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Abstract
Machine learning as a successful approach for predicting complex spatio–temporal patterns in animal species 
abundance. Our aim was to identify an optimal analytical approach for accurately predicting complex spatio–
temporal patterns in animal species distribution. We compared the performance of eight modelling techniques 
(generalized additive models, regression trees, bagged CART, k–nearest neighbors, stochastic gradient boosting, 
support vector machines, neural network, and random forest –enhanced form of bootstrap. We also performed 
extreme gradient boosting –an enhanced form of radiant boosting– to predict spatial patterns in abundance 
of migrating Balearic shearwaters based on data gathered within eBird. Derived from open–source datasets, 
proxies of frontal systems and ocean productivity domains that have been previously used to characterize the 
oceanographic habitats of seabirds were quantified, and then used as predictors in the models. The random 
forest model showed the best performance according to the parameters assessed (RMSE value and R2). The 
correlation between observed and predicted abundance with this model was also considerably high. This study 
shows that the combination of machine learning techniques and massive data provided by open data sources is 
a useful approach for identifying the long–term spatial–temporal distribution of species at regional spatial scales. 
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Resumen
Aprendizaje automático: una buen método para predecir patrones espacio–temporales complejos en la abundan-
cia de especies animales. Nuestro objetivo fue determinar un método analítico óptimo para predecir de manera 
precisa patrones espacio–temporales complejos en la distribución de especies animales. En concreto, utilizando 
los datos recopilados en el proyecto eBird sobre la pardela balear, que es un ave migratoria, se compararon ocho 
técnicas diferentes de elaboración de modelos (modelos aditivos generalizados, árboles de regresión, bagged 
CART, k–nearest neighbors, stochastic gradient boosting, máquinas de vectores de soporte, redes neuronales, 
así como el bosque aleatorio –una forma mejorada de bootstrap– y extreme gradient boosting –una forma mejo-
rada de gradient boosting) con objeto de predecir los patrones espaciales observados en la abundancia de esta 
especie. Utilizando conjuntos de datos de código abierto, se han cuantificado los indicadores de los sistemas 
frontales y la productividad de los océanos que ya se habían empleado con anterioridad para caracterizar los 
hábitats oceánicos de las aves marinas y, posteriormente, se han utilizado como predictores en los modelos. El 
bosque aleatorio resultó ser el modelo que ofreció el mejor rendimiento de acuerdo con los parámetros evaluados 
(RMSE y R2). La correlación obtenida con este modelo entre la abundancia observada y la predicha también fue 
considerablemente alta. En este trabajo, mostramos la utilidad de combinar técnicas de aprendizaje automático 
y los datos masivos proporcionados por diferentes fuentes de código abierto para determinar la distribución 
espacio–temporal a largo plazo de las especies a escalas espaciales regionales.
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Introduction

The continuous technical development of electronic 
devices such as geolocators, GPSs, and PTT devices 
for tracking animal movements have promoted the 
understanding of the distribution of many species 
(Katzner and Arlettaz, 2020). However, for migratory 
species, even with good sample sizes, tracking data 
cannot give a fully representative sample from all 
the possible migratory route alternatives. The reason 
for this is that data derived from these studies are 
temporally constrained to a few years of monitoring 
of a few individuals, but migratory species usually 
exhibit a great capacity to alter migratory behavior 
in response to environmental variability and specific 
individual traits (Martín et al., 2016). Consequently, 
even though they can provide highly detailed informa-
tion on an individual's movements, electronic devices  
have a limited ability to improve our understanding of 
the adaptation of migration strategies to deal with a 
changing environment at both population and species 
levels (Martín et al., 2019). 

In contrast, although direct observation methods 
such as census are unable to  detect birds when they 
use areas out of human sight, they can provide a va-
luable overall picture despite the missing information 
if we apply predictive models to fill the spatial and 
temporal gaps in the original datasets (Gouraguine et 
al., 2019). In this sense, active public involvement in 
scientific research (citizen science) has become an ex-
cellent source of data for scientists and policymakers 
(Strasser et al., 2019). Citizen science projects provide 
observations of millions of species each year (Kelling 
et al., 2013; Chandler et al., 2017). Compared with 
the detailed data gathered from electronic devices, 
the massive datasets from citizen science projects 
have the advantage of offering low–cost information 
on long–term temporal and large spatial extents from 
many individuals belonging to several populations. 

Prominent among citizen science projects devoted 
to birds and used by a large number of scientists 
is eBird (eBird, 2017), a biodiversity–related citizen 
science project gathering records of birds provided 
by professional and amateur ornithologists around 
the world. Caveats on the use of datasets from citi-
zen science projects are related to errors in species 
identification, biases in count estimates and uneven 
sampling effort, both in terms of temporal and spatial 
coverage, among others, which make volunteer data 
highly variable in terms of precision. Recent advances 
in Big Data analysis and, more specifically, in Data 
Mining techniques, thanks to the application of artificial 
intelligence (AI) and, more specifically, machine learn-
ing (ML) techniques, allow to obtain robust predictions 
from these 'noisy' and incomplete datasets (Schain, 
2015). For this reason, these techniques have become 
an extremely useful tool to extract relevant information 
in many disciplines of knowledge. 

As model species, we focused on the Balearic 
shearwater (Puffinus mauretanicus), a critically 
endangered seabird species (BirdLife International, 
2018) which spends about one quarter of the year on 
migration (Guilford et al., 2012). Previous research 

founded on boat–based survey counts showed Ba-
learic shearwater abundance to be extremely difficult 
to predict, and it failed to provide reliable predictions 
on the spatial distribution of shearwater numbers 
(Oppel et al., 2012). 

Our aim was to identify an optimal analytical 
approach for accurately predicting spatio–temporal 
patterns in the abundance of this species during 
migration from observations collected by profes-
sional and amateur ornithologists in citizen science 
projects, namely eBird database. To this end, we 
built several predictive models applying traditional 
statistical analysis (generalized additive models) 
and the latest machine learning techniques (neural 
networks, gradient boosting, random forest, support 
vector machines, among others). With these models 
we predicted the abundance of the Balearic shearwa-
ter along its migratory route over the Mediterranean 
and Atlantic coasts. These models were founded on 
the assumption that there is a relationship, direct or 
indirect, between environmental variables and the 
shearwater distribution. In this way, from a selected 
sect of environmental predictors derived from lar-
ge–scale open datasets (NCEP/NCAR, AIS, NOAA, 
among others), we modelled the abundance of 
shearwaters over time and across space. The various 
models were then compared in order to determine 
the best one in terms of accuracy and predictive 
ability. Our final aim was to describe a successful 
analytical approach that can be extended to other 
animal species for which citizen science projects are 
collecting abundance distribution data. 

Material and methods

Study species

The Balearic shearwater is included as 'Critically 
Endangered' on the IUCN Red List (BirdLife Interna-
tional, 2018) and is also considered as threatened 
bird for the European Union (rare or vulnerable bird 
species as listed in annex I of the E.U. Bird Direc-
tive). Most of the population of Balearic shearwater 
leaves the Mediterranean each year after breeding 
(Guilford et al., 2012) and stays mainly in the Atlan-
tic during the non-breeding season (Arcos, 2011). 
At sea, it usually occurs in productive shelf areas 
related to oceanographic frontal systems (Louzao 
et al., 2006; Oppel et al., 2012; Pérez–Roda et 
al., 2017). During migration, Balearic shearwaters 
tend to fly very close to the shoreline (Arroyo et 
al., 2014), with an average off-shore distance of 
about 1,190 m at the Strait of Gibraltar (Mateos and 
Arroyo, 2011). Fluctuations in Balearic shearwater 
migration, both seasonally and inter-annually, seem 
to be related to changes in food resources (Wynn 
et al., 2007; Jones et al., 2014). The diet of the 
Balearic shearwater includes small pelagic and also 
demersal fish, frequently obtained from trawling 
discards. The species can also feed on plankton 
and macrozooplankton, specifically krill (Arcos and 
Oro, 2002; Louzao et al., 2015).
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The extent of the study area (fig. 1) covers the 
whole distribution range of the Balearic shearwater 
throughout the year (BirdLife International, 2018).

Variables in the models

Response variable

Our response variable was Balearic shearwater 
abundance (abundance considering only presence, 
thus, absence of abundance –i.e., zeros– was not 
considered in the analysis) (Pearce and Boyce, 2006), 
expressed as the number of birds sighted on a given 
date at a given latitude/longitude, during migration. 
Daily abundance of the species was recorded from 
1964 to 2018, both as opportunistic sighting records 
and within systematic effort–based surveys (with a 
standardized duration of the sampling effort) obtained 
from the online database eBird (eBird, 2017). Due 
to the opportunistic nature of some of these data, 
we needed powerful modelling techniques to obtain 
robust results (see below). Although it was possible 

to differentiate opportunistic and systematic surveys 
within the dataset, we opted to keep all records for 
our analysis in order to test the robustness of the 
modelling approach in case our methods will be 
extended to other species for which this information 
is not available. 

Specifically, we considered abundance during the 
'post–breeding migration' period, defined as the north-
ward migration of birds leaving the Mediterranean 
and molt, between May 1st–August 30th (Mourino 
et al., 2003; Yésou, 2003). 

Environmental predictors

Shearwater abundance was modelled using 15 
environmental predictors (table 1) that have been 
previously described to be related with the spatial 
distribution at sea of this and other seabird species 
(Yésou, 2003; Dias et al., 2012; Oppel et al., 2012; 
Jones et al., 2014). As migrating birds need to re-
plenish energy reserves during stopover periods at 
key locations where they maximize their refueling 

Fig. 1. Spatial distribution of the shearwater abundance data during the post–breeding migration period 
(May–August). Years 2005–2017; n = 1,881.

Fig. 1. Distribución espacial de los datos sobre la abundancia de la pardela correspondientes al periodo 
de migración post–nupcial (mayo–agosto). Años 2005–2017; n = 1.881.
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opportunities (Wynn et al., 2007; Benoit–Bird et al., 
2013), fluctuations in bird abundance during migra-
tion are closely related to changes in food resources 
(Wynn et al., 2007). Therefore, most of the variation in 
seabirds appears to be mediated by changes in prey 
abundance (Frederiksen et al., 2006; Benoit–Bird et 
al., 2013). We used chlorophyll concentration (Chla, 
measured in mg/m3) as a proxy of marine productivity 
(Wakefield et al., 2009). Specifically, we downloaded 
satellite–based monthly products at 4 km spatial reso-
lution for the 2003–2017 period (JRC Data Catalogue; 
http://gmis.jrc.ec.europa.eu/satellite/4km/). Discard 
availability may influence the at–sea distribution of 
shearwaters (Cortés et al., 2018; Genovart et al., 
2018).  As a proxy of food availability (both discards 
and fishes) we used information on fisheries. This 
information was inferred from the distribution of 
fishing vessels (Natale et al., 2015) between 2014 
and 2015, sourced by the JRC Data Catalogue at 1 
km resolution (http://gmis.jrc.ec.europa.eu/dataset/
jrc–fad–ais1415). This product identifies the areas 
where fishing is most frequent. Vessel tracking data 
were derived from the Automatic Identification System 
(AIS), an open source data system that allows anal-
ysis of the relation between fishing communities and 
fishing areas at high spatial resolution across Europe. 
Specifically, data used to build the map consists of 
150 million positions from European fishing vessels 
above 15 m in length. In spite of its limited temporal 
coverage, the main strength of this dataset is its 
fine spatial resolution. This proxy on food availability 
in spatial terms, however, is complemented in our 
analysis with the high temporal resolution in marine 
productivity provided by chlorophyll concentration. 
Together with chlorophyll concentration, sea surface 
temperature (SST) is also a proxy of water mass 
distributions, frontal systems, and ocean productivity 
(Ramos et al., 2012; Robinson et al., 2013; Afán et al., 
2014). In shearwaters, which perform dynamic soaring 
flight, oceanic winds are also of major importance in 
modulating migratory behavior (González–Solís et al., 
2009). Wind speed and direction usually affect both 
migratory behavior (Catry et al., 2011; Dias et al., 
2012; but see Dell'Ariccia et al., 2018) and seabird 
detectability by the observers (Martín et al., 2019). 
Data on SST and wind were obtained through RNCEP 
package (Kemp et al., 2012) in R (R Core Team, 2018) 
which allowed to request data from the NCEP/NCAR 
Reanalysis dataset (NOAA ESRL Physical Sciences 
Division; https://www.esrl.noaa.gov/psd/data/gridded/
data.ncep.reanalysis2.html) for a specified range of 
space and time based on the observations of shearwa-
ters. Specifically, we requested daily values at midday 
at the surface level, since Balearic shearwaters tend 
to migrate at a very low height (Martín et al., 2019). 
Variables requested were 'air.995' (air temperature), 
'uwind.sig995' (u–wind component) and 'vwind.995' 
(v–wind component). RNCEP interpolates the nearest 
data value (in terms of location and time) in the NCEP/
NCAR dataset to provide the requested information. 
We also considered the standard deviation (associated 
standard deviation of the points used to perform the 
interpolation) of the meteorological values (u–wind, 

v–wind and temperature) used for this interpolation as 
additional predictors in our models (table 1). General 
flight activity of seabirds increases during moonlit 
nights, and moon phase has been shown to affect 
shearwater migration behaviour (Dias et al., 2012). As 
changes in the flying patterns during the night may 
also affect daytime flights, we considered the daily 
fraction of the moon illuminated at midnight as an 
additional predictor, sourced by the U.S. Naval Ob-
servatory and Astronomical Applications Department 
(http://aa.usno.navy.mil/data/).  

Together with the usual inter–annual variability in 
food resources, long–term climate change may also 
affect the at–sea distribution of this species (Wynn et 
al., 2007; Votier et al., 2008; Luczak et al., 2011), likely 
through effects on fish stocks (Tsikliras et al., 2019). 
The possible impact of climate change on the distribu-
tion of shearwaters at a regional level was taken into 
account through the North Atlantic Oscillation Index 
(NAO; Visbeck et al., 2001) obtained from the Climate 
Prediction Center (U.S. National Weather Service, 
NOAA), as monthly data from 1950 to 2018 (http://
www.cpc.ncep.noaa.gov/products/precip/CWlink/
pna/nao.shtml). As SST and wind predictors already 
provided a daily resolution of the weather conditions 
at specific locations, monthly values rather than daily 
NAO index were preferred, as a surrogate of regional 
climate conditions affecting shearwater migration at 
a more general and longer time frame.

Water depth has been shown to influence seabird 
distributions (Yen et al., 2004). Specifically, Balearic 
shearwaters occur in relatively shallow, coastal wa-
ters along the shoreline during migration (Martín et 
al., 2020). Bathymetry was used as a surrogate of 
coastal–pelagic areas (Afán et al., 2019). Bathymetric 
data were sourced by European Marine Observation 
and Data Network (EMODnet; http://www.emodnet–
bathymetry.eu/data–products) at ~200 m resolution 
although they were later aggregated through a mov-
ing–average window to 10 km resolution in order to 
obtain a more general bathymetry pattern regarding 
the shearwater observation location. This cell size 
was selected as a compromise between this general 
pattern in bathymetry and the sufficient resolution for 
conservation purposes.

Fluctuations in seabird abundance during migra-
tion are closely related to changes in food resources 
(Frederiksen et al., 2006; Benoit–Bird et al., 2013). 
However, photoperiodic cues and/or endogenous 
rhythms may also modulate seabird breeding and 
migration periods (Marshall and Serventy, 1959). The-
refore, apart from food availability, migration decisions 
in Balearic shearwaters might be partially dictated by 
day length and/or by an internal rhythm that make  
the bird move instinctively into the north–west, while 
the post–breeding season progresses, and then into 
the south–east during the pre–breeding period. Date, 
longitude and latitude variables allow us to include 
the endogenous rhythm of the bird in the models. In 
addition, longitude and latitude can be indirect proxies 
of the effects that variable wintering sites, length of 
the route and en–route environmental conditions may 
pose to migrant shearwaters. Finally, due to potential 

http://gmis.jrc.ec.europa.eu/satellite/4km/
http://gmis.jrc.ec.europa.eu/dataset/jrc-fad-ais1415
http://gmis.jrc.ec.europa.eu/dataset/jrc-fad-ais1415
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html
http://aa.usno.navy.mil/data/
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml
http://www.emodnet-bathymetry.eu/data-products
http://www.emodnet-bathymetry.eu/data-products
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differences in the rates of change of the environmental 
predictors across space, interactions between predic-
tors and 'latitude' and longitude, and between 'year' 
and 'latitude', may allow to quantify both the spatial 
and temporal heterogeneity in the migratory responses.

Statistical analysis

As usual in count data, abundance of shearwaters 
followed a Poisson distribution (Hilbe, 2014). Although 
there is a lack of assumptions in the distribution of 
the data in machine learning models, when we use 
approaches where data partitioning is applied, we 
can obtain better results if we model a dependent 
variable homogenously distributed, because the 
model dispersion increases as long as the variable 
increases. Supporting the previous statement, we 
observed that this log transformation increased the 
variance explained by all the models (up to 1.4 ti-
mes in the case of the RF model). Therefore, before 
building our models we log–transformed (natural log) 
the abundance data. The estimates of abundance 

obtained from the models were then scaled back to a 
linear scale before assessing the model performance. 
In addition, before modelling, predictor variables were 
pre–processed: centered and scaled (subtracting the 
mean of the predictor's data from the predictor values 
and then dividing by the standard deviation).

To evaluate the different performance, up to eight 
different modelling techniques were carried out on 
the post–nuptial migration dataset. The set of models 
constitutes a representative sample of the various 
machine learning techniques available for predictive 
analyses in which the dependent variable is quantita-
tive (regression approaches). Specifically, regression 
trees (CART), bootstrap aggregation (bagged CART), 
extreme gradient boosting, stochastic gradient boost-
ing, K–nearest neighbours (KNN), support vector 
machine (SVM) and multilayer perceptron neural 
network (MLP). In addition to these machine learning 
approaches, we include Generalized Additive Models 
(GAM). GAMs are simple, transparent, and flexible 
models which do not assume a linear relationship 
between independent and dependent variables. 

Table 1. Descriptive summary of the predictors in the models. Sources: EMODnet, European Marine 
Observation and Data Network; AIS, Automatic Identification System (JRC Data Catalogue); NCEP/
NCAR, Reanalysis dataset (NOAA ESRL Physical Sciences Division); MERIS, JRC Data Catalogue; 
CPC, Climate Prediction Center (US National Weather Service, NOAA); USNO & AAD, U.S. Naval 
Obervatory and Astronomical Applications Department.

Tabla 1. Resumen descriptivo de las variables utilizadas en los modelos. (Para las abreviaturas de las 
fuentes, véase arriba). 

Name Description Unit Source Period

batim Bathymetry meters EMODnet  2012

fish Fishing intensity number  AIS 2014–2015 

  of vessels  

tmmean Mean temperature  ºK NCEP/NCAR 1964–2018 

    

tmstd Atandard deviation of mean temperature   ºK NCEP/NCAR 1964–2018

uwmean Mean wind speed (u–wind: m/s NCEP/NCAR 1964–2018 

 east–west direction)   

uwstd Standard deviation of mean wind speed m/s NCEP/NCAR 1964–2018 

 (u–wind: east–west direction)

vwmean Mean wind speed (v–wind: north–south m/s NCEP/NCAR 1964–2018 

 direction)  

vwstd Standard deviation of mean wind speed  m/s NCEP/NCAR 1964–2018 

 (v–wind: north–south direction)  

clorof Chlorophyll concentration mg/m3 MERIS 2004–2017

NAO NAO index –  CPC 1950–2018

moon Daily fraction of the moon illuminated  % 

 at midnight   USNO & AAD 2005–2018
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This approach is suitable to model count data such 
as animal abundance (Zuur et al., 2009). Apart from 
flexibility, in contrast with other multivariate models, 
such as multivariate adaptive regression splines 
(MARS) and machine learning techniques, it provides 
an interpretable solution, thus  providing a good bal-
ance between the interpretable linear model and the 
extremely flexible, but 'black box' iterative/learning 
algorithms. To enhance model performance, according 
to the nature of the response variable (see above), we 
applied a GAM with Poisson distribution and log–link 
function. Prior to modelling we assessed collinearity 
from the total set of environmental predictors through 
the correlation between pairs of variables (Pearson 
correlation coefficient). Although machine learning 
techniques are not as highly subjected to the effects 
of collinearity as traditional statistical approaches, 
computation timing and model results can benefit from 
the removal of any redundant features from the train-
ing dataset, irrespectively of the model's algorithm.

Comparisons between specific modelling tech-
niques and particular models were based on the Root 
Mean Square Error (RMSE; the average difference 
between the observed known values of the outcome 
and the predicted value by the model; Gareth et al., 
2014), and on R2, measured in the caret package in 
R (R Core Team, 2018) as the squared correlation 
between observed and predicted values (Kuhn, 2008). 
The validation procedure of the models was based on 
a random split of the abundance data into training and 
test data (setting aside 20 % of the data for testing the 
models; Araújo et al., 2006). Performance of the built 
models was estimated using 5–fold cross–validation 
on the training data. Models were calibrated on the 
training data and then evaluated on the test data to 
determine the model’s ability to generalize to other 
datasets. Except for the GAM analysis, for model 
building and assessment we used the caret package 
(Kuhn, 2008) in R (R Core Team, 2018). Compared 
to a Gaussian identity–link GAM approach, a Poisson 
log–link GAM on the same training dataset increased 
both RMSE (from 124.13 to 139.55) and R2 (from 
R2 = 0.19 to R2 = 0.36). As Poisson log–link GAMs 
are not supported by caret, predictions (and R2) for 
these models were derived using the mgcv package 
(Wood, 2011) also in R. However, to ensure minimum 
RMSE values that were comparable between model-
ling techniques, RMSE for a Gaussian GAM model 
was quantified using caret.

All the models were built using the total set of 
predictors described in table 1. Most of the models 
assessed have parameters that must be tuned to 
obtain an optimal fitting. To determine the parameter 
values offering the best fit, we specified a set of tun-
ing values to be tested during the calibration of the 
models. Generally, we applied a grid search method, 
thus we evaluated the model over different combi-
nations of parameters included in the grid (table 2). 
Specifically for the GBM models, the range for the 
parameter tuning was based on recommendations 
derived from previous research (Friedman, 1999a, 
1999b; Friedman et al., 2001; Ridgeway, 2005). To 
identify the model with the optimal parameter combi-

nation (providing the best fit) we compared the RMSE 
values (see supplementary material) of the models 
(Gareth et al., 2014). 

To detect significant differences in the performance 
between modeling techniques, all pair–wise differenc-
es in RMSE and R2 over the model resamples were 
quantified and tested to assess whether the difference 
was equal to zero. The resulting confidence level was 
adjusted using Bonferroni correction (Kuhn, 2008). 

We also assessed the relative importance of the 
variables used for predicting shearwater abundance 
in the different models using the varImp function in 
caret package (Kuhn, 2007).

Results

Assessment of the available eBird data showed that 
records before 2005 (from 1964 to 2004) were scarce 
and did not properly cover the migration periods. For 
this reason, to ensure a minimum sample size for 
estimating predictions, models were built only with 
data from after 2005. Similarly, we did not consider 
data for 2018 in the analysis as they were seasonally 
incomplete. 

After data filtering, a total of 1,881 post–breeding 
records (ranging from 1 to 2,059 birds; median = 5) 
on 58,901 individual observations of shearwaters 
remained for the years 2005–2017. According to 
the migration areas which are known to be used by 
the study species (BirdLife International, 2018), the 
spatial representation of the remaining observations 
was good (fig. 1). 

The assessment of collinearity, measured as 
Pearson correlation coefficients between pairs of 
predictors, showed non–significant results at the 
0.05 p–level for any of the pairs of variables, thus all 
predictors included in the initial set were considered 
for modelling. 

According to the cross–correlation resamples 
(fig. 2), the best modelling technique was Random 
Forest (RF), showing the lowest RMSE mean value 
among resamplings (mean RMSE = 1.11) and the 
largest R2 (mean R2 = 0.47), closely followed by 
the results from XGBM (RMSE = 1.13; R2 = 0.44). 
Differences in RMSE between models were only sig-
nificant in the case of MLP against the best modelling 
techniques (RF, XGBM and GBM, in that order). The 
worst techniques both considering RMSE and R2 were 
MLP followed by GAM, although the GAM model 
with Poisson distribution and log–link function almost 
doubled the R2 value (mean R2 = 0.36; min = 0.33; 
max = 0.41). Differences in RMSE and also in R2 
of KNN against RF, XGBM and SVM were almost 
significant at the Bonferroni p–level (p–value < 0.1). 
CART was also significantly better than MLP in terms 
of R2 (fig. 3). The resamplings of all the modelling 
techniques assessed, including RF, showed high 
variability in terms of RMSE and R2 values, indicat-
ing that both errors and the predictive ability of the 
models are considerably variable depending on the 
data subset used in each resampling. Mainly for 
this reason, the difference in terms of performance 
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Table 2. Parameter values used for model calibration.

Tabla 2. Valores de los parámetros utilizados en la calibración de los modelos.

Model  

Parameters                     Tuning sequence            Tuning by     Method

Bagging 

# baggings 10, 20, 30, 35, 40  Manually assessed

CART

cp 0–0.07 0.001 Grid search

Extreme gradient boosting 

# rounds 200–1000 50 Grid search

eta 0.01, 0.015, 0.025, 0.05, 0.1, 0.3  Grid search

maximum depth 3, 5, 7, 9, 12, 15, 17, 25 1 Grid search

gamma 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0  

colsample_bytree 0.6, 0.7, 0.8, 0.9, 1.0  

min_child_weight 1, 3, 5, 7  

subsample 0.6, 0.7, 0.8, 0.9, 1.0  

Gradient boosting 

interaction depth 4–10 2 Grid search

# trees 0–2,500 500 Grid search

shrinkage 0.001, 0.01, 0.1  Grid search

minimum number of  5, 10, 20  Grid search 

observations in tree's  

terminal nodes  

(n.minobsinnode) 

sampling fraction 0.2, 0.3, 0.5  Manually assessed through  

(bagg.fraction)   iteratively repeating the grid  

   search (see suppl. material)

KNN 

k 1–25 1 Grid search

Neural network

# layers 1–25 1 Grid search

Random forest

mtry 1–25 1 Grid search

# trees 1000, 1500, 1600, 1625,  500 Manually assessed through 

 1650, 1700, 1725, 1750, 2000  iteratively repeating the grid  

   search (see suppl. material)

Support vector machines

sigma 60–180/400; 80:100/400;   1 Grid search that was iteratively 

 100:120/400; 120–140/400;   refined based on RMSE 

 140:180/400   results (see suppl. material)

C 1:10/10; 10:20/10; 20:30/10;  1 Grid search that was iteratively  

 30/10  refined based on RMSE 

   results (see suppl. material)
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(assessed through RMSE and R2) between models 
was mostly non–statistically significant.  

The relative importance of the variables was 
variable between models. However, standard devia-
tions of eastward and westward wind speed (uwstd 
and vwstd, respectively) were important variables 
in most of the models assessed. Year (year) of the 
observation, chlorophyll concentration (clorof) and 
bathymetry (batim) were also variables of high im-
portance in predicting shearwater abundance (fig. 4).  

Discussion

This study showed that the combination of Random 
Forest techniques and massive data provided by 
various open data sources, including data gathered 
in citizen science initiatives, is a useful approach to 
identify the long–term spatial–temporal distribution 
of species at regional spatial scales. This machine 
learning technique was highly successful in capturing 
both spatial and temporal patterns in shearwater 
abundance at sea.  The results from Random Forest 

techniques clearly outweighed those obtained with 
other traditional statistical modelling techniques 
such as GAM. In observational studies in Ecology 
and Conservation Biology, where the environmental 
variability is considerably high and it is not easy to 
take into consideration all the factors affecting the 
research subject, the ability of statistical models 
to predict the existing variability in the dependent 
variable is usually poor (<10 %), both because of the 
inherent 'noise' in the data as well the randomness of 
the natural phenomena that is being modelled (Møller 
and Jennions, 2002) but randomness and noise may 
reduce this amount considerably in biological studies. 
In contrast to traditional statistical techniques, we 
showed that Random Forest can largely increase the 
variability explained (up to 53 %) and the predictive 
ability (70 %) of the models calibrated with noisy 
data in complex scenarios where both temporal and 
spatial variation is present. The variance explained 
by our random forest model is not only larger than 
usual in Ecology and Conservation Biology studies 
(about 10 % according to Møller and Jennions, 2002) 
but it is also larger than the explanatory ability found 

Fig. 3. Differences in the performance (in terms of RMSE and R2) of the assessed models. Range and 
median; 95 % confidence intervals for the means: * GAM, Gaussian distribution and identity–link function.

Fig. 3. Diferencias en los resultados obtenidos (en cuanto RMSE y R2) con los modelos evaluados. 
Intervalo y mediana. Intervalos de confianza del 95 % para las medias: * GAM, distribución normal y 
función de enlace de identidad.

Fig. 2. Results from the resampling (5–fold cross–validation) analysis of the various models assessed. 
Range (minimum–maximum) and mean values; 95 % confidence intervals for the medians. Models based 
on data for 2005–2017: * GAM, Gaussian distribution and identity–link function.

Fig. 2. Resultados de los remuestreos (validación cruzada sobre cinco conjuntos) de los diferentes 
modelos evaluados. Inter (valores mínimo y máximo) y valores medio; intervalos de confianza del 95 % 
para las medianas. Modelos basados en la muestra de los años 2005–2017: * GAM, distribución normal 
y función de enlace de identidad. 

RMSE        Rsquared
MLP
CAM
KNN

CART
BAGG

SVM
XGBM

GBM
RF

MLP
CAM
KNN

CART
BAGG

SVM
XGBM

GBM
RF

                1.1    1.2    1.3    1.4    1.5                    0.1     0.2     0.3     0.4     0.5  
 Confidence level 0.95   



Animal Biodiversity and Conservation 44.2 (2021) 297

     XGBM – RF

XGBM – KNN

XGBM – GAM

XGBM – CART

SVM – XGBM

SVM – RF

SVM – KNN

SVM – GBM

SVM – GAM

SVM – CART

RF – KNN

RF – GAM

RF – CART

MLP – XGBM

MLP – SVM

MLP – RF

MLP – KNN

MLP – GBM

MLP – GAM

MLP – CART

GBM – XGBM

GBM – RF

GBM – KNN

GBM – GAM

GBM – CART

GAM – KNN

CART – KNN

CART – GAM

BAGG – XGBM

BAGG – SVM

BAGG – RF

BAGG – MLP

BAGG KNN

BAGG – GBM

BAGG – GAM

BAGG – CART

     XGBM – RF

XGBM – KNN

XGBM – GAM

XGBM – CART

SVM – XGBM

SVM – RF

SVM – KNN

SVM – GBM

SVM – GAM

SVM – CART

RF – KNN

RF – GAM

RF – CART

MLP – XGBM

MLP – SVM

MLP – RF

MLP – KNN

MLP – GBM

MLP – GAM

MLP – CART

GBM – XGBM

GBM – RF

GBM – KNN

GBM – GAM

GBM – CART

GAM – KNN

CART – KNN

CART – GAM

BAGG –XGBM

BAGG – SVM

BAGG – RF

BAGG – MLP

BAGG KNN

BAGG – GBM

BAGG – GAM

BAGG – CART

RMSE Rsquared

                      –0.4   –0.2   0.0   0.2   0.4     –0.4   –0.2   0.0   0.2   0.4 



298 Martín et al.

in similar studies (15 %) applying machine learning 
approaches to traditional survey (less 'noisy') data 
(i.e, boat–based surveys; Oppel et al., 2012).

Machine learning techniques are increasingly 
applied in order to obtain valid and accurate information 
from massive data sets that, due to their volume, noise 
and variety, until not too long ago it was not possible 
to analyze. However, according to our results, machine 
learning techniques in general are not a panacea, since 
other models also assessed in this study, particularly 
MLP, did not show good results in predicting shearwa-
ters during post–breeding. Our results also highlighted 
that the predictive ability of the random forest model 
was highly conditioned on the data subset used to 
calibrate the model. For this reason, although this 
technique can deal with datasets with small sample 
size thanks to the bagging procedure implemented, 
its application requires suitable data pre–processing 
to ensure that the data for the analysis is fully repre-
sentative of the phenomena to be modelled. 

Conclusions

This study shows that the combination of machine 
learning techniques and massive data provided by 

open data sources is a useful approach to identify 
the long–term spatial–temporal distribution of species 
at regional spatial scales. Our research showed that 
machine learning techniques, and specifically ran-
dom forest approaches, can be a good choice for 
the analysis of highly noisy massive datasets such 
as those collected by volunteers in citizen science 
projects. According to our results, these models 
allow the successful capture of the spatio–temporal 
variation in continuous biological variables such as 
bird migratory abundance recorded over long–time 
frames, thereby enabling long–term spatial monitoring 
of mobile species. 
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Supplementary material

Plots of the cross–validation profile

We assessed the relationship between the estimates of performance and the tuning parameters using plots. In 
this way, we ensured that a minimum parameter value was reached and that no additional parameter tuning 
was required (see table 2).

Bagging

RMSE was used to select the optimal model using the smallest value. The final value used for the model was 
number of baggings = 30.
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RMSE was used to select the optimal model using the smallest value. The final value used for the model was 
cp = 0.006.
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Extreme gradient boosting

RMSE was used to select the optimal model using the smallest value. The final values used for the model 
were 'max_depth' = 0.6, 'eta' = 0.01, 'nrounds' =  0.7, 'colsample_bytree' = 0.6, 'min_child_weight' = 7, 'sub-
sample' = 0.8 and 'gamma' (i.e., minimum loss reduction) = 0.7.
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Gradient boosting

RMSE was used to select the optimal model using the smallest value. With bagg.fraction = 0.5, the final values 
used for the model were 'n.trees'  = 2350, 'interaction.depth' = 8, 'shrinkage' = 0.01  and 'n.minobsinnode' = 10.

With 'bagg.fraction' = 0.3, The final values used for the model were 'n.trees' = 1,900, 'interaction.depth' = 10, 
'shrinkage' = 0.01 and 'n.minobsinnode' = 5.

With 'bagg.fraction' = 0.2, the final values used for the model were 'n.trees' = 2,500, 'interaction.depth' = 8, 
'shrinkage' = 0.01 and 'n.minobsinnode' = 5.
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The model was not very sensitive to bagg.fraction values:  'bagg.fraction' = 0.5, RMSE = 94.01; 'bagg.fraction' 
= 0.3, RMSE = 94.98; 'bagg.fraction' = 0.2, RMSE = 94.00. 

The final values used for the model were 'n.trees' = 2,350, 'interaction.depth' = 8, 'shrinkage' = 0.01 and 
'n.minobsinnode' = 10 and 'bagg.fraction' = 0.5.

KNN

RMSE was used to select the optimal model using the smallest value. The final values used for the model 
were k  = 6.
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Neural network (MLP)

RMSE was used to select the optimal model using the smallest value. The final value used for the model was 
'size' = 11.

Random forest

RMSE was used to select the optimal model using the smallest value. The final value used for the model was 
'mtry' = 13 and 'ntrees' = 1,700.
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SVM

RMSE was used to select the optimal model using the smallest value. We conducted a grid search that was 
iteratively refined based on RMSE results until reach a minimum RMSE. The final values used for the model 
were 'sigma' = 0.39 and 'cost' = 2.6.

R
M

SE
 (

re
pe

at
ed

 c
ro

ss
–v

al
id

at
io

n)

Cost
                0.1                    0.4                    0.7                      1
                0.2                    0.5                    0.8
                0.3                    0.6                    0.9

Cost
                 1                     1.3                     1.6                     1.9
              1.1                     1.4                     1.7                       2
              1.2                     1.5                     1.8

                     0.15        0.16        0.17       0.18       0.19       0.20
Sigma

                     0.20         0.21       0.22       0.23        0.24       0.25
Sigma

1.40

1.35

1.30

1.25

1.220

1.215

1.210

1.205

1.200

1.195

R
M

SE
 (

re
pe

at
ed

 c
ro

ss
–v

al
id

at
io

n)



Animal Biodiversity and Conservation 44.2 (2021) ix

Cost
                           2                    2.3                    2.6                    2.9
                     2.1                    2.4                    2.7                      3
                     2.2                    2.5                    2.8

                                   0.36        0.38       0.40      0.42        0.44
         Sigma

1.1830

1.1825

1.1820

1.1815

1.1810

Cost
                           2                    2.3                    2.6                    2.9
                     2.1                    2.4                    2.7                      3
                     2.2                    2.5                    2.8

1.196

1.194

1.192

1.190

                           0.30       0.31       0.32       0.33       0.34       0.35
      Sigma

Cost
                       2                    2.3                   2.6                    2.9
                  2.1                    2.4                   2.7                      3
                  2.2                    2.5                   2.8

                         0.25       0.26       0.27       0.28       0.29       0.30
  Sigma

1.230

1.225

1.220

R
M

SE
 (

re
pe

at
ed

 c
ro

ss
–v

al
id

at
io

n)
R

M
SE

 (
re

pe
at

ed
 c

ro
ss

–v
al

id
at

io
n)

R
M

SE
 (

re
pe

at
ed

 c
ro

ss
–v

al
id

at
io

n)


