912
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indistinguishable from data produced under a
uniform distribution of heterogeneity. However,
the predictions of f0 will differ substantially. Since
under the uniform distribution �g(0) = 1/(T + 1),
we find from (3) and (2) that the prediction of f0
based on the uniform distribution will be smaller
than the prediction based on h(p) by a factor of
14 / (T + 15).

Some might dismiss this example on the grounds
that they would never even consider fitting a distri-
bution that looks like h(p); to this, I reply "That’s
exactly my point!" If nature perversely selects h(p)
as the distribution of heterogeneity, and we are
(excusably) misled into assuming a uniform distri-

bution, our predictions of f0 will be too small by a
factor of 14 / (T + 15), and we’ll never know the
difference.

Conclusions and discussion

Population size N is not an identifiable parameter
under model Mh, except under the imposition of
untestable model assumptions. Thus estimation of
population size, in the presence of individual het-
erogeneity in detection is inevitably model based,
much the same as the analysis of oft–reviled count
survey data.

Table 2. Cell probabilities for �(x) and �C(x) for complete and observed frequency distributions of
Example 2.

Tabla 2. Probabilidades de cada celda para �(x) y �C(x) de las frecuencias de distribución completas
y observadas del Ejemplo 2.

0 1 2 3 4 5

Logit–normal �(x) 0.454 0.208 0.126 0.090 0.070 0.052

�C(x) – 0.381 0.231 0.165 0.128 0.095

Beta �(x) 0.609 0.149 0.090 0.065 0.050 0.037

�C(x) – 0.381 0.231 0.166 0.127 0.095

Fig.  1. Density functions used in Example 2. Dashed line represents beta distribution with parameters
a = 0.2512 and b = 1.1300; solid line is distribution of p corresponding to logit(p) having a normal
distribution with mean of –1.75 and standard deviation of 2.00. Note that x–axis has been distorted to
accentuate the differences between the two densities.

Fig. 1. Funciones de densidad utilizadas en el Ejemplo 2. La línea discontinua representa la
distribución beta con los parámetros a = 0,2512 y b = 1,300; la línea continua es la distribución de
p correspondiente al logit(p) que presenta una distribución normal con una media de –1,75 y una
desviación estándar de 2,00. Nótese que el eje x se ha distorsionado para acentuar las diferencias
entre las dos densidades.
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It is worth considering what the further impli-
cations of this finding are, particularly for open
population models. Some early indications (Link,
2003) are that while estimates of population sizes
may be biased in a manner similar to that de-
scribed here for closed population estimation,
survival estimates may be less sensitive to het-
erogeneity in detection rates. On the other hand,
since capture–mark–recapture experiments es-
sentially create "populations" of marked animals
that are closed except to mortality, it is possible
that time variation in detection rates might induce
bias in survival estimates.

The problems presented here should come as
no surprise. Indeed, without specific parametric
models for the heterogeneity in p, we find our-
selves in the unpleasant circumstances described
in the classic paper of Kiefer & Wolfowitz (1956)
which demonstrated, among other things, that
maximum likelihood estimates of parameters of
interest may be asymptotically biased, and badly
so, if the number of nuisance parameters is al-
lowed to increase without bound. This is pre-
cisely the situation under model Mh, with indi-
vidual detection probabilities in the role of nui-
sance parameters.
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Fig. 2. Density functions used in Example 3. The first nine moments of the nonuniform density are
precisely 14/15th’s the size of the corresponding moments of the uniform density.

Fig. 2. Funciones de densidad utilizadas en el Ejemplo 3. Los primeros nueve momentos de la
densidad no uniforme equivalen precisamente a 14/15 del tamaño de los momentos homólogos de la
densidad uniforme.
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