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Abstract

Using elementary convexity arguments involving the Legendre transformation
and the Pŕekopa-Leindler inequality, we prove the sharp Moser-Onofri inequality,
which says that

1
16π

∫
|∇ϕ|2 +

1
4π

∫
ϕ− log

(
1
4π

∫
eϕ

)
≥ 0

for any functionϕ ∈ C∞(S2).

Introduction

For an open bounded domain in Rn, or more generally for an n-dimensional compact
manifold M , the Sobolev embedding theorems say that W 1,p(M) injects continuously
in Lp

∗
(M) for 1 < p < n, and in C1−n/p(M) for p > n. In 1967 Trudinger proved that

for the critical exponent p = n there is a corresponding embedding in the Orlicz space
of functions u such that eu

n/(n−1)
is in Lq for some q (see e.g. [21, p. 25]). In [18]

Moser computed the best value of q, both in the case where M is a bounded domain in
Rn and when M is the two-dimensional sphere with its standard metric. In the latter
case the optimal value of q is 4π:

Theorem 1. (Trudinger-Moser)

There is a constant C > 0 such that∫
S2

e4πϕ
2
ω ≤ C (1)
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for any ϕ ∈W 1,2(S2) for which∫
S2

|∇ϕ|2ω ≤ 1 and

∫
S2

ϕω = 0. (2)

(Here ω denotes the volume form of the standard metric on S2.) Moser used symme-
trization to reduce the problem to a one-dimensional inequality, which is nevertheless
quite non-trivial in both cases. Later A. Garsia and D. Adams [1] reproved Moser’s
result in the case of a bounded domain using Riesz potentials and O’Neill inequalities.
Adams also obtained a much more general result allowing Lp bounds on higher order
derivatives. The same approach was carried over to arbitrary compact manifolds by
L. Fontana [12]. (See [11] for other related results.) Using the inequality

εa2 +
b2

ε
≥ 2ab

one easily gets from Theorem 1 the following:

Theorem 2. (Moser)

There is a constant C > 0 such that for all functions ϕ ∈ C∞(S2)

1
4π

∫
S2

eϕω ≤ C exp
(

1
16π

∫
S2

|∇ϕ|2ω +
1
4π

∫
S2

ϕω

)
. (3)

This is usually referred to as the Moser-Trudinger inequality and was Moser’s original
motivation for proving the optimal Sobolev embedding. Later Onofri [19] using con-
formal invariance and an estimate of Aubin [2] proved that one can indeed take C = 1
in (3) and characterized extremal functions:

Theorem 3. (Onofri)

For all ϕ ∈W 1,2(S2)

1
4π

∫
S2

eϕω ≤ exp
(

1
16π

∫
S2

|∇ϕ|2ω +
1
4π

∫
S2

ϕω

)
. (4)

Moreover equality is attained exactly for functions of the form

ψ(ξ) = −2 log(1− ξ · ζ) + C (5)

where C is a constant, ξ ∈ S2 ⊂ R3 and ζ is a fixed vector in R3 of norm less than 1.

The importance of the Moser-Onofri inequality to geometry could hardly be over-
estimated and stems from a variety of roots: the Nirenberg problem of prescribing
the Gaussian curvature of a conformal metric on S2, extremals of regularised determi-
nants, Kähler-Einstein metrics and Arakelov theory. We refer to [3, Chapter 8], [20],
[22, Chapter 6], [15] and the beautiful survey by Sun-Yung Alice Chang [11] for an
indication of these connections.

A number of other proofs of this inequality have been given in later years: [20]
and [16] rely on Theorem 1, while [6] and [9] depend on a deep relation between Moser-
Onofri inequality and the Hardy-Littlewood-Sobolev inequality. In dimension 2 a more
direct proof can be given with the method of competing symmetries, see [10].
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The purpose of this note is to present a new proof of the Moser-Onofri inequality
(4) based on convexity arguments, especially the following well-known result in convex
analysis, which is a functional version of the classical Brunn-Minkowski theorem.

Theorem 4. (Prékopa-Leindler)

Let f, g and m be nonnegative measurable functions on Rn, such that

m
(
λx+ (1− λ)y

)
≥ f(x)λg(y)1−λ (6)

for all x, y ∈ Rn, λ ∈ [0, 1]. Then∫
Rn

m ≥
(∫

Rn

f

)λ(∫
Rn

g

)1−λ
. (7)

(For a simple proof see for example [5, Lecture 5] or [7].) Following Moser we reduce (3)
to an inequality for a real function. Using the coarea formula, we show that this one-
dimensional inequality follows from the lower boundedness of a functional Φ defined on
convex functions z on the interval (−1, 1) and involving integrals of z and its Legendre
transform (see Proposition 2). Convexity and boundedness of Φ easily follow from
the Prékopa-Leindler inequality. This proves Moser’s inequality (3). To get the best
constant it is enough to show that the function z = u∗0 (see (12)) corresponds to the
minimum of Φ, and this follows from elementary convexity arguments.

Finally we give the characterization of the extremals in the spirit of [20, pp. 165ff].
Osgood, Phillips and Sarnak reasoned as follows: if ψ is an extremal of (4), then it
satisfies the Euler-Lagrange equation for the corresponding functional (i.e. F in (8)
below). This simply means that the conformal metric e2ψg is of constant Gaussian
curvature. Therefore this metric is isometric to the standard metric on the sphere,
that is there is a diffeomorphism f : S2 → S2 such that f∗(e2ψg) = g. But since e2ψg
and g are manifestly in the same conformal class, such a diffeomorphism must be a
conformal transformation. This ensures that ψ is of the form (5).

Instead we use the Euler-Lagrange equation after symmetrizing the minimizer. In
one dimension regularity issues simplify quite a lot, and we are able to give the char-
acterization of extremals for general W 1,2 functions, taking advantage of an important
result of Brothers and Ziemer on the extremals in the rearrangement inequality.

We recall that Onofri gave the characterization of the extremals, using a topo-
logical argument, showing that any smooth minimizer is related by a conformal trans-
formation to another function satisfying both the Euler-Lagrange equation and the
Kazdan-Warner conditions (i.e. eq. (8) in [19]). It is known that such a function must
be constant.

We remark that we do not reprove the sharp Sobolev embedding, i.e. Theorem 1,
but give a direct proof of Theorems 2 and 3. It would be interesting to find a proof of
Theorem 1 along the lines of the present paper.

We should also remark that it does not seem possible to generalise the method
used in this paper to higher dimensions.

The author wishes to thank Gang Tian for introducing him to the subject of
Moser-Trudinger inequalities and Keith Ball for suggesting him the crucial use of the
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Prékopa-Leindler inequality. This work has been written while the author was a post-
doc fellow at the Department of Mathematics in Pavia. He would like to thank F.A.R.
“Varietà algebriche, Calcolo scientifico e Grafi orientati” (Università di Pavia) for fi-
nancial support, and in particular Gian Pietro Pirola for conveying so much enthusiasm
for mathematics.

1. Proof of Moser inequality

For ϕ ∈ C∞(S2) put

F (ϕ) =
1

16π

∫
S2

|∇ϕ|2ω − 1
4π

∫
S2

ϕω − log
(

1
4π

∫
S2

e−ϕω

)
. (8)

Moser inequality is of course equivalent to the fact that F is bounded below on C∞(S2),
while Onofri inequality says it is nonnegative.

As a first step we apply symmetrization to reduce to a one-dimensional problem.

Lemma 1

Let D denote the space of functions on the sphere that are constant on parallel

circles and that are constant near the poles. Then

inf
C∞(S2)

F = inf
D
F

Proof. Recall that spherical symmetrization is a process that to a smooth function ϕ

on S2 associates a function ϕ#, which is constant on the parallel circles, in such a way
that ∫

S2

f(ϕ#) =
∫
S2

f(ϕ) and
∫
S2

|∇ϕ#|2 ≤
∫
S2

|∇ϕ|2 (9)

where f is any continuous function on the real line. (See e.g. [4, Corollary 3 p. 60] or
[17].) One immediately checks that F (ϕ#) ≤ F (ϕ). A density argument based on the
continuity of F in the W 1,2 norm shows that one can further reduce to D. �

Denote by (θ, y) the usual coordinates on S2, namely θ ∈ (−π/2, π/2) is the
longitude, that is the signed distance from equator, and y is latitude, that we consider
as a periodic (geodesic) parameter on the equator itself. Then the metric and the
volume form are given by

g = dθ2 + cos2 θ dy2 ω = cos θ dθ ∧ dy. (10)

Put

x = log tan
(
θ

2
+
π

4

)
(11)

and use (x, y) ∈ R×R as coordinates on S2 \ {poles}. (z = x+ i y is in fact a complex
parameter on C∗ ⊂ P1(C) = S2.) Put also

u0(x) = log
(

1 + e2x

2ex

)
(12)
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and denote by V the space of smooth functions on the real line such that{
u = u0 + a for x� 0
u = u0 + b for x� 0

(13)

where a and b are constants depending on the function u. If ϕ ∈ D then it does not
depend on y, and it is clear that

u(x) = u0(x) +
ϕ(x)

2
(14)

belongs to V . The next step is to give an expression of F (ϕ) in terms of u. For
ϕ ∈ C∞(S2) put

B(ϕ) =
1

16π

∫
S2

|∇ϕ|2ω − 1
4π

∫
S2

ϕω A(ϕ) = log
(

1
4π

∫
S2

e−ϕω

)
.

Clearly F = B −A. Finally for u ∈ V put

E(u) =
∫ +∞

−∞

(
xu′(x)− u(x)

)
u′′(x) dx.

Proposition 1

E is a well-defined functional on V . Moreover for ϕ ∈ D and u as in (14)

B(ϕ) = E(u)− E(u0) (15)

A(ϕ) = log
(

1
2

∫ +∞

−∞
e−2u(x) dx

)
. (16)

Proof. To prove that E is well-defined it is enough to show that for u ∈ V , u′′ ∈ L1

and xu′ − u ∈ L∞. Since

u′0 =
e2x − 1
e2x + 1

u′′0 =
4e2x

(e2x + 1)2
(17)

the case u = u0 follows from direct computation. To extend to general u ∈ V it is
enough to consider (13). Next fix ϕ ∈ D and compute

θ = 2arctan ex − π

2
θ′ =

2ex

1 + e2x∣∣∣∣ ∂∂θ
∣∣∣∣2 = 1

∇ϕ =
∂ϕ

∂θ

∂

∂θ
= ϕ′

dx

dθ

∂

∂θ

|∇ϕ|2 =
(ϕ′)2

(θ′)2
=

(ϕ′)2

u′′0

∇ϕ|2ω = (ϕ′)2 dx ∧ dy

1
16π

∫
S2

|∇ϕ|2ω =
1
8

∫ +∞

−∞
(ϕ′)2.

Since ϕ′ has compact support we can integrate by parts:

1
16π

∫
S2

|∇ϕ|2ω =
1
8

∫ +∞

−∞
(ϕ′)2 = −1

8

∫ +∞

−∞
ϕϕ′′

= −1
2

∫ +∞

−∞
uu′′ +

1
2

∫ +∞

−∞
uu′′0 +

1
2

∫ +∞

−∞
u0u

′′ − 1
2

∫ +∞

−∞
u0u

′′
0.
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On the other hand

1
4π

∫
S2

ϕω =
1
2

∫ +∞

−∞
ϕu′′0 =

∫ +∞

−∞
uu′′0 −

∫ +∞

−∞
u0u

′′
0

B(ϕ) = −1
2

∫ +∞

−∞
uu′′ +

1
2

∫ +∞

−∞
u0u

′′
0 +

1
2

∫ +∞

−∞
(u0u

′′ − uu′′0).

The last integral contains some asymptotic information: for R � 0 integration by
parts gives∫ R

−R
(u0u

′′ − uu′′0) =
[
u0u

′ − uu′0

]R
−R

= u0(R)u′0(R)−
(
u0(R) + b

)
u′0(R)

+ −u0(−R)u′0(−R) +
(
u0(−R) + a

)
u′0(−R).

Letting R tend to ∞ we get∫ +∞

−∞
(u0u

′′ − uu′′0) = −(a+ b)

whence

B(ϕ) = −1
2

∫ +∞

−∞
uu′′ +

1
2

∫ +∞

−∞
u0u

′′
0 −

1
2
(a+ b). (18)

(Here a and b are as in (13) so they depend on u.) On the other hand∫ R

−R
xu′u′′ =

[
(xu′)u′

]R
−R

−
∫ +∞

−∞
(u′ + xu′′)u′

∫ R

−R
xu′u′′ =

1
2

[
x(u′)2

]R
−R

− 1
2

∫ +∞

−∞
(u′)2

=
1
2

[
x(u′)2

]R
−R

− 1
2

[
uu′

]R
−R

+
1
2

∫ R

−R
uu′′.

If R� 0 ∫ R

−R
xu′u′′ −

∫ R

−R
xu′0u

′′
0

=
1
2

∫ R

−R
uu′′ − 1

2

∫ R

−R
u0u

′′
0 −

1
2

[
uu′ − u0u

′
0

]R
−R

and again [
uu′ − u0u

′
0

]R
−R

= −(a+ b),

so ∫ +∞

−∞
xu′u′′ −

∫ +∞

−∞
xu0u

′′
0 =

1
2

∫ +∞

−∞
uu′′ − 1

2

∫ +∞

−∞
u0u

′′
0 +

1
2
(a+ b)
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and

E(u)− E(u0) =
∫ +∞

−∞
xu′u′′ −

∫ +∞

−∞
xu0u

′′
0 −

∫ +∞

−∞
uu′′ +

∫ +∞

−∞
u0u

′′
0

= −1
2

∫ +∞

−∞
uu′′ +

1
2

∫ +∞

−∞
u0u

′′
0 +

1
2
(a+ b) = B(ϕ).

This proves (15). To prove (16) observe that u′′0 = e−2u0 . (This expresses the fact that
the metric on S2 is Kähler-Einstein.) Therefore

1
4π

∫
S2

e−ϕω =
1
4π

∫
S2

e−ϕe−2u0 dx ∧ dy =
1
2

∫ +∞

−∞
e−2u(x) dx

which proves (16). �

For a function u : Rn → (−∞,∞] denote by u∗ its Legendre transform, which is
defined by the formula

u∗(y) = sup
x∈R

(
xy − u(x)

)
. (19)

If u is defined only on a subset Ω ⊂ Rn one first extends it to all Rn by putting it equal
to +∞ on Rn \ Ω, then applies the formula above to define its Legendre transform.

We will prove that F is bounded below by a functional depending on u∗ only.

Lemma 2

a) If u1 and u2 are functions on Rn, then ||u∗1 − u∗2||∞ ≤ ||u1 − u2||∞.

b) u∗0(y) = 1
2(1 + y) log(1 + y) + 1

2(1− y) log(1− y) which is a continuous function

on [−1, 1].
c) If u ∈ V , then u∗ ∈ L∞(−1, 1).
d) If u ∈ V and y ∈ (−1, 1), the supremum in (19) is attained at some point x

such that u′(x) = y; therefore for y ∈ (−1, 1)

u∗(y) = max
u′(x)=y

(
xy − u(x)

)
. (20)

Proof. (a) From the definition (19)

u∗1(y) = sup
x∈Rn

(
xy − u1(x))

≤ sup
x∈Rn

(
xy − u2(x)) + sup

x∈Rn

(
u2(x)− u1(x)

)
≤ u∗2(y) + ||u1 − u2||∞.

Interchanging u1 and u2 and taking the sup in y one gets the result. Note that this
still holds when the functions attain infinite values. Indeed, if the set where they are
infinite is not the same for both, clearly ||u1 − u2||∞ = ∞ and there is nothing to
prove. While if they are both finite on the same set Ω ⊂ Rn it is obviously enough to
compute the suprema above on the set Ω. (We use the convention ∞−∞ = 0.) (b)
is an elementary computation. (c) follows from (a) and (b). To prove (d), let |y| < 1.
Then xy−u(x) = x(y− 1)+

(
x−u(x)

)
. Now x−u(x) = x−u0(x)+

(
u0(x)−u(x)

)
is

bounded for x > 0. On the other hand as x→ +∞, x(y − 1) tends to −∞. Therefore
limx→+∞

(
xy − u(x)

)
= −∞ and similarly for x → −∞. Hence the supremum is
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attained at some point x̄. But z(x) = yx − u(x) is a smooth function of x, therefore
z′(x̄) = y − u′(x̄) = 0. �

Lemma 3

If u ∈ V then

E(u) ≥
∫ 1

−1
u∗(y) dy. (21)

Moreover the equality holds if u is strictly convex.

Proof. As noted in the proof of Proposition 1, w(x) = xu′(x) − u(x) ∈ L∞. Assume
w ≥ −M for some M ∈ R, and put ū(x) = u(x)−M . Then ū′ = u′ and

w̄(x) = xū′(x)− ū(x) = w +M ≥ 0.

Moreover ū∗ = u∗ −M . Since

lim
x→±∞

u′(x) = lim
x→±∞

u′0(x) = ±1,
∫
u′′ = 2,

E(u) = E(ū)−2M and
∫ 1
−1 ū

∗ =
∫ 1
−1 u

∗−2M . Therefore it is enough to prove (21) for
u = ū. Put f = ū′ : R → R. It follows from the coarea formula [13, p. 82, Theorem 2]
that

E(ū) =
∫ +∞

−∞
w̄(x)f ′(x) dx =

∫ +∞

−∞

[ ∑
f−1(y)

w̄(x)
]
dy.

Since w̄ ≥ 0

E(ū) ≥
∫ 1

−1

[ ∑
f−1(y)

w̄(x)
]
dy.

But again from w̄ ≥ 0 and (20) it follows that
∑

f−1(y) w̄(x) ≥ ū∗(y), whence the result.
Finally, if u is strictly convex u∗(u′(x)) = xu′(x) − u(x) = w(x), and it is enough to
make the substitution y = u′(x) to prove the equality in (21). �

Let W denote the space of bounded convex functions on (−1, 1). For z ∈W put

Φ(z) =
∫ 1

−1
z(y) dy − log

(
1
2

∫ +∞

−∞
e−2z∗(x) dx

)
. (22)

Proposition 2

The functional Φ is well-defined and finite on W . If ϕ ∈ D and u = u0 + ϕ/2,

then u∗ ∈W and

F (ϕ) ≥ Φ(u∗)− E(u0) (23)

Moreover equality holds if u is strictly convex. In particular infD F ≥ infW Φ−E(u0).
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Proof. If z ∈ W , then ||z − u∗0||∞ < ∞ since both z and u∗0 are bounded. Thanks to
Lemma 2 (a) ||z∗ − u0||∞ < ∞ as well, therefore the integral inside the logarithm in
(22) converges and Φ(z) is well-defined for z ∈ W . If ϕ ∈ D, then u ∈ V and u∗ is
bounded by Lemma 2 (c), so u∗ ∈ W . Using (16) and recalling that u∗∗ ≤ u for any
real function, it is immediate that

A(ϕ) ≤ log
(

1
2

∫ +∞

−∞
e−2u∗∗

)
. (24)

Together with (15) and (21) this yields (23). �

We now introduce the Prékopa-Leindler inequality in the following form.

Lemma 4

Let ϕ,ψ and µ be nonnegative measurable functions on [0,∞), such that

µ
(
xλy1−λ) ≥ ϕ(x)λψ(y)1−λ (25)

for all x, y ∈ [0,∞), λ ∈ [0, 1]. Then∫ ∞

0
µ ≥

(∫ ∞

0
ϕ

)λ(∫ ∞

0
ψ

)1−λ
. (26)

Proof. Put f(x) = ϕ(ex)ex, g(x) = ψ(ex)ex and m(x) = µ(ex)ex. Then f, g,m satisfy
(6). To get the result it is enough to apply Theorem 4 and to use the formula for the
change of variables in order to check that the integrals in (7) coincide with the ones
in (26). �

Lemma 5

Let z1, z2 be functions on a convex subset Ω ⊂ Rn. For λ ∈ [0, 1] put z =
λz1+(1−λ)z2. Denote by z∗1 , z

∗
2 , z

∗ the Legendre transforms of z1, z2 and z respectively.

Then for any x, y ∈ Ω

z∗
(
λx+ (1− λ)y

)
≤ λz∗1(x) + (1− λ)z∗2(y). (27)

Proof. It is enough to apply (19):

λz∗1(x) + (1− λ)z∗2(y)

= λ sup
ξ∈Ω

{
x · ξ − z1(ξ)

}
+ (1− λ) sup

η∈Ω

{
y · η − z2(η)

}
≥ sup

ξ∈Ω

{
λ
(
x · ξ − z1(ξ)

)
+ (1− λ)

(
y · ξ − z2(ξ)

)}
= sup

ξ∈Ω

{(
λx+ (1− λ)y

)
· ξ − z(ξ)

}
= z∗

(
λx+ (1− λ)y

)
. �

Theorem 5

The functional Φ : W → R is convex and bounded below.
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Proof. Note first that W is a convex subset of C0(−1, 1), so it makes sense to talk
about convexity of functional Φ. The first term of Φ in (22) is linear so convex. It
is enough to check that the second is concave. Let z1, z2 ∈ W , λ ∈ [0, 1] and put
z = λz1 + (1− λ)z2. It follows from Lemma 5 that

e−2z∗(λx+(1−λ)y) ≥ e−2λz∗1 (x)−2(1−λ)z∗2 (y)

=
(
e−2z∗1 (x))λ

(
e−2z∗2 (y))(1−λ).

Applying Lemma 4 we get(∫ ∞

−∞
e−2z∗

)
≥

(∫ ∞

−∞
e−2z∗1

)λ(∫ ∞

−∞
e−2z∗2

)(1−λ)

log
(

1
2

∫ ∞

−∞
e−2z∗(x) dx

)
≥ λ log

(
1
2

∫ ∞

−∞
e−2z∗1 (x) dx

)
+ (1− λ) log

(
1
2

∫ ∞

−∞
e−2z∗2 (x) dx

)
.

Therefore the second term in (22) is concave and Φ is convex. If z ∈ W put w(y) =
z(−y). Clearly w ∈ W and w∗(x) = z∗(−x), hence Φ(w) = Φ(z). From the convexity
of Φ it follows that

Φ(z̄) ≤ Φ(z) + Φ(w)
2

= Φ(z)

where z̄ = (z + w)/2. To compute the infimum of Φ we can therefore restrict to even
functions. For such a function z ∈W

Φ(z) = 2
∫ 1

0
z(y) dy − log

(∫ ∞

0
e−2z∗(x) dx

)
.

Using Jensen inequality

e−Φ(z) = exp
(
−2

∫ 1

0
z(y) dy

) ∫ ∞

0
e−2z∗(x) dx

≤
∫ 1

0
e−2z(y) dy

∫ ∞

0
e−2z∗(x) dx.

(28)

So it is enough to show that for some constant C and for any even function z ∈W we
have ∫ 1

0
e−2z(y) dy

∫ ∞

0
e−2z∗(x) dx ≤ C. (29)

Put

ψ(x) = e−2z∗(x)

µ(t) = e−t
2 ϕ(y) =

{
e−2z(y) y ∈ [0, 1]
0 y ∈ (1,∞).

The fundamental property of the Legendre transformation, namely that

z(y) + z∗(x) ≥ xy,

implies that √
ϕ(y)ψ(x) ≤ µ(

√
xy)
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i.e. (25) with λ = 1/2. Using Lemma 4 (i.e. the Prékopa-Leindler inequality) we
conclude that √(∫ ∞

0
f

)(∫ ∞

0
g

)
≤

∫ ∞

0
e−t

2
dt =

√
π

2
.

Taking the square we get (29) with C = π/4. This concludes the proof of the
theorem. �

Proof of Theorem 2. It is enough to piece together Lemma 1, Proposition 2 and
Theorem 5. �

2. Proof of Onofri inequality

Recall the following well-known property of convex functionals. We stress that it does
not need any topological assumption. The proof is elementary and is left to the reader.

Lemma 6

Let L be a real vector space (of arbitrary dimension), C ⊂ L a convex subset

and Ψ : C → R a convex functional. Let x ∈ C and assume that for any y ∈ C the

directional derivative of Ψ at x in the direction v = y − x exists and vanishes:

d
dt

∣∣∣∣
t=0

Ψ(x+ tv) = 0. (30)

Then Ψ attains its minimum at x.

The following lemma computes the differential of the Legendre transform as a
nonlinear map between manifolds of convex functions.

Lemma 7

Let zt (for |t| < ε) be a path of functions on (a, b) ⊂ R, such that z(t, y) = zt(y)
be a smooth function on (−ε, ε) × (a, b). Assume that each zt is strictly convex in y.

Let z∗t be the path of their Legendre transforms, and put z∗(t, x) = z∗t (x). Then

∂z∗

∂t
(t, x) = −∂z

∂t

(
t,
∂z∗

∂x
(t, x)

)
. (31)

Proof. Since zt is strictly convex

z∗(t, x) + z∗
(
t,
∂z∗

∂x
(t, x)

)
= x

∂z∗

∂x
(t, x).

Differentiating with respect to t

∂z∗

∂t
(t, x) +

∂z

∂t

(
t,
∂z∗

∂x
(t, x)

)
+
∂z

∂y

(
t,
∂z∗

∂x
(t, x)

)∂2z∗

∂x2
(t, x)

= x
∂2z∗

∂x2
(t, x).

Since
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∂z

∂y

(
t,
∂z∗

∂x
(t, x)

)
= x

we get (31). �

Proof of Theorem 3. We apply Lemma 6 with L = L∞(−1, 1), C = W , Ψ = Φ and
x = u∗0. It is enough to show that

d
dt

∣∣∣∣
t=0

Φ(u∗0 + tv) = 0 (32)

whenever v = u∗0−z1 and z1 ∈W . Put z0 = u∗0 and zt = u∗0+tv = tz1+(1−t)z0. Since
z1 is convex and z0 is strictly convex, then zt is strictly convex as well. Differentiating
under the integral sign

d
dt

∣∣∣∣
t=0

Φ(zt) =
∫ 1

−1
v(y) dy +

∫ +∞

−∞

∂z∗

∂t
(0, x)u′′0(x) dx

since
∫
e−2u0 =

∫
u′′0 = 2. Using (31)∫ +∞

−∞

∂z∗

∂t
(0, x)u′′0(x) dx = −

∫ +∞

−∞

∂z∗

∂t

(
0,
∂z∗

∂x
(0, x)

)
u′′0 dx

= −
∫ +∞

−∞
v
(
u′0(x)

)
u′′0(x) dx = −

∫ 1

−1
v(y) dy.

Therefore we can apply Lemma 6 to the effect that infW Φ = Φ(u∗0). Lemma 1 and
Proposition 2 yield then

inf
C∞(S2)

F ≥ Φ(u∗0)− E(u0).

Since u0 is strictly convex Lemma 3 implies E(u0) =
∫ 1
−1 u

∗
0. Moreover

∫
e−2u0 =∫

u′′0 = 2, therefore Φ(u∗0) = E(u0) and F ≥ 0. This completes the proof of the
Moser-Onofri inequality (4).

Next we give a short argument to deal with the equality case. It uses neither
Legendre transformation nor the Prékopa-Leindler inequality. On the other hand it
relies on a deep result of Brothers and Ziemer on the extremals of rearrangement
inequalities.

Let ψ ∈ W 1,2(S2) be an extremal of (4), i.e. F (−ψ) = 0. Denote by ϕ = (−ψ)#

the spherical symmetrization of −ψ. It belongs to the Sobolev space W 1,2(S2) too. It
follows from properties (9) that∫

S2

|∇ϕ|2 =
∫
S2

|∇ψ|2, (33)

and that F (ϕ) = F (−ψ) = 0. This means that ϕ is a minimiser of F , hence a weak
solution of the Euler-Lagrange equation

∆ϕ+ 4− 4
e−ϕ

1
4π

∫
S2 e−ϕω

= 0. (34)

If

c = log
(

1
4π

∫
S2

e−ϕω

)
(35)
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then

u = u0 +
1
2
(ϕ+ c) ∈W 1,2

loc (R)

is a weak solution of the equation u′′ = e−2u on the real line. Since W 1,2
loc (R) ⊂ C0(R),

u ∈ C0(R) and e−2u ∈ C0(R) ⊂ L2
loc(R). Standard regularity theory (see e.g. [14,

Theorem 8.8 p. 183]) ensures then that u ∈ W 2,2
loc (R) ⊂ C1(R). So e−2u ∈ C1 ⊂

W 1,2
loc (R). Therefore u belongs to W 3,2 ⊂ C2 and is a classical solution of the ordinary

differential equation u′′ = e−2u defined on the whole real line. Since u′′ > 0, u′(x) is
increasing and it has a limit for x → ±∞. Since u′0(x) → ±1 as x → ±∞, ϕ′(x) =
2u′(x) − 2u′0(x) has limits as well. In order for ϕ′ to be in L2(R) these limits must
vanish. Since

1
8

∫ (
ϕ′(x)

)2
dx =

1
16π

∫
S2

|∇ϕ|2ω <∞,

ϕ′ is indeed square-integrable, and we deduce

lim
x→±∞

ϕ′(x) = 0 lim
x→±∞

u′(x) = lim
x→±∞

u′0(x) = ±1.

Let x0 be the (unique) point such that u′(x0) = 0. Put a = e−u(x0). Then u(x) =
u0(a(x− x0))− log a. Indeed this function is a solution of the equation with the same
initial conditions at x = x0 as u. By the definition of c, (35),∫

S2

e−(ϕ+c)ω = 4π, i.e.
∫ ∞

−∞
e−2u =

∫ ∞

−∞
e−2u0 = 2.

Therefore a = 1, i.e. u(x) = u0(x− x0) is simply a translation of u0 and

ϕ(x) = 2u0(x− x0)− 2u(x)− c.

Put

A =
1 + e2x0

2ex0
ε =

e2x0 − 1
e2x0 + 1

,

then

ϕ(x) = 2 log
(

1− ε
e2x − 1
e2x + 1

)
+ 2 logA− c.

Denote by ξ a point on S2 ⊂ R3. Using polar coordinates (θ, y) as above, ξ =
(cos θ cos y, cos θ sin y, sin θ) and

e2x − 1
e2x + 1

= sin θ

(see (11)). Therefore,

ϕ(ξ) = 2 log
(
1− ξ · (0, 0, ε)

)
+ c− logA.

Observe that the only critical points of this function are the North and the South
pole, which are respectively a maximum and a minimum point. Moreover −ψ and ϕ =
(−ψ)# have the same Dirichlet integral, see (33). Therefore we can apply Theorem 5.1
in [8] to conclude that there is a transformation R ∈ O(3) such that −ψ = ϕ ◦R. This
means that

ψ(ξ) = −2 log(1− ξ · ζ) + C
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with C = logA − c and ζ = R−1(0, 0, ε) ∈ B3. This proves that the extremals of the
inequality have the desired form and completes the proof of Onofri’s theorem. �
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13. M. Giaquinta, G. Modica, and J. Souček, Cartesian Currents in the Calculus of Variations, I,
Cartesian Currents37, Springer-Verlag, Berlin, 1998.

14. D. Gilbarg and N.S. Trudinger,Elliptic Partial Differential Equations of Second Order, Springer-
Verlag, Berlin, 2001.
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