Publicacions Matematiques, Vol 38 (1994), 243-253.

ISOPERIMETRIC INEQUALITIES AND
DIRICHLET FUNCTIONS OF
RIEMANN SURFACES

JosE M. RODRIGUEZ

Abstract

‘We prove that if a Riemann surface has a linear isoperimetric in-
equality and verifies an extra condition of regularity, then there
exists a non-constant harmonic function with finite Dirichlet inte-
gral in the surface.

We prove too, by an example, that the implication is not true
without the condition of regularity.

1. Introduction.

In this paper we study the relationship between linear isoperimetric
inequalities and the existence of harmonic functions with finite Dirichlet
integral on Riemann surfaces.

By S we denote a Riemann surface (whose universal covering space
is the unit disk A) endowed with its Poincaré metric, i.e. the metric
obtained by projecting the Poincaré metric of the unit disk: ds = 2(1 —
|2|#)~1|dz|. With this metric, S is a complete Riemannian manifold with
constant curvature —1. The only Riemann surfaces which are left out
are the sphere, the plane, the punctured plane and the tori.

We shall say that a Riemann surface S satisfies a “linear isoperimetric
inequality” (LII) if there exists a finite constant h(S) so that for every
relatively compact open set G with smooth boundary we have

A(G) < h(S) L(3G).

Here and from now on, A, L, d and B refer to Poincar€ area, length,
distance and open ball of S.

There are connections between LII and some conformal invariants on
Riemann surfaces: the bottom of the spectrum of the Laplace-Beltrami
operator, b(S), and the exponent of convergence §(S):
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Theorem A. ([Ch], [B, p. 228], [FR]). A Riemann surface S satis-
fies a linear isoperimetric inequality if and only if b(S) > 0. In fact,

1 3

1< bS)h(S)>  and  B(S)h(S) < 5

The next result is a well known theorem of Elstrodt-Patterson-Sulli-
van:

Theorem B. [S, p. 333]. A Riemann surface S satisfies a linear
1soperimetric inequality if and only if §(S) < 1. In fact,

1 1
—, if 0 <6(S) £ -,
ol 7 1 (8) <5
5(5)(1-6()), if 5 <8(S) < 1.

A theorem of Myrberg [T, p. 522| states that if §(S) < 1 (if S sat-
isfies a LII) then S has a Green’s function (S ¢ O¢ in the language of
classification theory). If S is a plane domain (in fact, if S is a surface
of almost finite genus [SN, p. 193]), S has Green’s function if and only
if & has a non-constant harmonic function with finite Dirichlet integral
[SN, p. 194] (S ¢ Oyp in the language of classification theory).

One would like to understand the relationship between the classes
Opp and B (the Riemann surfaces which do not satisfy a LII). As we
have said above, in the case of surfaces of almost finite genus, Og =
Ogp C B. The inclusion is strict, as it is shown by the example Sp =
AN\ (U {27F} U {0}): So ¢ Og because it is a plane domain whose
boundary has positive logarithmic capacity [T, p. 81]; S € B because

2 {27%} U {0} is a discrete set with an accumulation point in A [FR,
Theorem 4].
The inclusion Oy p C B is true, in general, with an extra hypothesis:

Theorem 1. Let & be a Riemann surface which satisfies a linear
isoperimetric inequality. If there exists in S a set of disjoint simple closed
curves {’yj};-';p such that 8 \ U;v; contains n connected components of
infinite area Sy, ...,S,, then

dim HD(S) > n.
This inequality is the best possible.

Here HD(S) denotes the (real) linear space of harmonic functions in
S with finite Dirichlet integral.

The inclusion Ogp C B is not true in the general case, even with
the extra customary hypothesis of bounded geometry [K], which in our
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context means that the injectivity radius ¢(S) is positive. ¢+(S) is defined
as
(S) =inf{c(p) : p €S},

where ¢(p) is the injectivity radius of the geodesic exponential map cen-
tered at p.

Theorem 2. There exists a Riemann surface R € Ogp, with ((R) >
0, which satisfies a linear isoperimetric inequality.

Acknowledgements. I would like to thank J. L. Ferndndez for many
useful conversations about these results, and J. Llorente for his careful
reading of the manuscript and for some helpful suggestions.

2. Proof of Theorem 1.

Without loss of generality, we can assume that {v;}7L, are simple
closed geodesics. If this is not the case, we can substitute each curve by
the geodesic in its same free homotopy class.

Let Sk be a component of infinite area of S\ U;~;, and let S} be the
Schottky double of Sy (see [AS, p. 26] for the definition).

Claim. &; satisfies a linear isoperimetric inequality.

If the claim is true, the theorem of Myrberg [T, p. 522] states that S}
has Green’s function. This implies that the Royden’s harmonic boundary
of S; is not empty [SN, p. 166].

Sf is symmetrical with respect to Sk, a compact set which separates
S; in two connected components. Then the Royden’s harmonic bound-
ary of S} is also symmetrical with respect to 8Sk, and contains at least
two points, one of them corresponding to S, (one of them is in the closure
of S in the Royden’s compactification of S;).

This is true for £k = 1, ...,n. Therefore, the Royden’s harmonic bound-
ary of S contains at least n points [SN, p. 191]. This is equivalent [SIN,
p. 166] to

dim HD(S) > n.

This inequality is the best possible:

Let R be the Riemann surface given by Theorem 2 (R will be con-
structed without any mention to Theorem 1) and consider R,, a n-
covering of R based in a closed simple geodesic v C R. R, satisfies
the hypothesis of this theorem and also dim HD(R,) = n (the Royden’s
harmonic boundary of R, consists of n points, because the Royden’s
harmonic boundary of R consists of one point (R € Ogp \ Og) [SN, p.
166]).
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To finish the proof of Theorem 1, we only need to prove the Claim:

By a geodesic domain in a Riemann surface we mean a connected
domain G with finite area, such that G consists of finitely many closed
simple geodesics. G does not have to be relatively compact since it may
“surround” finitely many punctures.

The following lemma will be very useful:

Lemma. [FR, p. 168|. A Riemann surface satisfies a LIl if and
only if it satisfies LII for geodesic domains. Moreover, if h and hy are,
respectively, the usual and geodesic isoperimetric constants, then

hg < h <2+ hy.

Therefore, we must verify LII only for geodesic domains of S;. By the
symmetry of S} and the LII of S, we just need to check this for geodesic
domains which are symmetrical with respect to 8Six. Then, we must

verify
A(G) < e L(6G)

for geodesic domains G of Sk, such that 0GNISy # @, where G means
aoG = 8G \ 68&

Consider the open sets Cy = {p € Sk : d(p,dSx) < t} for positive ¢.
Let G be the geodesic domain “corresponding” to C; (each puncture or
boundary curve of G is freely homotopic to a boundary curve of C). If
G, is empty for all positive ¢, then Sy is a doubly connected domain (a
funnel), S} is an annulus, and the claim is true with constant 1. Then,
we can assume that G; is connected and not empty for t > to. Gy is
non decreasing in t, and if t; < t; are such that A(Gy,) < A(Gy,), the
constant curvature —1 and the Gauss-Bonnet theorem give A(Gy, )+27 <
A(Gy,)-

This implies that there exists a positive number T such that G; = Gr
forallt > T, or A(Gy) — oo ast — o0.

The first possibility is easy: there are only a finite number of geodesic
domains. Without loss of generality, we can asssume that A(Gy) — oo
as t — oo.

Case 1. A(G) > 2h(S) ¢, with £ = 377", L(v;). In this case,
2h(S) ¢ < A(G) < h(S) L(3G) < h(S) (L(G) +©)

and
£ < L(8G).
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Therefore,
A(G) < 2h(8) L(8,G).

Case 2. A(G) < 2h(S)¢.
Let €2 be a geodesic domain in Sy such that
A8y, C 00 and A(Q) > 2h(S) 2.

We can choose {2, for example, as the first geodesic domain G; satisfying
A(Gy) > 2h(S) L.
We define

a=min{L(7) : 7 closed simple geodesic, v C 2} ,
b=max{L(v): v closed simple geodesic, v C 32} .

Since A(2) > A(G) and QNG # @, one of the two next possibilities
holds:

Case 2.1. There exists a closed simple geodesic ¥ C 2N 8yG. Then

L(8G) > L(7) > a.

Case 2.2. There exists a closed simple geodesic 77 in 3G, which meets
some 7y C 0pf2.

Then, the Collar Lemma [R] says that L(n) > 4do, where dy (the
width of the greater collar of v) satisfies

LO) > coth E,

> 0
cosh dg > coth 5 2 2

and b
dy > D = arc cosh (cothi) .

Randol [R] states the Collar Lemma if the surface is compact, but the
same proof, without any change, works for a general Riemann surface.

Therefore,
L(8G) > L(n) > 4D.

In both cases (2.1 and 2.2) L(8yG) > min{a,4D} = ¢5. Then

A(G) < h(S) (L(BG) +£) < h(S) (L(")‘UG) e @)
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and
A(G) < W(S) (1 + é) L(6,G).

Obviously, £ > a > ¢ and 1 4 £/cy > 2. Therefore, in any case,

A(G) < h(S) (1 + é) L(8,G).

Consequently,
* « 14
h(S;) <2+ he(Sg) <2+ h(S) [ 1+ w)

and the proof of Theorem 1 is now complete. B

3. Proof of Theorem 2.

The desired Riemann surface R will be obtained with the help of a
graph G. We will construct this graph in three steps.

In the set of vertices of any connected graph we can define a natural
distance:

d(p, q) = inf {length of the paths from p to ¢} .

This will be “the distance” in all graphs of this section.

First, let T' be the infinite complete binary tree with root rq¢. Secondly,
let V,, be the subset of 2™ vertices of T at distance n of rg. We can
construct new graphs G, (n > 1) with vertices V;,. In G; there is one
edge between the two vertices of V1. The edges of G,, (n > 2) are chosen
as follows: 2™ — 1 vertices of V,, are connected by a complete binary tree
with 2"~! leaves and with root r, (in any way); we add another edge
between 7, and the last vertex v, of V,,. In this way, the degree of the
vertices of G, is one (if the vertex is a leave) or three (if the vertex is
not a leave). The leaves are at distance n — 1 of r,, except for v, which
is at distance 1. Hence, the diameter of G, is 2n — 2, if n > 2.

Finally, we are ready to construct the graph G. The vertices of G are
the vertices of T. The edges of GG are the union of the edges of T and
the edges of G,, for all n > 1. The root rg of G has degree two. The
other vertices of G have degree four or six.

To build up our Riemann surface R, modelled upon the graph G, we
will need the so called Lobell Y-pieces, which are a standard tool for
constructing Riemann surfaces. A clear description of these Y-pieces
and their use is given in [C, Chapter X.3].
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A Ldbell Y-piece is a three-holed sphere, endowed with a metric of con-
stant negative curvature —1, so that the boundary curves are geodesics.
We also require that the lengths of the boundary curves are the same,
say 2a, and the distance between any two of these boundary curves is 3,
say. Then o and B are related by

sinh (g) sinh (g) e -;-

This is the unique restriction on a and (3. See [C, p. 248] for details.

Fix o and (3 satisfying the above relation.

A X-piece (*-piece) is a four-holed (six-holed) sphere, endowed with
a metric of curvature —1, so that the boundary curves are geodesics of
the same length 2a. We can construct these pieces, for example, joining
two (four) Y-pieces, by identifying corresponding boundary curves.

If we now put together these pieces following the combinatorial design
of G, with the X-pieces (*-pieces) in the place of the vertices of degree
four (six), we obtain a complete surface of constant negative curvature
-1.

The only non-standard vertex is rg, which has degree two. There is
not problem if we forget 7y and consider that the two vertices of V;, are
connected by a double edge.

Since we have used only two distinct pieces to build up R, it is trivial
to see that «(R) > 0.

First of all, we will prove that R € Ogp. Let u be a harmonic function
in R with finite Dirichlet integral. Without loss of generality we can
assume that u is a bounded function [AS, p. 203] [SN, p. 178]. We
want to verify that v is constant.

If v has limit at infinity, there is a point p in R such that u(p) is the
maximum or the minimum of u in R. The maximum principle implies
that u is constant.

If » is non-constant and has not limit at infinity, we can assume that
u is positive and

limsupu(z) > 4 and liminf u(z) < 1.
z—00 z—0o
The maximum (minimum) principle implies that each connected com-
ponent of the set {u > 4} ({u < 1}) is not a relatively compact set of
R.

This implies that, for each n > ng, there exist points p,, g, in the

pieces of R corresponding to G,, such that

u(pn) >4  and  u(gn) < 1.
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Since w is a positive harmonic function, the Harnack’s Theorem says
that there exists a positive number £ < ¢(R), independent of n, such
that,

u(z)

>3, forall z€ B(py,e),
u(z) <2,

for all z € B(gn,€).

Let the manifold with boundary R, be the union of the pieces in R
corresponding to the vertices V,, of G,,. We need a geodesic ~,, between
Prn, and ¢y, completely contained in R,,, which minimizes distance inside
Rn. To prove the existence of such geodesic, consider the Riemann
surface Q

Q={zeC: 1<z <v?},

where the constant v is chosen so that the geodesic {|z| = v} has length
2¢v, the length of each boundary curve of R,,. If we join a copy of Qg =
{1 < |z| < v} in each boundary curve of R,, we obtain a new Riemann
surface R2. Since RY is complete, there is a geodesic 4, between p,, and
gn such that the length L, of -y, is equal to the distance between p,, and
Qn. Y is “completely contained in R,"”, because if  enters in some copy
of €1y, it lies there forever.

Consider now the Fermi coordinates (r,t) [C, p. 247], where r € [0, L,,]
describes the curve v,, and t € [—¢, €] describes the orthogonal geodesics
to Yn.-

Observe that if we choose

1
€< 3 arc cosh y/coshi(R) < ((R),

(0,Ly) x (—€,€) corresponds injectively to a region A, C R. Let us
denote by 7 this correspondence.

Assume that there exists two points (r1,t;) # (re,t2) in (0,L,) x
(—¢,€), corresponding to the same p € A,. By the definition of «(R), it
is not possible that (72, t2) € B((r1,0),t(R)). This implies |r; —ra| > 2e,
because if d = d((r2,t2), (r1,0)), hyperbolic trigonometry [F, p. 92] gives

cosh(ry — r1) coshty = coshd > cosh¢(R) > cosh?(2¢),
and we have

cosh(rg — r1) coshe > cosh(ry — r1) coshty > cosh(2¢) coshe.

Then
|re — 71| > 2¢,
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and

d(m(ry,0),m(r,0)) < d(m(r1,0),7(r1, 1)) + d(n(re, t2), 7(r2,0))
=t + 12 < 2¢.

But |r; — re| > 2¢ and d(w(ry,0),7(r2,0)) < 2¢ contradict that v, min-
imizes length between p, and g,.

Therefore, (0, L) x (—¢, €) corresponds injectively to a region A, C R.
It is easy to see that for all ¢ € (—¢,¢€), if 7%, = {x(r,t): 0<r < L,},

/ Vuds
T

1/2
5/ |Vu|ds < (-/ |V“|2d3) (L(’thz))uz‘
7L 7

™

1< u(m(0,8)) — u(m(Ln, 1)) =

But the metric in Fermi coordinates is expressed by
ds® = cosh?tdr? + dt?,

and so
Lﬂ
L(t) = / coshtdr = L, cosht < L, coshe < 2Dncoshe,
0

if D is the maximum of the diameters of the X-pieces and the *-pieces,
because the diameter of G, is 2n — 2. This gives

1
Vu|?ds > ——-——,
_[,;l ul 3_2Dncoshe
and

€
Vul2 > ———.
[Anl ul” 2 Dncoshe

' 1 €
V> Y o
/-R| ul =2 Dn coshe ’
n=ng

and so u ¢ HD(R).
This proves that R € Ogp. B

Therefore

To prove that R has a LII we need to precise the metric relationship
between G and R. Following Kanai's terminology [K], we say that an
application ¢, not necessarily continuous, between two metric spaces

@ (My,dy) — (Ma,dy)
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is a “rough isometry” if the following two conditions are satisfied:

(i) There are constants a > 1 and b > 0 such that

a‘_—ldl(m! y) -b< dg((p(f), c,o(y}) <ady (.’L‘, y) + b:

for all z,y € M;.
(ii) For some € > 0, the e-neighborhood of ¢(M;) covers My.

A metric space M; is said to be “roughly isometric” to a metric space
M, if there exists a rough isometry from M; into M,. Obviously being
roughly isometric is an equivalence relation between metric spaces.

It is evident that the graph G and the surface R are roughly isometric.

If F is a graph, for a subset P of vertices of F' we define its “boundary”
dP by

OP={veV(F): d(v,P)=1}.

If |- | denotes the cardinal of a subset of vertices, the “linear isoperimetric
constant” of F' is defined by

1P|
h(F) =sup ——,

where P ranges over all the non-empty finite subsets of vertices of F.

Combining two lemmas of Kanai [K, p. 401] one obtains that the
surface R and the graph G verify a LII simultaneously. Moreover, the
definition of the linear isoperimetric constant in a graph implies that G
has a LIT if the binary tree T has a LII, because both have the same
vertices and G has more edges.

It is not difficult to prove, by induction in the number of vertices of
P, that

|P| < |0P],

for all non-empty finite subsets of vertices P of T. This complete the
proof that R has a LII. &
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