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ISOPER;IMETRIC INEQUALITIES AND
DIRICHLET FUNCTIONS OF

RIEMANN SURFACE S

JOSÉ M . RODRÍGUE Z

A,bstract
We prove that if a Riemann surface has a linear isoperimetric in-
equality and verifies an extra condition of regularity, then ther e
exists a non-constant harmonic function with finite Dirichlet inte-
gral in the surface .

We prove too, by an example, that the implication is not true
without the condition of regularity .

1 . Introduction.

In this paper we study the relationship between linear isoperimetric
inequalities and the existence of harmonic functions with finite Dirichle t
integral on Riemann surfaces .

By S we denote a Riemann surface (whose universal covering space
is the unit disk q ) endowed with its Poincaré metric, i . e. the metric
obtained by projecting the Poincaré metric of the unit disk : ds 2(1 —
1With this metric, S is a complete Riemannian manifold with
constant curvature -1. The only Riemann surfaces which are left out
are the sphere, the plane, the punctured plane and the tori .

We shall say that a Riemann surface s satisfies a "linear isoperimetric
inequality" (LII ) if there exists a finite constant h(S) so that far every
relatively compact open set G with smooth boundary we have

A(G) h(S) L(aG) .

Here and from now on, A, L, d and B refer to Poincaré area, length ,
distance and open ball of s.

There are connections between LII and some conformal invariants on
Riemann surfaces : the bottom of the spectrum of the Laplace-Beltram i
operator, b(s) , and the exponent of convergence S (S) :
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Theorem A. ([Ch], [B, p. 228], [FR]) . A Riemann surface S satis-
fies a linear isoperimetric inequality if and only if b(S) > O . In fact,

4 < b(S) h(S)2

	

and

	

b(S) h(S) < 2

The next result is a well known theorem of Elstrodt-Patterson-Sulli -
van :

Theorem B. [S, p. 333] . A Riemann surface S satisfies a linear
isoperimetric inequality if and only if S (S) < 1 . In fact ,

	

ŏ
1

	

if oCS(S ) <
1

'

	

4

	

_

	

- 2 'b(S) =

	

1
S(S ) (1 — 6(S)), if 2— ç «S) ç 1 .

A theorem of Myrberg [T, p. 522] states that if S (S ) C 1 (if S sat-
isfies a LII ) then S has a Green 's function (S OG in the language of
classification theory) . If S is a plane domain (in fact, if S is a surface
of almost finite genus [SN, p. 193D, S has Green's function if and only
if S has a non-constant harmonic function with finite Dirichlet integral
[SN, p. 194] (s 1 0HD in the language of classification theory) .

One would like to understand the relationship between the classes
0xD and ,l3 (the Riemann surfaces which do nat satisfy a LII) . As we
have said above, in the case of surfaces of almost finite genus, OG =
VHD C B . The inclusion is strict, as it is shown by the example Sa =
q \ (U 1 {2_ k } U {O}) : So OG because it is a plane domain whose
boundary has positive logarithmic capacity [T, p. 81] ; So E B because
U =1 {2—k } U {o} is a discrete set with an accumulation point in q [FR,
Theorem 4j .

The inclusion 0HD C B is true, in general, with an extra hypothesis :

Theorem 1. Let S be a Riemann surface which satisfies a linear
isoperimetric inequality . lf there exists in S a set of disjoint simple close d
curves {y~ }T_ 1 , such that S \ contains n connected components of
infinite area S1 , . . . , Sn , then

dim HD(S) ~ n .

This inequality is the best possible .

Here ~-I D (S) denotes the (real) linear space o f harmonic functions in
S with finite Dirichlet integral .

The inclusion DHD C B is not true in the general case, even with
the extra customary hypothesis of bounded geometry [K], which in our
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context means that the injectivity radius t(S) is positive . t(S) is defined
as

t(S) = inf {L(p) : p E S} ,

where t(p) is the injectivity radius of the geodesic exponential map cen-
tered at p .

Theorem 2 . There exists a Riemarin surface 7Z E VHD , with c(7Z) ~
O, which satisfies a linear isoperimetric inequality.

Acknowledgements . I would like to thank J. L . Fernández for many
useful conversations about these results, and J . Llorente for his careful
reading of the manuscript and for some helpful suggestions .

2 . Proof of Theorem 1 .

Without loss of generality, we can assume that {yi } 731 1 are simple
closed geodesics. If this is not the case, we can substitute each curve by
the geodesic in its same free homotopy class .

Let Sk be a component of infinite area of S \ U j ry3 , and let SZ be the
Schottky double of [Jk (see [AS, p . 26] for the definition) .

Claim. SI*, satisfies a linear isoperimetric inequality .

If the claim is true, the theorem of Myrberg [T, p. 522] states that S~
has Green 's function . This implies that the Royden's harmonic boundar y
of SI*, is not empty [SN, p. 1661 .

S'k' is symmetrical with respect to 9Sk , a compact set which separates
SI*, in two connected components . Then the Royden's harmonic bound-
ary of S~ is also symmetrical with respect to O5k , and contains at least
two points, one of them corresponding to Sk (one of them is in the closur e
of S k in the Royden's compactification of S;:) .

This is true for k = 1, . . . , n . Therefore, the Royde n 's harmonic bound-
ary of S contains at least n points [SN, p. 191] . This is equivalent [SN ,
p . 166] to

dim HD(S) ~ n .

This inequality is the best possible :
Let 7Z be the Riemann surface given by Theorem 2 (7Z will be con-

structed without any mention to Theorem 1) and consider Rn , a n-
covering of 7Z based in a closed simple geodesic y C R. 7Z, satisfies
the hypothesis of this theorem and also dim .HD (7Z n, ) = n (the Royden' s
harmonic boundary of 7Z 7z consists of n points, because the Royden' s
harmonic boundary of 7Z consists of one point (7Z E 0HD / 0G ) [SN, p .
166]} .
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To finish the proof of Theorem 1, we only need to prove the Claim :

By a geodesic domain in a Riemann surface we mean a connected

domain G with finite area, such that aG consists of finitely many closed

simple geodesics . G does not have to be relatively compact since it may

"surround" finitely many punctures .

The following lemma will be very useful :

Lemma. [FR, p. 168] . A Riemann surface satisfies a LII if and

only if it satisfies LII for geodesic dornazns . Moreover, if h and h g are ,

respectively, the usual and geodesic isoperimetric constants, then

h g çhç2+hg .

Therefore, we must verify LII only for geodesic domains of SZ . By the

symmetry of S~ and the LII of S, we just need to check this for geodesi c

domains which are symmetrical with respect to OSk . Then, we must

verify
A(G) c c LAG)

for geodesic domains G of Sk , such that áGf1áSk � 0, where óoG mean s

aoc ac~ask .

Consider the open sets Ct = {p E Sk : d(p, c7Sk ) < t} for positive t .

Let Gt be the geodesic domain "correspondin g" to Ct (each puncture or

boundary curve of Gt is freely homotopic to a boundary curve of Ce) . If

G t is empty for all positive t, then Sk is a doubly connected domain (a

funnel), S~ is an annulus, and the claim is true with constant 1 . Then ,

we can assume that G t is connected and not empty for t ~ to . Gt i s

non decreasing in t, and if t i < t 2 are such that A(Gtx ) < A(Gt2 ) , the

constant curvature -1 and the Gauss-Bonnet theorem give A(Gt , )+2ir Ç

A(Gt2 ) .
This implies that there exists a positive number T such that Gt = GT

forallt~T,orA(Gt ) ---+ ooast —> oo .

The first possibility is easy: there are only a finite number of geodesi c

domains . Without loss of generality, we can asssume that A(Gt) —> o0

ast -~oo .

Case 1 . A(G) > 2 h(S) Q, with P = E7_ 1 L(ryj ) . In this case ,

2 h(S) ~ < A(G) < h(S) L(aG) h(S) (L(D0 C) + Q )

and
e < L(aoc) .
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Therefore,
A(G) < 2 h(S) L(aoG) .

Case 2 . A(G) < 2 h(S) e .

Let S2 be a geodesic domain in Sk such tha t

ase c ase

	

and

	

A(S2) > 2 h(S) Q .

We can choose 12, for example, as the first geodesic domain Gt satisfying
A(Gt ) > 2 h(S) .e .

We define

a min {L('y) : y closed simple geodesic, y C a} ,
b max {L('y) : y closed simple geodesic, y c 509} .

Since A(f2) ~ A(G) and fZ n G ~ sá, one of the two next possibilities
holds :

Case 2 .1 . There exists a closed simple geodesic y C S2 n aoG . Then

L(áoG) > L(ry) > a .

Case 2.2 . There exists a closed simple geodesic 'o in aoG, which meets
someyC aofZ .

Then, the Collar Lemma [R] says that L (r/) ~ 4do, where do (the
width of the greater collar of 'y) satisfies

b
cosh do > coth L2ry) coth

2
,

and

do ~. ~ D arc cosh coth
2

Randol [R] states the Collar Lemma if the surface is compact, but the
same proof, without any change, works for a general Riemann surface .

Therefore,
L(8oG) > L('q) > 4D .

In both cases (2 .1 and 2 .2) LAG) > min{a, 4D} co . Then

A(G) < h(S) (LAG) + P) < h(S) (L(c) + Q
L(8oG) 1

c o J
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and

A(G) < h(S) (1 + ~ I L(aoG) .

Obviously, .e > a � co and 1 + .e/co > 2 . Therefore, in any case ,

A(G) < h(S) ( 1+ ~ ) LAG) .

Consequently,

h(Sk)<2+hy (Sk)<2+h(S)I1+ ~ I ,
l

and the proof of Theorem 1 is now complete . ■

3 . Proof of Theorem 2.

The desired Riemann surface 7Z will be obtained with the help of a
graph G . We will construct this graph in three steps .

In the set of vertices of any connected graph we can define a natural
distance :

d(p, q) = inf {length of the paths from p to q }

This will be "the distance" in all graphs of this section .

First, let T be the infinite complete binary tree with root ro . Secondly,
let Vn be the subset of 2 n vertices of T at distance n of ro . We can
construct new graphs Gn (n > 1) with vertices Vn . In G 1 there is one
edge between the two vertices of V1 . The edges of Gn (n > 2) are chosen
as follows : 2' — 1 vertices of Vn are connected by a complete binary tre e
with 2n—1 leaves and with root rn (in any way) ; we add another edg e
between rn and the last vertex v n of Vn . In this way, the degree of th e
vertices of Gn is one (if the vertex is a leave) or three (if the vertex is
not a leave) . The leaves are at distance n — 1 of rn, except for vn which
is at distance 1 . Hence, the diameter of Gn is 2n — 2, if n > 2 .

Finally, we are ready to construct the graph G . The vertices of G are
the vertices of T . The edges of G are the union of the edges of T and
the edges of G,,, , for all n ~ 1 . The root ro of G has degree two . The
other vertices of G have degree four or six.

To build up our Riemann surface 7Z, modelled upon the graph G, we
will need the so called Lóbell Y-pieces, which are a standard tool fo r
constructing Riemann surfaces . A clear description of these Y-piece s
and their use is given in [C, Chapter X.3] .
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A LQbell Y-piece is a three-holed sphere, endowed with a metric of con-
stant negative curvature -1, so that the boundary curves are geodesics .
We also require that the lengths of the boundary curves are the same ,
say 2cx, and the distance between any two of these boundary curves is [3 ,
say. Then cx and ,3 are related by

sinh (2) sinh ~ 2

	

2
This is the unique restriction on a and

	

See [C, p . 248] far details .

Fix cx and ,Q satisfying the aboye relation .

A X-piece (*piece) is a four-holed (six-holed) sphere, endowed wit h
a metric of curvature -1, so that the boundary curves are geodesics of
the same length 2a . We can construct these pieces, for example, joining
two (four) Y-pieces, by identifying corresponding boundary curves .

If we now put together these pieces following the combinatorial desig n
of G, with the X-pieces (*pieces) in the place of the vertices of degree
four (six), we obtain a complete surface of constant negative curvatur e

1 .

The only non-standard vertex is ro, which has degree two . There is
not problem if we forget ro and consider that the two vertices of VI , are
connected by a double edge .

Since we have used only two distinct pieces to build up TZ, it is trivial
to see that t(7Z) > O .

First of all, we will prove that 7Z E aHD . Let u be a harmonic function
in R. with finite Dirichlet integral . Without loss of generality we can
assume that u is a bounded function [AS, p. 203] [SN, p. 1781 . We
want to verify that u is constant .

If u has limit at infinity, there is a point p in 7Z such that u(p) is the
maximum or the minimum of u in 7Z . The maximum principie implies
that u is constant .

If u is non-constant and has not limit at infinity, we can assume that
u is positive and

lim sup u (z ) > 4

	

and

	

lim inf u(z) C 1 .
z - .00

	

co

The maximum (minimum) principie implies that each connected com-
ponent of the set {u > 4} ({u < 1}) is not a relatively compact set o f
R .

This implies that, for each n ~ no, there exist points pn, qn in the
pieces of 7Z corresponding to Gn, such that

u(p n, ) > 4

	

and

	

u(qn, ) < 1 .
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Since u is a positive harmonic function, the Harnack's Theorem says
that there exists a positive number ~ < Le7Z), independent of n, such
that,

u(z) > 3, for all z E B(pn , e) ,
u(z) c 2, for all z E B(qn , e) .

Let the manifold with boundary 7Zn be the union of the pieces in 7Z
corresponding to the vertices Vn of Gn . We need a geodesic yn between
pn and gn, completely contained in 7Z n , which minimizes distance insid e
7Z n . To prove the existence of such geodesic, consider the Rieman n
surface S~

{zEC : 1<Izi Cv2 } ,
where the constant v is chosen so that the geodesic {IzI = v} has length
2a, the length of each boundary curve of

	

If we join a copy of SZo -z
{1 < ç v} in each boundary curve of 1?,n , we obtain a new Riemann
surface Ten . Since 7Z° is complete, there is a geodesic y,z between pn and
qn such that the length L n of yn is equal to the distance between pn and
qn . yn is "completely contained in 72. n " , because if 'y enters in some copy
of S2o, it lies there forever .

Consider now the Fermi coordinates (r, t) [C, p . 247], where r E [0, Ln ]
describes the curve y,z , and t E [—E, el describes the orthogonal geodesics
to yn .

Observe that if we choose

E < 1 arc cosh N/cosh L(TZ) C t(Z)
2

,

(o, Ln) x (—E, e) corresponds injectively to a region An c 7Z . Let us
denote by 7r this correspondence .

Assume that there exists two points (r i ,t 1 ) (r 2 ,t2 ) in (0,L) x
( — E, E), corresponding to the same p E An . By the definition of t(7Z), it
is not possible that (r 2 , t2) E B((r1 , 0), ¿(7?.)) . This implies Ir1 - r2 l > 2E ,

because if d = d((r2 , t2 ), (r l , 0)), hyperbolic trigonometry [F, p. 92] gives

cosh(r2 — r1 ) cosh t2 -= cosh d ~ cosh
t(Z)

cosh2 (2E) ,

and we have

cosh(r2 — r1 ) cosh ~ > cosh(r2 — 7- 1 ) cosh t2 ~ cosh(2E) cosh ~ .

Then

I r2 — r 1 ~ > 2E,
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and

d(7r(r i, O), 7r(r2, O)) < d (7r(r i, O), 7r(r i, ti)) + derr( rz , tz), 7r(r2 , O) )
=t 1 +t 2 <2e .

But Ir l -- r2 l > 2E and d(7r(r 1 , o), 7r(r 2 , o)} C 2E contradict that -yn min-
imizes length between pn and gn .

Therefore, (o, Ln ) x (—e, corresponds injectively to a region An c R .

It is easy to see that for all t E (—E, E), if -yn

	

{ir(r,t) : o Ç r Ç Ln } ,

1 < u(7r(0, t)) — u(7r(Ln , t)) = fvuds
n

f

	

1/ 2

IVuIds

	

J l(L()) 2 .f;~

	

7ri

But the metric in Fermi coordinates is expressed by

ds 2 = cosh2 t dr2 + dt2 ,

and so

fLn
L() =

	

cosh t dr = Ln cosh t < Ln cosh ~ Ç 2 D n cosh
o

if D is the maximum of the diameters of the X-pieces and the *-pieces ,
because the diameter of Gn is 2n — 2 . This give s

1
1Vu1ds ~

f;', 2Dn cosh '~

Án,
1Vu1 2

— Dncosh e

Therefore

	

qu I 2 > -2-1 E

	

	 = no ,
~

	

n�no cosh En_n a

and so u 1 HD(7Z) .

This proves that 7Z E GHD . ■

To prove that 7Z has a LII we need to precise the metric relationship
between G and 7Z . Following Kanai's terminology [K], we say that an
application not necessarily continuous, between two metric spaces

99 : (Mi, di) --> (M2 ,d2 )

and
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is a "rough isometry" if the following two conditions are satisfied :

(i) There are constants a > 1 and b > 0 such that

a—ldi(x , y ) — b < d2@P (x ), (P (y)) < adl (x, y) + b ,

forallx,yE M1 .
(u) For some E > 0, the E-neighborhood of (p(11rI1 ) covers M2 .

A metric space

	

is said to be "roughly isometric" to a metric space
M2 if there exists a rough isometry from

	

into M2 . Obviously being
roughly isometric is an equivalence relation between metric spaces .

It is evident that the graph G and the surface R. are roughly isometric .
If F is a graph, for a subset P of vertices of F we define its "boundary"

.9P by
aP {v E V(F) : d(v,P) = 1} .

If 1 . I denotes the cardinal of a subset of vertices, the " linear isoperimetric
constant" of F is defined by

h(F) = sup
lap i '
P

where P ranges over all the non-empty finite subsets of vertices of F .
Combining two lemmas of Kanai [K, p. 401] one obtains that the

surface T~ and the graph G verify a LII simultaneously. Moreover, th e
definition of the linear isoperimetric constant in a graph implies that G
has a LII if the binary tree T has a LII, because both have the same
vertices and G has more edges .

It is not difficult to prove, by induction in the number of vertices o f
P, that

Ti ~ I
for all non-empty finite subsets of vertices P of T. This complete the
proof that TZ has a LII . ■
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