V. 8, n.° 3 (setembre 1984) pp. 133-144

SMOOTH CONTOUR LINE CONSTRUCTION WITH SPLINE INTERPOLATION
PERE BRUNET I LL. PEREZ VIDAL

UNIVERSITAT POLITECNICA DE CATALUNYA

Contour maps are frequently used to represent three-dimensional surfaces from geographical
applications or experimental results. In this paper, two new algorithms for the generation
and display of such contours are presented. The first of them uses local spline interpolation
to obtain contour maps from data points in a rectangular mesh, whereas the other interpclates
a set of irregular points through recursive subdivision of triangles. In both algorithms, pre-

cistion of the contours can be adjusted by the user by means of a parameter .

sented and discussed.

Keywords: SURFACE REPRESENTATION,

1. INTRODUCTION.

Contour maps are commonly used to represent

a three dimensional surface in twe dimensions.

They are used mainly in geographical maps,

but are also wuseful to show isobars in
weather maps, to display experimental results
or to present finite element resulting stres-

ses and deformations.

When data are supplied in a rectangular mesh,
some algorithms follow the contours through
the mesh rectangles, while others treat each
rectangle at a time, /1/.

The former are better in the sense that they
minimize pen movements (assuming that con-
tours are drawn with a plotter, and that con-
tour labeling is easier. Some algorithms /2/,
use linear interpolation in every rectangle
of the mesh.

The resulting are only approximate, but they
are very useful when the output is done
through serial character-oriented devices.

More sophisticated algorithms

every rectangle by means of guadratic or bi-

interpolate

cubic functions; in a second step, they com-
pute the intersection between the functions
and horizontal planes. A third class of al-

gorithms compute the intersection of the con-

Results are pre-

CONTOUR MAPS, SPLINE INTERPOLATION

tours with the grid lines; after this, the
set of computed points from the same contour
are joined together. A good survey of these
algorithms can be found in /1/.

Many methods have been devised for the inter-
polation and obtention of contour lines /3/
for data censisting of a set of points

(%, ¥

Among

i’ Zi) scattered over the x-y plane.
them we have algorithms based on a
single global interpolant: Shepard energy ;
they are usually expensive in terms of com-
puting time, and they may present smoothness
problems. A second class of algorithms trans-
late the data onto a rectangular grid, and
then apply the known algorithms for this kind
of grids. Another important group of methods
automatically compute a triangulation of the
data points in the x-y plane, and then fill
every triangle with a suitable mathematical
function, ensuring continuity between adja-
cent triangles. The surface equation within

a triangle may be linear (this is the simplest
choice, and gives poligonal approximate con-
tours), a set of quadratic pieces (Powell and
Sabin), cubic
(Akima) .

pieces or even a guintic
methods

follow each contour, using values interpo-

However, the most precise

lated close to the track of the contour to

~ Pere Brunet i Ll. Pérez Vidal - Departament de Metodes Informatics de 1'Escola Tecnica Superior d'Enginyers
Industrials de Barcelona -~ Universitat Politecnica de Catalunya - Av. Diagonal, 647 - Barcelona 08028

133

Qtiestté - V. 8, n.° 3 (setembre 1984)

determine its position.

TwO new contourihg algorithms are introduced
in this paper. In the next two sections, an
algorithm for the construction of contour
lines from rectangular grids of data is pre-
sented. It is very clear and easy to imple-
ment. It uses local bicubic spline interpo-
lation, thus reducing the computing time
required. The user can adjust a precision
parameter that controls the smoothness of
the contours. Intersection of contour lines
is avoided by automatical refinement of the

computations at complex zones.

Section 4 of the paper presents an algorithm
for the generation of contour lines in the
case of scattered data. It is based on an
initial triangulation of the domain. In a
second step, the partial derivatives at the
Then,

triangle is recursively divided into

data points are estimated.

every

four,
conputing the ordinates and partial deriva-
tive estimates at the middle of every side

of the triangle.

Both algorithms reduces the problem of com-
puting contour lines, to the determination
of contours through very small rectangles
or triangles, which is a well-konwn problem.
In both cases, smoothness is obtained by a
reduction of the size of these elementary

polygons, that can be controlled by the user.

2.SURFACE_INTERPOLATION BY MEANS QF LOCAI
SPLINES:

Let us suppose that a set of "n" samples of

a function y = f£(x) is given

(%%, (X5r¥p)revnnn ; (X _,y)) (1)
and we want to interpolate them.

To simplify the spline equations, we will

assume that the %, are equally spaced,
xk+1—xk=l, vk.

One of the best known interpolation algo-
rithms is cubic spline interpolation. In
this case, from the set of ordinates
Yq+--¥Y,r a curve y = s(x) is obtained such
that,

- s5(x) is a cubic in very interval [x

107 ¥k 41

- s(x) interpolates the set of data points,

S(xi) =Y, ¥ i

- A certain continuity is required between
every two cubics, in order to obtain a

smooth interpolant.

Let us suppose that we are able to estimate

the slopes Yyeeor: Yy of the interpolated

n
curve at the given points; then, we can de-

fine the cubic spline in the interval

xk, xk+l as the Hermite interpolant,
2 =2 1 1
3 3 2 1 Yk
_ 3.2 - T Yy
s(x)= [t t tl] o o 1 o .

¥, s , =X —xk

9k+1
(2)

It is easy to see that s(xk) = Yy s(xk+l)

= Ygapr SOR) = v s(xg) = 3"k+1'

It is a cubic spline with slope continuity
in the overall intervall [xl, xn] . If a
well-known tridiagonal linear system is
solved to compute the vector of slopes §k’
/4/ global splines with continuity c2 are
obtained-provided that two extra end con-
On the other hand,
local splines are obtained /5/ if every

ditions are supplied-.

slope estimate Yy depends only on adjacent
values yi, with i~k.

Although these splines are only c1 and they
are not so smooth as global splines, they
are much easier to compute and behave loca-
lly: a change of value of one data point
produces a local change in the shape of the
interpolant s(x). In what follows, local
spline interpolation will be used, because
of the simplicity of the obtantion algo-
rithm. In addition, the smoothness of the
resulting contour is very acceptable as

will be seen in the figures.

At the first step in the derivation of local

splines, the slopes are computed,

V.= ¥y - Y) /2, k=2...n-1
Yl= (—3yl+4Y2_Y3) / 2 (3)

Yn~ (yn—2—4yn—l+3yn) / 2

(y1 is the slope of the quadratic interpo-

134

Qiestié - V. 8, n.° 3 (setembre 1984)

lant of the set Yyir Yoo ¥y and the same
with yn).

Due to the linearity of equations (2) (3),
an alternative definition of local splines
is possible. Let us define the basis ele-

ments L. (x)... L_ (x)

1 n as the local spline

functiong such that Lk interpolates the va-
lues 0...0,1,0,...0,

Lk (xk) =1

L, (x)=), ik (4)
for every function Lk’ k=1...n

Then, it is clear that they are a basis of
the local cubic splines interpolating n

equally spaced points. Given the ordinates

M ERERES v the local spline S$(x) is,
n
S{x) = E. Vy- Li(x) (5)
i=1

Equations (3) and (4) imply that the basis
functions Li(x) have small support. In other
words, Li(x)=0 if:

x ¢ [X1—2’ x1+2]

Then, equation (5) can be rewritten as

k+2
s(x) = Z Y L; (%)
i=k-1 (6)

if x, <x<x

X K+1’ k>1, k<n-1

And now, local behaviour of these splines is
obvious.

This algorithm can be extended to the obten-
tion of a surface from a given mesh of
points, Zij’ i=1l...n.

The well-known tensor product algorithm,/6/
allows computation of interpolated values
s(u,v) from the two sets of one-dimensional
cubic spline basis elements, Li(u)...Ln(u)
and Ll(v)...Lm(v),

n m
s(u,v) = :E: :E: Zyq L; (u). Lj(v) (7)
j=1

i=1 =

As we did before, equation (7) can also be
reduced if locality of the splines is taken
into account. Then, assuming that the point

(u,v) we want to interpolate has the proper-

ties

we bx)y %01 s and voe lyg, vy 47
k+2 1+2

s{u,v)= E E ;5 Li(u) . Lj(v) (8)
i=k-1 j=1-1

(it is assumed that k>1, 1>1, k<n, 1<m).

As a consequence, every interpolated value
depends only on sixteen initial values zij'
Using the definition of the basis elements
Li and L., a straightforward mathematical
computation leads to the following represen-

tation of the spline,

2 =2 1 1 2 -3 0 1 Swz'
- 303 2 - 2 3 0 0 A
stuv= |7 o o 1 1| [Pl -2 1 o0 w
1 0 0 0 1 -1 0 0 1
¢
where,
245 2 501 &401,3) 84, 3+1)
Zi+i’j Zi+1,j+1 gj(i+1,j) zj(i+1,j+u
pl= Coay s e g . X
A05,3) EYRSYRAY! uj[;i(l,])J ,j[Ai(l,J+1J]
A (01,385 (11,5301 ijfLi(i+l,j)]ij[ii(i+1,j*1)J
L SUSK, =u-x X.,,=x,=1. Vi
¥ <usx, t=u-x, , (i+l)
vy . =v-y -y.=l, Wi
yi v yl+1 w=v yl 4 (yl+l yl !)

Ai(k,2)=l/2[Z 21,

k+1'h TIgoqr

Aj(k,2)=1/2[Z]

k,2+17 %k, 0-1
Equation (9) 1is the well-known formulation
of the bicubic patch /7/. The interpolated
value depends on the position (t,w), and
the matrix P. In this matrix, the four top-
left terms are the data values of the points
surrounding {(u,v). Top-right terms are esti-
2 at the
same four points. They can be computed by

mates of the partial derivatives Dy

means of equation (3) which, can be used
for every value of "i" and "j", including

the boundaries of the domain. The four bot-
tom-left terms are the estimates of the de-
rivatives sz’ which can also be computed
using equation (3). And the bottom-right
terms can be interpreted as estimates of the
cross-derivatives. They measure the twist of
the surface at the four corners of‘the square
of the mesh that contains point (u,v). To es-
timate them, we must use the whole set of 16

data values surrounding (u,v). However, in

135

Qiiestts - V. 8, n.° 3 (setembre 1984)
most applications, twist derivatives are
assumed to be null. In this case, matrix P
has four null termsP33=P34+P43+P44=0, and
only first partial derivatives must be esti-
mated. The bicubic patch thus obtained is
called an F-patch, /7/.

0 S ONTOUR MAPS FROM
-QUALLY DISTRIBU INTS.

In this section an easy-to-implement algo-
rithm to obtain contour maps from a set of
points distributed in a rectangular mesh is
presented. Surface interpolation by means

of local splines is performed to smooth ini-
tial data. A local algorithm assures enough
smoothness of the contours with small comput-
ing time. Once the interpolation has been
performed, a thinner mesh is computed and

the pieces of contour within every rectangle
of this second mesh are obtained, using li-
near interpolation. Direct computation of
contours of bicubic patches, which is expen-
sive and involves iterative solution of cu-
bic polynomials, is avoided.
In more detail, the algorithm proceeds
through the following steps,

- For every rectangle (i,j) in the mesh,

i=l..n-1, j-1..m-1,
1 - Estimate the partial derivatives sz,
Dyz, at the four corners of the rec-

tangle, using equation (3).
2 - Form the matrix P of equation (9)

3 - Using (9), compute the interpolated
value at points within the rectangle.
These points (uk,ve) are equally
spaced and form a finer mesh. In par-

ticular,

= + - * - = +
u] Xi (k l) (Xl 1 Xl)/k ’ k=1..%k 1
viey +(1-1)* (Y, .-y.)/k_, 1=1l..k +1

1Yy Yy myy) /Ry P
(10)

4 - For every contour,

4.1- Find the rectangles of the finer
mesh containing part of the con-
tour. These rectangles must have
some of the vertex ordinates

higher than the contour, while

the others must be lower.

4.2- For every rectangle found in step
4.1, draw a straight segment apro-

ximating the contour within it.

The algorithm used in this last step 4.2 is
similar to that of /2/. The four edges of the
rectangle are studied; is an intersection
between the contour and the edge is detected
(the heigh of the contour is between those
of the ends of the edge), the coordinates of
the intersection point are computed and stor-
ed in a stack. At the end, there are only two
possible states,

- The stack contains two points. In this case,
a straight segment is drawn, connecting the

points.

- The stack contains four points. In this
case, the contour intersects the four edges
of the rectangle, and the connection between
the points cannot be determined from the in-

formation from the rectangle vertices. As
we know the mathematical equation of the
bicubic patch, it is possible to divide re-
cursively the rectangle into four quadrants,
until indetermination is avoided, and the
stack contains zero or two points for every
elementary rectangle. An alternative solu-
tion is to simply connect the two pairs of
opposite intersection points; then, a cross-
hatch will appear in the contour map, indi-
cating to the user that precission must be
increased.
The input arguments to the contouring pro-
cedure are "n", "m" the initial matrix of
values Zij’

heights of

i=1l...n, j=1...m, the desired
the contours, and the precision
parameter kp .The user must also supply a
working ~ two-dimensional
(kp+l) x (kp+l),
of interpolated

of the

array of dimension
that will contain the set
values in very rectangle
cell (step 3 of the algorithm). If
kp is small, the amount of interpolated
points 1is also small, and the contours will

be aproximated by large straight segments.

If k
P

A good choice for parameter k

increases, contours tend to be smoother.
is usually bet-
ween 5 and 15 (observe that the working

array has always a reasonable size). Values of

kp beyond 15 or 20 produce excesively short

136

Qtiest1ié - V. 8, n.° 3 (setembre 1984)

segments and increase drawing time.

Figures 1 to 6 show the results of the above
algorithm when applied to the function

z(x,y)=15.(x2—y%.cos(x2+y2+4x—5y)

Imput data was a 6 X 6 matrix z . containing
the z(x,3j) values at xi=—1+.4*(i—l), i=l...6
and y =-1+.4%(j-1), j=1...6

Contours were required at

z=-5, -4, -3, -2, -1, 1,2,3,4,5.

k

To show in more detail the effect of a
change in the precision parameter k_, the
recursive division of the rectangles of the

finer mesh was eliminated.

Figure 1 shows the results of the contouring
algorithm with k_=1 (no interpolation is ap-
plied to data values). A great number of in-
determinations is observed and the disconti-
nuities in the contours make interpretation

of the drawing difficult.

Figures 2 and 3 show the results when k_is
increased to 2 and 3, respectively. Many of
the indeterminations have disappeared, and
the contours become smoother. These effects
are quite clear in figures 4 and 5, where
kp=5 and 10. These last figures would be
quite acceptable if recursion in problema-

tic rectangles had been used.

However, in our case, we must increase kp
up to 18 in order to avoid all indetermina-

tions.

Comparing figures 4, 5 and 6 we see however
that a good rate of smoothness is reached

soon.

In all cases, the computing time taken by
the algorithm is negligible in front of the

representation time in a screen or plotter.

The presented algorithm contains a loop of
(n-1) x (m~1) bicubic patches; on everyone
of them, contours are generated one after
the other. The algorithm follows every con-
tour all along the patch. Because of this,
there are very few movements of the plotter
pen in the "not drawing" mode.

I FROM

We now face the problem of a set cf data
peoints that are not regularly distributed

over the x-y domain we wish to consider.

The heights of data points can be either

calculated from a given function
z = f(x,y)

or entered as a third datum value for each

point.

The problem has been reviewed by Farin /8/:
He has proposed a corrected triangular biva-
riate Bernstein-Bezier patch; each triangle
side is devided in three segments, and a
third-degree polynomial is made to interpo-
late the three points.

The approach we have considered to solve the
problem involves the use of recursive refi-
nement of the initial mesh dividing the

sides of the triangles by two.

The procedure starts by the obtention of a
triangularization mesh having as vertexs the
given data points. After this first step we

have the convex polygon enclosing all points.

The second step is the initial estimation of
partial derivatives at each vertex of the

original mesh.

The third step is a recurring subdivision of
the original mesh in order to archieve a
smooth transition of the values of partial

derivatives from one node to the next.

The fourth and final step is the actual draw-
ing of contour lines, which are in fact
straight segments: Each and every triangle

resulting from the last subdivision is ins-
pected and the corresponding "heights" are

interpolated in its three sides.

5.0, OPTIMAL TRIANGUIARIZATIQN FOR A GIVEN
SET QF POINTS.

We have used extensively Lawson's chapter
/9/ to generate a triangulation for a given
set of points.

Qtestiié - V. 8, n.o 3 (setembre 1984)

The criterion to define a "better" triangle

is the max-min angle:

The procedure will seek to maximize the
smallest angle in a triangle which means
that small angles in a triangle are "bad".
The local optimization procedure proceeds

as follows: A single internal edge of the
global triangulation is chosen; by internal
we mean that it is a common edge of two tri-

angles belonging to the triangulation.

Then a swap of edges is considered: the mi-
nimum angle in the two triangles is calcu-
lated in the actual configuration and in the
alternative configuration we would have if
the internal edge being considered disappear-
ed and the other diagonal of the gquadrila-
teral thus formed was taken as the internal
edge.

The edge giving the smallest internal angle

is discarted.

Any internal edge of the triangulation is
locally optimal if application of the local

optimization procedure would not swap it.

When all internal edges in a triangulation
are locally optimal, the triangulation is
globally optimal.

The triangulation algorithm proceeds by
first generating a near optimal triangula-
tion with a constructive approach: From the
minimum x-minimum y point we choose the two
nearest ones. Then we choose the nearest
"free" point and join it to the existing

set of edges. The preceding phase is repeat-
ed until there are no more free points. And
finally the global optimization procedure is
run over the whole set of edges.

4 I v
TIVES,

The problem has been reviewed by Nielson and
Franke /10/ who have made reference to se-
veral works: Akima /11/ uses weighted nor-
mals of neighbouring triangles, Klusewicz

/12/ the plain average of neighbouring tri-
angle slopes, and Little /13/ again weight-
ed normals of neighbouring polygons with

weight factors involving edge lenghts.

We have found, and experimented, the truth
of the statement by Nielson and Franke /10/:
"The choice of technique used in this phase
is rather crucial since it can have a signi-
ficant effect on the overall quality of the
method".

We started by averaging the normals (not the
slopes) of the triangles with a common node
and then assigned that node a weighted pro-
portion of those normals. We tried several
weight criteria, and all results were bad,
because what has to be computed is the slope,
that is, the partial derivatives of "z" with

respect to "x" and "y".

The next trial was the assignment of a par-
tial derivative which was that of each of
the adjacent triangles weighted with a fac-
tor that was the angle formed by the edges

that cross in the node being studied.

This criterion has shown its inadequacy; the
reason is that when a triangle is relatively
big its vertexs are far apart whereas their
angles might be significantly great, thus
giving great weight to a slope which might

be very different from the local slope of the
surface at the vertex being studied.

We have finally come to another criterion:
The estimated slopes are calculated from
those of the triangles concurring at the
vertex being studied.

S(x,y) = L W(t i) s(t i)

/ L Wt i) (11)

Where S(x,y) is the estimated slope at vertex
X,y: L is the sumatory for all triangles con-
curring at the (x,y) vertex;

W(t i) is the weight factor of triangle i for
vertex x, y; and

S(t i) the slope of triangle i.

We do not actually compute the slope but the
two partial derivatives, and sc, S(x,y) S(t i)
should be taken first as dz/dx and then as

dz/dy.

dzfix (y,y)

dzdy (x,y)

DW(t 1)*dz8x (t 1)) / IW (¢ 1) (12)

1

L(W(t i)*dzfiy (t 1)) / IW (¢ i) (13)

138

Qtiestiié - V. 8, n.° 3 (setembre 1984)

The weight factor W (t i) is

1
T (@1 d%2)

W(ti = (14)

alfa

where dl and d2 are the distances from the
vertex being studied to the other two vertex
of the triangle which slope is being weight-
ed.

It is interesting to note that this crite-
rion includes, as a particular case, when

alfa=0, Klucewicz's criterion /12/.

We carried out several trials to determine

the evolution of estimated slopes following
several values of alfa. We use to that end,
an hiperboloid of equation

z=,2% (x4.5) %% 2-.3% (y~-.5) ** 2 + .25 (15)
of which we know, analitically, the partial

derivatives

dzdx nx - L2

(16)

dzldy = .3- .6 * y (17)

We first calculated the average of differen-
ces to the square between the estimated and
the analytical partial derivatives, shown

in Table 1 for a set of 41 regularly distri-
buted data points (Fig 7). The influence of
alfa is not significant. The reason is that
the improvement of our criterion does not

show when points are evently distributed.

We then tried with another set of 50 irre-
gularly distributed data points (Fig. 8),

and the results, in Table 2, show an opti-
mum value of alfa=8 which we have retained

for the rest of this work.

We have thus tackled the problem of esti=-
mating the partial derivatives at vertex
points of a data set. But it has to be point-
ed out that it is not completely solved:

the solution is quite satisfactory inside
the convex polygon but shows some altera-
tions in boundary vertexes due to lack of

information on surrounding slopes for those
points.

We propose to further study the possibility
of assessing a better method to estimate

slopes of points with little information on

surrounding slopes.

TABLE 1 TABLE 2
x So2 sol o« g0l £l
.01 .0221 .027 .01 .045 045
T 071 026 T 040 041
10 0152 0233 T 05 039
100 019 0230 §078 0374
§ 027 0320
0 0% 032
160 029 036

4,2, RECURSIVE ALGORITHM FOR CONTOUR PLOT
DRAWING.

In this section we present an algorithm to
plot the contour lines of the surface inter-

polating a set of scattered data points.

is the

triangularization in the x-y domain for the

The first procedure in the algorithm
given data points.

The second procedure is the initial estima-
tion of the partial derivatives fully des-
cribed in its details and implications in

the preciding paragraph 4.1.

The third procedure is recursive and plays
the main role in the algorithm. It takes
triangles one at a time. First of all, it
checks the depth of recursivity: If it falls

under the given threshold then the contour

lines can be plotted; if it does not, a "new
node is placed at the middle of each of the

sides of the triangle in the x-y plane, and
four new smaller triangles are obtained from

each old bigger one. The height and slopes

at each "new" node are obtained in different
computations: The slopes are plainly the
average from the two surrounding ones, that
is, we perform a linear interpolation, but
the height is a cubic spline interpolation
from the data of, again, the surrounding

points.

This method is clearly different from Farin's
/8/: He divides each projection of the sides
of the triangle by three and then computes a
third degree polynomial that contains the’
four points; this polynomial is the interpo-

lant in 3D space for that side.

139

'Qﬂeniﬂs -V. 8, ne 3 (setembre 1984)

The algorithm is, formally, as follows:

1-

Read data points and other data (preci-

sion, alfa for weight factors, etc.)

Obtain an optimal triangularization on
the x-y plane for the given set of data

points.

Estimate partial derivatives dz/dx and
dz/dy at each node of the triangulariza-
tion.

For each triangle i=l.. nt

Computations for a triangle

5.1. Compute the difference between the
partial derivatives at each one of
the three vertexs and those of the

triangle, and print them.

5.2. If the depht of recursivity has been
reached, then
5.2.1. Draw the contours for this

triangle
else
5.2.2., For each side of this trian-

gle j=1,2,3

5.2.2.1. Divide the side by two
and interpolate: components
of a versor in the direction
of the side:

u=x(2)-x(1)
v=y (2) -y (1)
new-x=x (1) +u/2
new-y=y (1) +v/2
d=sqrt (u*u + v¥v)
ul=u/d

vli=v/d

basis rotation for the deri-

vatives:

dl=dz/dx (1) *ul+dz/dv (1) *vl
d2=dz/dx (2) *ul+dz/dy(2) *vl
d3=dz/dx (1) *vl+dz/dy (1) *ul
d4d=dz/dx(2) *v1+dz/dy (2) *ul

computation of partial deriva-

tives at the midpoint:

an=(d1+4d2) /2
nm=(d3+d44) /2
new— dzdx=nn*ul-nm*vl

new—- dzdy=nn*vl+nm*ul

5.2.3., Join the three mid-sides to

form four small triangles.

5.2.4. For each of the four triangles
k=1,2,3,4

5.2.4.1. Call (recursively) routine

5. for the triangle.

It has to be pointed out that the depth of
recursivity for each and every triangle in
the domain must be the same to ensure Cl con-

tinuity.

The final form of the algorithm has been des-
cribed, but we have carried out tests with
several other combinations of possible com-
putations for height and slopes: average of
normals, cubic spline interpolation of nor-

mals.

To demonstrate the effect of an increase in
the threshold value for differences between
slopes, and thus of the depth of recursivity,
we have run and plotted two examples of the
use of the algorithm for a set of points which
yield a triangularization shown in figure 8
and that take heights that belong to the hy-
perboloid (15) for values of x and y between

0 and 1.

Data points in the x-y plane, as per figure 8,
were generated randomly, but imposing the pre-
sence of four points at the corners of the do-
main and four at the mid-sides. Then the
heights were calculated using equations (15),
and an output data file was left on mass sto-
rage to be taken as input by the contour draw-

ing program.
The plots are figure 9 for a depth of recur-
sivity of 0 and 10 for a depth of 2. The smoo-

thing of contours is clear as depth increases.

We have also studied a surface proposed by
Nielson and Franke /10/,

z=4% (exp (- ((x-2) /. 4)%%2-(y-.2)%*2)+exp (- ((x-1.)/.35) %

R2- ((y=.3)/.7)%2) =1 /(1 ,+ ({x-.4)/.6)) **2+((y-9)/.4)**2))+.3

(18)

A considerably smoother contour is observed in
figure 12 (depth=2) than in figure 11 (depth=0).
Nevertheless, even with the smooth contours of

figures 10 and 12 some perturbations can be ob-

140

Qiiestiié - V. 8, n° 3 (setembre 1984)

erved at or near the confines of the plots:
these problems arise from inaccurate estima-
tions of partial derivatives at the nodes on
the convex polygon frontier of the triangu-
larization. And the inaccurancy comes, in

turn, from a shortage of information:

In an "internal" node there is information
on values of the slope of several surround-
ing nodes in every direction, whereas in
"frontier" nodes we have a sector of at
least 180 degrees (maybe more) about which
slope we have no information. This effect

is worsened by the bad shape of many trian-
gles along the frontier, that are very elong-

ated and thus with nodes far apart.

To separate the consequences of an inaccu-
rate initial estimation of slopes at mesh
vertexs, we have run the algorithm on the
surface for equation (18); but instead of
estimating the slopes by the procedure pre-
sented in paragraph 4.1., we have calculated
them with a finite diference scheme, obtain-
ing a far better set of values for slopes.
The results of the contour map algorithm as
applied with a good slope estimation are
shown in figure 13; this shows clearly the
remarkably good performance of contour line

generation.

It has to be observed that the critical

step in the set of procedures is the initial
slope estimation at the given mesh nodes: if
the estimation is accurate the latter part
of the algorithm yields a good-looking con-

tour map.

5. CONCIUSIONS.

Two algorithms have been bresented to draw
contour lines for regularly and irregularly
distributed data points.

Both are simple to implement and work well.

The two algorithms compute spline interpo-
lations and yield, either a triangular or
rectangular mesh of sufficiently small po-
lygons.

The contour 1lines being drawn are, for both,
actual straight segments.

Tu further refine the smoothness of the re-
sulting plots, the user must only increase

threshold values of permissible deviations.

Several lines of further development are
presented and work will proceed to enhance
the quality of results.

6. BIBLIOGRAPHY.

/1/ SUTCLIFFE, D.C.:

tangular and skewed rectangular grids-

"Contouring over rec-

An introduction”. Math. Methods in Com-
puter Graphics and Design, Ed. by K.W.
Brodlie Academic Press 1980.

/2/ WARD, S.A.:"Real time plotting of appro-
Ximate contour maps" Comm of the ACM
vol. 21 n9, 1978.

/3/ SABIN, M.A.: "Contouring. A review of
methods for scattered data". In Math.
Methods in Computer Graphics and Design.

Academic Press 1980.

/4/ BRUNET, P.: "Interpolacié per funcions
Introduccid automi3tica de les
QUESTIIO, V.6 n.4,

spline.
condicions d'extrem".
1982,

/5/ DE BOOR, C.:
Springer Verlag, 1978.
/6/ BRUNET, P., AYALA, D. NAVAZO, I.:

teractive algorithm for the generation of

"An in-

B-spline surfaces", Procs of ICS-83, Ed.
Berichte, nl3, 1983.
/7/ ROGERS, ADAMS.:

Computer Graphics".

"Mathematical Elements for
McGraw-Hill, 1976.
/8/ FARIN, G.: "Smooth interpolation to scat-
tered 3D data", in Surfaces in Computer

Aided Geometric Design;North Holland 1983.

/9/ LAWWSON, C.L.: "Software for Cl surface
interpolation", in Mathematical Software
IIT,Academix Press 1977.

/10/ NIELSON, M., FRANKE, R.: "Surface cons-—

truction based upon triangulation”, in

Surfaces in Comp. Aid. Geom. Des. North

Holland 1983.

"A practical guide to splines"

Qtiestt6 - V. 8, n° 3 (setembre 1984)

/11/ AKIMA, H.: "A method of bivariate inter-
polation” ACM Trans. Math. Software,
vol.4, 1978, pp. 148-159,

/12/ KLUCEWICZ, I.M.: "A piecewise Cl inter-
polant to arbitrarily spaced data".

M.S. Thesis. Univ. of Utah 1977.

/13/ LITTLE, F.: CAGD report. Univ. of Utah

<

’
S

S

TN

Figure 1: Figure 2:

\M

Ten contour lines of a mathematical surface. Contour lines of a mathematical surface

Initial contours without spline interpolation. Interpolation by means of local splines, kp=2

Figure 3:

Figure 4:

Contour lines of the surface in figures Contour lines of the same surface as the

1 and 2. Interpolation with kp=3 preceding figures with kp=5

142

Qtiesti#é - V. 8, n.° 3 (setembre 1984)

Figure 5: Pigure 6:

Contour lines of the surface in the previous Contour lines of the surface in the previous

figures, with kp=10. Note that there is one

figures with kp=18. The single contour cros
indetermination still left

sing in fig. 5 has been eliminated.

Figure 7: Figure 8.
A set of 41 regularly distributed data A set of 50 random data points.
points.

143

Qtiesttié - V. 8, n.o 3 (setembre 1984)

—

o

I

N

|

l ~——
~

; //////////M—m_—ﬁ\\\\\\\::i\\\~
% ///’__\\\

Figure 9:

Contour lines of an hiperboloid, without

smoothing. Data points from figure 8

\\Q

Fiagure 11:

Contour lines from a complex surface, without

smoothing. 50 random data points.

Figure 13 The same contours as in figure 12,

slope estimation.

I .
// — T~ AN
7 / . \\ I
//"’ /// e \'\\\\ e
~ T T N
Figure 10:

The same contours as in figure 9, with a
depth of recursivity of two. Note the

imprevement in smoothness.

Figure 12:

The same contours as in figure 11, with a

depth of recursivity of two. Some perturba

tions can be seen near the edge of the plot.

with a good

144

	
	
	
	
	
	
	
	
	
	
	
	

