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Abstract
The expansion process of the Iberian ibex in the Sierra de Guadarrama National Park, Madrid (Spain). In 
this paper we explore the usefulness of MaxEnt to predict the most suitable areas for a wildlife species, 
the Iberian ibex (Capra pyrenaica). For two decades (1990–2010), the species was established in a small 
part of the National Park Sierra de Guadarrama (Spain) and there has been a process of expansion to 
other areas of this protected area since 2010. However, almost two decades have elapsed since the modeling 
methods (MaxEnt) were proposed and no studies have tested their effectiveness using real distribution data, 
i.e. data from past predictions, to see if they fit the current distribution. We generated a model with presen-
ce–only data from 2007 and verified accuracy from 2017 data concerning real presence. Our results show 
a relationship between models and the species' current presence. The generated model can be useful to 
define the preferred locations of the species. We detected several differences between males and females of 
the species. This work not only shows the importance of selecting climatic and ecological variables for the 
construction of models but also indicates that they must be adjusted, at least for some species, to each 
sex and period of the year. 
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Resumen
El proceso de expansión de la cabra montés en el Parque Nacional de la Sierra de Guadarrama en Madrid 
(España). En este trabajo estudiamos la utilidad del programa MaxEnt para predecir las zonas más adecuadas 
para una especie silvestre, la cabra montés (Capra pyrenaica). Durante dos décadas (1990–2010), la especie 
estuvo establecida en una pequeña parte del Parque Nacional de la Sierra de Guadarrama (España) pero 
desde 2010 ha seguido un proceso de expansión a otras zonas de este espacio protegido. Sin embargo, ya 
han pasado casi dos décadas desde que se propuso el uso de estos modelos (MaxEnt) y no hay estudios 
que aborden su eficacia con valores reales de distribución, esto es, que comprueben si las predicciones del 
pasado se ajustan a la situación actual real. Hemos generado un modelo solo con los datos sobre presen-
cia obtenidos en 2007 y hemos verificado su precisión a partir de estos datos reales de presencia de 2017. 
Nuestros resultados muestran una relación entre los modelos y la presencia actual de la especie. El modelo 
generado nos ha permitido determinar las localizaciones preferidas de la especie. Se han detectado algunas 
diferencias en función del sexo de los contactos. Este trabajo no solo muestra la importancia de la selección 
de variables climáticas y ecológicas para la realización de los modelos, sino también que estos modelos deben 
ajustarse, al menos para algunas especies, en función del sexo y el período del año.
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Introduction

The Iberian ibex (Capra pyrenaica, Schinz, 1838) is an 
endemic wild Artiodactylan of the Iberian Peninsula that 
frequents areas with outcropping rock associated with 
several types of natural vegetation and some isolation. 
It is associated with rocky areas with mountain and 
subalpine vegetation in the Iberian Peninsula, ranging 
from alpine meadows to wooded and scrubland areas 
(Granados et al., 2007; Refoyo, 2012).

In the mid–nineteenth century the species showed 
a strong decline, both nationally and locally (Alados 
and Escos, 1995; Soriguer et al., 1998), possibly due 
to competition with other ungulates, habitat destruction 
and human pressure (Pérez et al., 2002; Acevedo 
and Cassinello, 2009). However, in recent decades, 
its interest as a game species led to its reintroduc-
tion in other Spanish mountain ranges, facilitating its 
expansion (Fonseca et al., 2017).

These restockings, however, have not been con-
ducted following international criteria. Nor have they 
been carried out using habitat suitability studies or 
specific tools to determine the adequacy of the en-
vironment for the species (Refoyo, 2012). Knowing 
parameters such as land cover, antrophic influence, 
flora and fauna diversity is essential as such factors 
affect the species' relationship with the environment 
(Odum, 1986; Hui, 2006).

A good method to characterize these ecological 
niches is to assess correlations between a dependent 
variable, defined by the distribution of the species 
(presence/absence), and to select independent va-
riables using binomial logistic regression (Elith and 
Burgman, 2002; Anadón et al., 2007). Many studies 
have established the potential of a territory using 
presence and absence data (Moisen and Frescino, 
2002; Segurado and Araújo, 2004; Higgins et al., 
2017). This method has been used in many studies 
related to plants (Zimmermann and Kienast, 1999), 
birds (Suárez–Seoane et al., 2004), mammals (Jaberg 
and Guisan, 2001), reptiles (Guisan and Hofer, 2003), 
invertebrates (Maggini et al., 2002) and diseases 
(Wint et al., 2002).

However, conducting this type of analysis is often 
limited by a lack of information (absence data) (Broms 
et al., 2014), especially in large areas. As a result, 
the current modelling techniques often used (SDM) 
require presence–only data (data that are abundant in 
official databases) (Converse et al., 2013; Gedir et al., 
2013; Weber et al., 2017) and MaxEnt is considered 
one of the best of these modelling techniques for de-
veloping distribution models (Hernández et al., 2006; 
Palialexis et al., 2011; Magarey et al., 2017). Such 
models make it possible to establish the suitability of 
the territory for a particular species on the basis of 
the known presence data (precise locations) and the 
values of variables that characterize this presence 
(predictor variables), and also to establish the places 
that, in other areas of the territory, show a certain 
degree of similarity to these conditions.

The use of the species distribution model (SDM) 
(Guisan and Zimmermann, 2000; Mateo et al., 2011) 
is an increasingly popular tool (Elith and Leathwick, 

2009; Ferrer–Sánchez et al., 2017; Wu et al., 2018). 
It is  even used in game species (Vargas et al., 2007; 
Acevedo et al., 2010; Yongyut et al., 2012), as in the 
case of the Iberian ibex (Capra pyrenaica) (Acevedo 
et al., 2007; Refoyo et al., 2014).

The use of SDM provides the possibility to conduct 
studies in both conservation and basic science that are 
difficult, and sometimes impossible, to address with 
other methods (Warren and Seifert, 2011). Even so, 
previous studies have also shown that many factors 
could affect the performance of SDM, such as the 
size and spatial biases of sampling data, algorithms 
(Wisz et al., 2008; Phillips et al., 2009; Shcheglovito-
vaa and Andersona, 2013) and thresholds used (Liu 
et al., 2005; Nenzen and Araujo, 2011; Bean et al., 
2012) and, in particular, over–adjustment (Wenger and 
Olden, 2012). One of the assumptions of the SDMs 
is that the data used for model calibration are free of 
bias. However, this is never the case, especially in 
data collection (Fourcade et al., 2014; Tessarolo et al., 
2014). Although there are statistical techniques to co-
rrect these errors and determine the robustness of the 
model (Warren and Seifert, 2011; Liu et al., 2015) –and 
they are good statistical approximations– the best way 
to determine the efficiency of the models is to check 
with real data after a certain period of time. Although 
almost two decades have passed since the use of the-
se models was proposed (Guisan and Zimmermann, 
2000) no study has yet related the actual values of 
species occurrence with the proposed distribution 
models. The species' low speed of dispersion and the 
difficulty to perform these distribution studies in areas 
other than those of origin of the data make this work 
difficult (Tinoco–Torres et al., 2014; Fonseca et al., 
2017). Nevertheless, Iberian ibex were reintroduced 
in the Sierra de Guadarrama National Park (Madrid, 
Central Spain) in the 1990s and their demographic 
trend and distribution has been monitored, allowing 
us to validate these models with real data. Until 2007 
and for several decades, the population showed an 
increase in a limited area of the Park (reintroduction 
zone) and there was no dispersion to other areas of 
the Park. However, since then, the population has 
occupied other areas (Refoyo et al., 2015, 2016). 
Here we analysed whether the distribution models 
generated from data concerning the species in 2007 
(based on data collected in a survey carried out in 
2007) fit the current distribution of the species (2017) 
in this National Park since its expansion.

To achieve our goal, we: i) estimated the suitable 
areas for the distribution of Iberian Ibex using presen-
ce–only distribution data (2007); ii) tested the model 
with data from 2017; and iii) analyzed whether there 
are differences in the models generated due to diffe-
rent behaviour between the sexes during breeding.

Material and methods

Study area

The study was carried out in the Community of Madrid 
(Spain) where there is an Iberian ibex population in 
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the northern region, in the National Park of Sierra de 
Guadarrama (25,317 ha). The park has a continental 
climate with large temperature variations between 
seasons and very dry summers (fig. 1). The vege-
tation includes shrubs (Cytisus purgans, Juniperus 
communis nana) and grassland (Festuca indigesta, 
Nardus stricta, Festuca rubra) in highland areas, 
Mediterranean shrubs (Cistus ladanifer, Rosmarinus 
officinalis, Thymus vulgaris, Lavandula stoechas) in 
the steeply sloped areas, and forests (of Quercus 
ilex, Quercus pyrenaica, Pinus spp.) in the valleys, 
and on hillsides.

Although it would be of interest to study the pre-
sence of the mountain goat throughout the whole area 
of the Sierra de Guadarrama National Park, reliable 
data using systematic procedures are scarce and 
digital layers of the variables used (specifically vege-
tation and rock cover) for modelling on the northern 
slope (Castilla y León) are lacking, ruling out out the 
possibility to generalise the study with the necessary 
robustness for the entire park.

Generation of models 

Dependent variable

Data used in this study consisted of 97 records from 
the sampling conducted in 2007 in 4,590 ha within 
the National Park of Sierra de Guadarrama (table 1, 
fig. 2.) where previous studies (2000, 2003, 2005 and 
2007) determined the presence of the species (Refoyo, 
2012). Eight people walked along 22 transects of an 
average length of 3.64 km between May 19th and June 
12th to obtain the data by means of direct observation 
(Refoyo et al., 2015) using the distance sampling 
method (Buckland et al., 1993). For each contact, we 
recorded the habitat, the number of animals composing 
the group, sex, age of individuals (using 8  x  40 to 
10 x 50 binoculars), and the perpendicular distance to 
the transect line using a laser distance meter (Bushnell 
Yardage Pro Sport). All transects were sampled on 
successive and climatically suitable days, either in the 
morning (2–3 hours after sunrise) or afternoon (2–3 
hours before sunset) (Refoyo et al., 2015).

Predictor variables

The presence of rocky places and cliffs in associa-
tion with the various types of natural vegetation and 
certain altitudes seem to be essential conditions for 
the species. Nevertheless, some populations were 
observed at sea level while others appeared to prefer 
to be far from areas with high densities of infrastructure 
and human activities (Refoyo, 2012). Although the 
Iberian ibex does not seem to have a preference for 
any specific vegetation, some variability in the trophic 
resources available seems necessary (Refoyo, 2012).

The selection of variables was based on the 
criterion established in Refoyo (2012) and Olmedo 
et al. (2016):

Altitude (continuous variable): this variable was 
obtained from a digital elevation model (DEM) pro-
duced by the Spanish National Geographic Institute.

Vegetation/stoniness (categorical variable): to 
determine the trophic availability and the availability 
of outcrops for the species, we used a digital layer 
designed by the Department of Environment and 
Spatial Planning of Madrid. This layer considers both 
the vegetation present at a place (land use and type 
of vegetation) and the percentage of existing rock 
outcropping.

Roughness (continuous variable): roughness is 
described as the variation in three–dimensional orien-
tation of grid cells within a neighborhood. This method 
effectively captures variability in slope and aspect into a 
single measure. Roughness values in the output raster 
can range from 0 (no terrain variation) to 1 (complete 
terrain variation). This layer was made from a digital 
mapping of slope angles and orientation following the 
method of Felicísimo (1994), who defined it as: 'the 
uniformity of the unitary vectors perpendicular to the 
surface in each cell and in those of the environment, 
given by the value of the module of the vector sum 
of those'. Where xi, yi and zi are the rectangular 
coordinates of the unitary vector perpendicular to the 
surface at point i, their expressions as a function of 
slope and orientation, both in degrees, are:

xi = sin(Pi) x cos(Pi)
yi = sin(Pi) x sin(Pi)

zi = cos(Pi)

 For a set of n vectors, the direction of the re-
sulting vector coincides with the mean vector of the 
n vectors, a measure of dispersion between the 
different vectors being the value of the normalized 
modulus of its sum (R). R takes values between 0 
and 1: a value of 1 indicates total dispersion and a 
value of 0 indicates null dispersion.

Anthropogenic influence (continuous variable): a 
new digital layer was created based on the isolation 
degree of the territory. The entire study area (Com-
munity of Madrid) was divided into grids of 20 x 20 m 
and the distance between each of these squares was 
calculated to the nearest linear infrastructure (digital li-
near infrastructure mapping of the Madrid government).

The values of these variables in all 97 presence 
data were obtained by the intersect point tools via 
GIS (Hawth's analysis tools).

Predictive modelling

The MaxEnt modelling approach is a discriminant 
technique that makes predictions or inferences from 
presence only data and estimates the probability of 
species presence. It also seeks a probability distribu-
tion that is as uniform as possible (maximum entropy) 
under the assumption that the expected value of each 
information layer must approach its empirical average 
(entropy) (Phillips and Shapire, 2004). Unlike the pre-
vious model, there is no need to enter the absence 
data into the program because it generates a number 
of randomly selected (pseudo–absences) observations 
(Mateo et al., 2011). To perform this analysis, we used 
the same predictor variables and 97 records from the 
sampling conducted in 2007 (Refoyo et al., 2015).
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Fig. 1. Study area. The area of study in 2017 corresponds to the entire area of the National Park on its 
Madrid side while the 2007 census area corresponds to the area of presence of the species within the 
National Park in 2007.

Fig. 1. Área de estudio. El área de estudio de 2017 corresponde a toda la superficie del Parque Nacional 
en su vertiente madrileña, mientras que el área de censo de 2007 corresponde a la zona de presencia 
de la especie dentro del Parque Nacional en 2007.
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For running MaxEnt models (Version Maxent 
3.4.2), the following default parameters were used: a 
maximum number of 500 iterations; a convergence–
threshold limit of 0.00001 and 10,000 points as the 
number maximum of background points; and a regu-
larization multiplier equal to 1 (Phillips et al., 2006). 
Ten replicates were run for each model to assess 
the influence of data selection on the randomization, 
and the final model was constructed with the average 
of these replicates. In all cases, 30 % of the records 
from the samples were randomly removed to be used 
as test points (i.e. a random sample was taken from 
the species presence localities in order to measure 
the quality of the model), and the remaining 70 % of 
records was used to build the model.

Additionally, the ROC–AUC technique was used 
to analyse the goodness of the MaxEnt analysis in 
contrast to other assessment models, since it avoids 
the problem of selecting threshold values (Lehmann et 
al., 2002) and is also capable of measuring the model’s 

ability to discriminate between sites according to their 
species suitability (Fielding and Bell, 1997; Engler et 
al., 2004; Elith et al., 2010).

The data obtained were used to generate a 
suitable map of the territory with GIS tools (ArcGIS 
10.0) (fig. 2).

Validation of the models

Obtainment of the current presence data: the monito-
ring studies were performed in an area of 25,317 ha 
(fig. 1). The Park has a marked difference in altitude, 
ranging from 900 m to 2,428 m, alternating very steep 
rocky areas with areas of gentle topography.

The population was monitored from the 6th to the 
15th of June, 2017 (table 1) by direct observation of 
the animals along 48 transects with an average length 
of 4.5 km and a total length of 218.6 km using the 
distance sampling method (Buckland et al., 1993). All 
transects were sampled on successive and climatica-
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Table 1. Total contacts, number of individuals, 
and average group size both for the total 
population and by sex for 2007 and 2017 
records: Nc, number of contacts; Av, average 
group size; Ns, number of specimens.

Tabla 1. Número de contactos, número de 
individuos y tamaño medio de grupo, tanto 
para el total poblacional como por sexo para 
los registros de 2007 y 2017.

	              2007	                    2017	
Nc	 Av	 Ns	 Nc	 Av	 Ns	 Nc
Total	 97	 3.7	 354	 125	 6.2	 771
Males	 19	 7.7	 144	 54	 8.7	 474
Females	 78	 2.7	 210	 71	 4.2	 297

lly suitable days, either in the morning (2–3 h after 
sunrise) or afternoon (2–3 h before sunset). For each 
contact, we recorded the total number of ibex and 
the total number for each sex using 8 x 40 to 10 x 50 
binoculars (Refoyo et al., 2015).

Analysis model: we obtained 120 records. Each 
record was georeferenced and included the total 
number of individuals, the total number of males, and 
the total number of males and females. We obtained 
the suitability values (MaxEnt) (model generated by 
2007 records) using the intersect point tools (Hawth's 
tools). These tools can assign the values of digital 
layers (territory suitability generated with Maxet from 
the 2007 contacts) to a layer of points (Contacts, 
2017) (fig. 2).

The group size for each contact was associated 
with the suitability models using a simple regression 
analysis for the total number of individuals and the 
total number by sex. With this procedure and for 
each point of presence of the species, we obtained 
four variables: the suitability value of the terrain, 
the total number of specimens, the total number of 
males, and total number of females. All four variables 
had a normal distribution. Linear regression revealed 
suitability of the territory as the dependent variable, 
and the total number of goats, the total number of 
males and the total number of females as the inde-
pendent variables. Quantile regression (Koenker and 
Bassett, 1978) was performed to assess changes 
near the upper limit of the distribution (Huston, 2002; 
Carrascal et al., 2017) according to the group sizes 
detected. In addition, we calculated the Moran index 
to determine the possible spatial autocorrelation of 
the contacts. We also carried out the same analy-
ses considering that values are appropriate areas 
(index > 0.7) and not adequate (index < 0.7). All 
statistical analyses were performed using Statistica 
7.0 (StatSoft Inc., Tulsa, OK, USA) and STATA 15 
(StataCorp LLC, USA).

Results

The ROC curve produced by MaxEnt indicates a high 
accuracy of the model since the data analysis genera-
ted an area under the curve of 0.976 (fig. 3), a value 
that is above the optimum threshold (0.8) (Phillips et 
al., 2006). The variables of altitude, anthropogenic 
influence, and vegetation/stoniness were relevant for 
the presence of the species (fig. 4).

The regression analyses showed a relative relation-
ship between the model and the current presence of 
the species, (n = 133; r = 0.20; p = 0.02) (fig. 5A). If we 
consider the distribution of the records by sex, males 
showed a better relationship with the model (n = 67; 
r = –0.24; p = 0.004) (fig. 5B) than females (n = 78 
r = –0.04; p = 0.59) (fig. 5C). Regression by quantiles 
shows that for the 95% quantile the relationship with 
the model improved considerably, especially for males 
(p = 0.018; R2 = 0.16) and total Ibex (p < 0.001; R2 = 
0.18). For females however, it remained at low levels 
(p > 0.05; R2 = 0.03), although they were higher than 
in the previous analysis. Considering the 90% quantile, 
although the relationship improved for total Ibex (p = 
0.007; R2 = 0.09), it did not improve for males and 
females (fig. 6). Although we did not detect any spatial 
autocorrelation between contacts, for female groups 
located in the 2017 samples this autocorrelation was 
marginally significant (table 2).

According to these data, when we consider suita-
bility values higher than 0.5, the model is significant 
only for males (F(1;131) = 4.7929; p = 0.0303) while for 
females, the most suitable values are those with 
the lowest values (F(1;131) = 4.4351; p = 0.0371). 
As a result, the global value is not significant (total 
ibex: F(1;131) = 1.2467; p = 0.2662) (fig. 7).

The results are significant both for the total Ibex 
population (F(1;131) = 8.0127; p = 0.0054) and for the 
total male population (F(1;131) = 11.598; p = 0.0009) 
only when we consider suitability values higher than 
0.7. They are not significant for the total female 
population (F(1;131) = 0.7502; p = 0.3880) (fig. 8).

Discussion

Here we verified that the distribution of Iberian ibex can 
be accurately assessed using presence–only data. 
Our findings emphasise the importance of considering 
not only environmental variables but also population 
variables, such as sex, as this allows us to generalize 
such studies regarding the reintroduction of a species.

MaxEnt allows working presence–only data and is 
considered one of the best methods for species dis-
tribution models (Hernández et al., 2006; Palialexis 
et al., 2011). It is useful for numerous works based 
on the use of occurrence data (bibliographic records, 
museums and herbaria databanks) (Suárez–Seoane 
et al., 2008; Cano et al., 2014; Wu et al., 2018).

Our results indicate that when no data are absent, 
MaxEnt can infer the distribution of the species in an 
acceptable way (Palialexis et al., 2011). The fact that 
the variables only explain 4 % of the variance (6 % in 
males and 2 % in females) may be due to the short 
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period of time elapsed (seven years), and it is fore-
seeable that in the near future, individuals will tend to 
occupy more suitable areas rather than areas close 
to the core area studied in 2007, thus increasing the 
R2. It is necessary to keep in mind that the expansion 
of the species in the National Park started in 2010.

When we analyzed the results according to sex 
we observed several differences. The model was 
better adjusted in the case of males than in females. 
For example, in the areas considered suitable (for 
suitability values of both 0.5 and 0.7), the male group 
size was larger than in the areas considered less 
suitable, indicating that the favourable conditions 
allow greater grouping of specimens. However, in the 
case of females, these differences did not appear. 
The reason for this could be related to the fact that 
in the breeding season females tend to form smaller 
family groups with the offspring (graphs 9 and 10).

As indicated by other authors (Huston, 2002; 
Carrascal et al., 2017), the model fit improves when 
assessing changes near the upper limit of the distri-
bution according to the detected cluster sizes. When 
we analyse the 95 % quantile, the regression models 

better explain the relationship with territory fitness. 
However, the fit remains low for females, possibly due 
to the spatial autocorrelation of contacts and lack of 
statistical power. The more gregarious behaviour of 
females, especially in the breeding season, by requi-
ring areas suitable for breeding (Refoyo et al., 2015), 
causes some spatial autocorrelation for the 2017 data 
and possibly influences the results. These differences 
can be explained by the different behaviour of males 
and females, addressed by many authors in several 
species. Johnson et al. (2007) stated three reasons 
for male–biased dispersal and female philopatry in 
amphibians: avoidance of inbreeding, local mating 
competition, and local resource competition. Sex–bia-
sed migration has also been reported as widespread 
among vertebrates (Houlahan and Findlay, 2003) and 
Morelle and Lejeune (2015) established variables such 
as food resources and thermal and safety cover for 
the wild boar case.

In our case, the data for the verification of the mo-
del (2017) were obtained during the breedingseason 
when the differences in behaviour between males 
and females are greatest. While females usually limit 

Fig. 2. Map of the suitability area obtained with MaxEnt (land suitability for the species is indicated in black).

Fig. 2. Mapa del área de idoneidad obtenido con MaxEnt (el color negro muestra la zona adecuada 
para la especie).
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Record 2017
Madrid region limit
National Park limit

Suitable index
     0–0.14
     0.15–0.5
     0.51–0.7
     0.71–1
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their distribution to rocky areas –a variable that was 
little relevant in the models generated (fig. 4) where 
offspring protection is easier– we observed that males 
showed a greater dispersion between the available 
habitats (Refoyo et al., 2015, 2016). 

This result matches those reported by Cao et al. 
(2013) that focus on habitat suitability rather than 
climate suitability that reported general over–pre-
dictions (Graham and Hijmans, 2006; Dubuis et al., 
2011; Guisan and Rahbek, 2011). By including fea-

tures such as altitude, anthropogenic influence, land 
cover and roughness, our models can be considered 
better than other models that use climate–suitability 
only to describe suitable habitats, Nevertheless, the 
differences detected between sexes imply that models 
may still be underfitted, not only for the environmental 
requirements of the species under study but also 
for the specific characteristics of each sex and the 
differential behaviour that the species presents at 
different times of the year.

Fig. 3. ROC curve produced by MaxEnt.

Fig. 3. Curva ROC producida por MaxEnt.

Fig. 4. Jackknife representation of each variable. In light grey the gain of the model without the variable, 
in black the contribution of the variable to the model, and in dark grey the gain of the models with all 
the variables.

Fig. 4. Representación de Jackknife de cada variable. En gris claro se representa la ganancia del modelo 
sin la variable; en negro, la contribución de la variable al modelo, y en gris oscuro, la ganancia de los 
modelos con todas las variables.
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Fig. 5. Simple regression between suitable area (MaxEnt) and real presence of ibex (A), of males (B), 
and of females (C) in 2017.

Fig. 5. Regresión simple entre el área adecuada (MaxEnt) y la presencia real de cabras (A), de machos (B) 
y de hembres (C) en 2017.
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Fig. 6. Representation of the regression values for 90 and 95 % quantiles by sex and total contacts (statistically 
significant for males and total ibex in the 95th quantile and not significant for females in any quantile and males 
for quantiles at 90%) (total cabras q95 = 7.93 + 35.14 * suitability; total cabras q90 = 7 + 24.169 * suitability; 
total machos q90 = 7 + 10.142 * suitability; total machos q95 = 6.95 + 24.58 * suitability; total hembras 
q90 = 10.268 – 6.88 * suitability; total hembras q95 = 12 + 0 * suitability).

Fig. 6. Representación de los valores de regresión para los cuantiles 90 y 95 por sexo y total de contactos 
(estadísticamente significativa para machos y total de cabras en el cuantil 95 y no significativa para hembras en 
ningún cuantil y para machos en el cuantil 90 (idoneidad del total de cabras q95 = 7,93 + 35,14  *  idoneidad; 
total de cabras q90 = 7 + 24,169 *  idoneidad; total de machos q90 = 7 + 10,142  *  idoneidad; total de ma-
chos q95 = 6,95 + 24,58  *  idoneidad; total de hembras q90 = 10,268 – 6,88 *  idoneidad; total de hembras 
q95 = 12 + 0  *   idoneidad).

indexes for their consideration are higher than 0.7, 
as suggested by other works (Tellería et al., 2012; 
Shartell et al., 2013; Fernández–Marchán et al., 2015). 
In any case, the MaxEnt model is a powerful tool not 
only to understand the biology of the species but also 
to understand management aspects.

In this sense, having a predictive method based 
only on presence data is particularly useful for works 
related to the management of a species that is clearly 
increasing in number, as is the case of the Iberian ibex. 
Precise knowledge of the variables that characterize 
the presence of the species and the location of suitable 
areas is especially useful not only to determine natural 
processes of a species' expansion. Such knowledge 
is also often used for introductions of species, such 
as in hunting, in which case it is essential to know 
the most suitable areas for the species in order to 
optimize the available resources and carry out a 
specific analysis by sex and time of year.

Identifying areas where species are most abundant 
has been an invaluable tool for the design of biological 
reserves and for the reintroduction of game species 
(Araújo and Williams, 2000). Applying SDM to the 
systematic planning of conservation or management of 
wild fauna and flora can be effective in protecting po-
pulations, but besides environmental variables related 
to the suitability of the territory it is necessary to study 
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Table 2. Autocorrelation spatial model using 
Moran’s index for total data and sex data for 
2007 and 2017: MI, Moran index; V, variance; 
P, p–value.

Tabla 2. Autocorrelación espacial utilizando 
el índice de Moran para los datos totales y 
desglosados por sexo para 2007 y 2017: MI, 
índice Moran; V, varianza; P, valor p.

	                           MI	   V	  P
Total ibex 2007	 0.165	 0.05	 0.43
Total male 2007	 0.165	 0.10	 0.46
Total female 2007	 0.232	 0.04	 0.23
Total ibex 2017	 –0.328	 0.04	 0.12
Total male 2017	 0.157	 0.04	 0.34
Total female 2017	 –0.421	 0.04	 0.04

It is also of note that the model generated with 
data of presence–only requires that the threshold 
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Fig. 7. Box–plot indicating the size of the total ibex group, the total male group, and the total female 
group in relation to the suitability of the area: N, suitable Index < 0.5; S, suitable Index > 0.5 (mean: 
box, mean ± SE; whisker, mean ± SD).

Fig. 7. Diagrama de cajas en el que se indica el tamaño de grupo: total cabras, machos y hembras en 
relación con la idoneidad de la zona: N, índice de idoneidad < 0,5; S, índice de idoneidad > 0,5 (media: 
caja, media ± EE; intervalo, media ± DE).

Fig. 8. Box–plot showing the size of the total group of ibex, and of males, and females in relation to the 
suitability of the area: N, suitable index < 0.7; S, suitable index > 0.7 (mean: box, mean ± SE; whisker, 
mean ± SD).

Fig. 8. Diagrama de cajas en el que se indica el tamaño de grupo: total cabras, machos y hembras en 
relación con la idoneidad de la zona: N, índice de idoneidad < 0,7; S, índice de idoneidad > 0,7 (media: 
caja: media ± EE; intervalo: media ± DE).
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variables related to the ethology of the species itself, 
especially regarding taxa with differential behaviour 
between sexes, for example, or age. In our case, the 
different behaviours between male and female

Iberian ibex allows us to establish differences 
between the suitability of the territory for one or the 
other sex, and will facilitate the selection of the more 
suitable territories for reintroduction.
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